策略梯度定理公式的详细推导
策略梯度定理公式的详细推导
以下是策略梯度定理公式从基础概率公式到最终形式的完整推导,帮助更清晰地理解推导过程中的每一个步骤。
1. 策略梯度的目标
我们希望最大化期望累积奖励 ( J ( θ ) J(\theta) J(θ) ),其定义为:
J ( θ ) = E π θ [ R t ] J(\theta) = \mathbb{E}_{\pi_\theta} \left[ R_t \right] J(θ)=Eπθ[Rt]
根据期望的定义,可以将 ( J ( θ ) J(\theta) J(θ) ) 写为积分形式:
J ( θ ) = ∫ τ P ( τ ; θ ) R t d τ J(\theta) = \int_{\tau} P(\tau; \theta) R_t \, d\tau J(θ)=∫τP(τ;θ)Rtdτ
其中:
- ( τ = ( s 0 , a 0 , s 1 , a 1 , … ) \tau = (s_0, a_0, s_1, a_1, \dots) τ=(s0,a0,s1,a1,…) ) 表示一条轨迹;
- ( P ( τ ; θ ) P(\tau; \theta) P(τ;θ) ) 是轨迹的概率分布。
接下来,我们对目标 ( J ( θ ) J(\theta) J(θ) ) 求梯度:
∇ θ J ( θ ) = ∇ θ ∫ τ P ( τ ; θ ) R t d τ \nabla_\theta J(\theta) = \nabla_\theta \int_{\tau} P(\tau; \theta) R_t \, d\tau ∇θJ(θ)=∇θ∫τP(τ;θ)Rtdτ
根据微积分中的交换求导与积分的规则,将梯度符号与积分符号交换位置:
∇ θ J ( θ ) = ∫ τ ∇ θ [ P ( τ ; θ ) R t ] d τ \nabla_\theta J(\theta) = \int_{\tau} \nabla_\theta \left[ P(\tau; \theta) R_t \right] d\tau ∇θJ(θ)=∫τ∇θ[P(τ;θ)Rt]dτ
因为 ( R t R_t Rt ) 不依赖于参数 ( θ \theta θ ),所以可以提取出来:
∇ θ J ( θ ) = ∫ τ R t ∇ θ P ( τ ; θ ) d τ \nabla_\theta J(\theta) = \int_{\tau} R_t \nabla_\theta P(\tau; \theta) \, d\tau ∇θJ(θ)=∫τRt∇θP(τ;θ)dτ
2. 引入对数梯度
为了化简 ( ∇ θ P ( τ ; θ ) \nabla_\theta P(\tau; \theta) ∇θP(τ;θ) ),我们引入对数梯度技巧:
∇ θ P ( τ ; θ ) = P ( τ ; θ ) ⋅ ∇ θ log P ( τ ; θ ) \nabla_\theta P(\tau; \theta) = P(\tau; \theta) \cdot \nabla_\theta \log P(\tau; \theta) ∇θP(τ;θ)=P(τ;θ)⋅∇θlogP(τ;θ)
将其代入梯度公式:
∇ θ J ( θ ) = ∫ τ R t ⋅ P ( τ ; θ ) ⋅ ∇ θ log P ( τ ; θ ) d τ \nabla_\theta J(\theta) = \int_{\tau} R_t \cdot P(\tau; \theta) \cdot \nabla_\theta \log P(\tau; \theta) \, d\tau ∇θJ(θ)=∫τRt⋅P(τ;θ)⋅∇θlogP(τ;θ)dτ
根据概率分布 ( P ( τ ; θ ) P(\tau; \theta) P(τ;θ) ) 的性质,可以用期望形式重新表示:
∇ θ J ( θ ) = E π θ [ R t ⋅ ∇ θ log P ( τ ; θ ) ] \nabla_\theta J(\theta) = \mathbb{E}_{\pi_\theta} \left[ R_t \cdot \nabla_\theta \log P(\tau; \theta) \right] ∇θJ(θ)=Eπθ[Rt⋅∇θlogP(τ;θ)]
这一步的重要性在于将积分转化为在策略 ( π θ \pi_\theta πθ ) 下的期望,使得后续计算能够通过采样来实现。
3. 轨迹概率分布的分解
轨迹 ( τ \tau τ ) 的概率 ( P ( τ ; θ ) P(\tau; \theta) P(τ;θ) ) 可以分解为以下形式:
P ( τ ; θ ) = P ( s 0 ) ∏ t = 0 ∞ π θ ( a t ∣ s t ) P ( s t + 1 ∣ s t , a t ) P(\tau; \theta) = P(s_0) \prod_{t=0}^{\infty} \pi_\theta(a_t | s_t) P(s_{t+1} | s_t, a_t) P(τ;θ)=P(s0)t=0∏∞πθ(at∣st)P(st+1∣st,at)
其中:
- ( P ( s 0 ) P(s_0) P(s0) ):初始状态的概率;
- ( π θ ( a t ∣ s t ) \pi_\theta(a_t | s_t) πθ(at∣st) ):策略分布,表示在状态 ( s t s_t st ) 下采取动作 ( a t a_t at ) 的概率;
- ( P ( s t + 1 ∣ s t , a t ) P(s_{t+1} | s_t, a_t) P(st+1∣st,at) ):环境的状态转移概率。
对 ( log P ( τ ; θ ) \log P(\tau; \theta) logP(τ;θ) ) 求导时,仅有 ( π θ ( a t ∣ s t ) \pi_\theta(a_t | s_t) πθ(at∣st) ) 与参数 ( θ \theta θ ) 相关,因此可化简为:
∇ θ log P ( τ ; θ ) = ∑ t = 0 ∞ ∇ θ log π θ ( a t ∣ s t ) \nabla_\theta \log P(\tau; \theta) = \sum_{t=0}^{\infty} \nabla_\theta \log \pi_\theta(a_t | s_t) ∇θlogP(τ;θ)=t=0∑∞∇θlogπθ(at∣st)
将此结果代入梯度公式:
∇ θ J ( θ ) = E π θ [ R t ⋅ ∑ t = 0 ∞ ∇ θ log π θ ( a t ∣ s t ) ] \nabla_\theta J(\theta) = \mathbb{E}_{\pi_\theta} \left[ R_t \cdot \sum_{t=0}^{\infty} \nabla_\theta \log \pi_\theta(a_t | s_t) \right] ∇θJ(θ)=Eπθ[Rt⋅t=0∑∞∇θlogπθ(at∣st)]
4. 化简最终公式
将期望中的求和移到外部,可以得到:
∇ θ J ( θ ) = ∑ t = 0 ∞ E π θ [ R t ⋅ ∇ θ log π θ ( a t ∣ s t ) ] \nabla_\theta J(\theta) = \sum_{t=0}^{\infty} \mathbb{E}_{\pi_\theta} \left[ R_t \cdot \nabla_\theta \log \pi_\theta(a_t | s_t) \right] ∇θJ(θ)=t=0∑∞Eπθ[Rt⋅∇θlogπθ(at∣st)]
在每个时间步 ( t t t ),我们只需要计算与当前动作 ( a t a_t at ) 和状态 ( s t s_t st ) 相关的对数梯度,从而得到:
∇ θ J ( θ ) = E π θ [ R t ⋅ ∇ θ log π θ ( a t ∣ s t ) ] \nabla_\theta J(\theta) = \mathbb{E}_{\pi_\theta} \left[ R_t \cdot \nabla_\theta \log \pi_\theta(a_t | s_t) \right] ∇θJ(θ)=Eπθ[Rt⋅∇θlogπθ(at∣st)]
这就是策略梯度定理的最终公式。
5. 使用对数梯度性质验证
策略梯度公式的核心在于以下对数梯度性质:
∇ θ π θ ( a t ∣ s t ) = π θ ( a t ∣ s t ) ⋅ ∇ θ log π θ ( a t ∣ s t ) \nabla_\theta \pi_\theta(a_t | s_t) = \pi_\theta(a_t | s_t) \cdot \nabla_\theta \log \pi_\theta(a_t | s_t) ∇θπθ(at∣st)=πθ(at∣st)⋅∇θlogπθ(at∣st)
证明如下:
- 根据对数定义, ( log x \log x logx ) 的导数为 ( 1 x \frac{1}{x} x1 );
- 对 ( π θ ( a t ∣ s t ) \pi_\theta(a_t | s_t) πθ(at∣st) ) 求梯度:
∇ θ log π θ ( a t ∣ s t ) = 1 π θ ( a t ∣ s t ) ⋅ ∇ θ π θ ( a t ∣ s t ) \nabla_\theta \log \pi_\theta(a_t | s_t) = \frac{1}{\pi_\theta(a_t | s_t)} \cdot \nabla_\theta \pi_\theta(a_t | s_t) ∇θlogπθ(at∣st)=πθ(at∣st)1⋅∇θπθ(at∣st)
两边乘以 ( π θ ( a t ∣ s t ) \pi_\theta(a_t | s_t) πθ(at∣st) ):
∇ θ π θ ( a t ∣ s t ) = π θ ( a t ∣ s t ) ⋅ ∇ θ log π θ ( a t ∣ s t ) \nabla_\theta \pi_\theta(a_t | s_t) = \pi_\theta(a_t | s_t) \cdot \nabla_\theta \log \pi_\theta(a_t | s_t) ∇θπθ(at∣st)=πθ(at∣st)⋅∇θlogπθ(at∣st)
将此性质代入公式,概率 ( π θ ( a t ∣ s t ) \pi_\theta(a_t | s_t) πθ(at∣st) ) 被约去,得到:
∇ θ J ( θ ) = E π θ [ R t ⋅ ∇ θ log π θ ( a t ∣ s t ) ] \nabla_\theta J(\theta) = \mathbb{E}_{\pi_\theta} \left[ R_t \cdot \nabla_\theta \log \pi_\theta(a_t | s_t) \right] ∇θJ(θ)=Eπθ[Rt⋅∇θlogπθ(at∣st)]
总结
通过以上详细推导,可以看出策略梯度定理的核心在于以下两点:
- 引入对数梯度性质:将复杂的概率梯度转化为对数形式;
- 利用轨迹概率分布的分解:化简梯度公式,使得计算集中在策略部分 ( π θ ( a t ∣ s t ) \pi_\theta(a_t | s_t) πθ(at∣st) )。
最终的策略梯度公式为:
∇ θ J ( θ ) = E π θ [ R t ⋅ ∇ θ log π θ ( a t ∣ s t ) ] \nabla_\theta J(\theta) = \mathbb{E}_{\pi_\theta} \left[ R_t \cdot \nabla_\theta \log \pi_\theta(a_t | s_t) \right] ∇θJ(θ)=Eπθ[Rt⋅∇θlogπθ(at∣st)]
这一公式既简洁又高效,是策略梯度方法的理论基础。
后记
2024年12月12日17点00分于上海,在GPT4o大模型辅助下完成。
相关文章:
策略梯度定理公式的详细推导
策略梯度定理公式的详细推导 以下是策略梯度定理公式从基础概率公式到最终形式的完整推导,帮助更清晰地理解推导过程中的每一个步骤。 1. 策略梯度的目标 我们希望最大化期望累积奖励 ( J ( θ ) J(\theta) J(θ) ),其定义为: J ( θ ) E…...
力扣-图论-10【算法学习day.60】
前言 ###我做这类文章一个重要的目的还是给正在学习的大家提供方向和记录学习过程(例如想要掌握基础用法,该刷哪些题?)我的解析也不会做的非常详细,只会提供思路和一些关键点,力扣上的大佬们的题解质量是非…...
《Python WEB安全 库全解析》
《Python WEB安全 库全解析》 一、Python WEB安全 库概述二、常见的 Python WEB安全 库介绍1. Jiasule2. Awesome Python Security3. Flask-Security4. Flask-SeaSurf 三、Python WEB 安全库的优缺点1. 优点2. 缺点 四、Python WEB 安全库的使用场景1. 开发 Web 应用2. 处理敏感…...
Linux yum-config-manager命令异常
错误信息 使用 yum-config-manager命令时错误信息如下 sudo yum-config-manager \ > --add-repo \ > https://download.docker.com/linux/centos/docker-ce.repo sudo: yum-config-manager: command not found 解决办法 第一步: sudo yum -y install yum-u…...
ios 开发配置蓝牙
如果使用了蓝牙功能, 又没有配置, 会出现以下错误: This app has crashed because it attempted to access privacy-sensitive data without a usage description. The apps Info.plist must contain an NSBluetoothAlwaysUsageDescription key with a string value explaini…...
geoserver(1) 发布sql 图层 支持自定义参数
前提使用postgis 数据库支持关联 join 支持 in,not in,like,及其他sql原生函数 新增sql图层 编写自定义sql 编辑sql语句必须输出带有geom数据 正则表达式去除 设置id以及坐标参考系 预览sql图层效果 拼接sql参数 http://xxx.com/geoserver/weather/wms?SERVICEWMS&VERSI…...
Linux:network:添加ip的时候自动添加一个本地路由
文章目录 问题问题 最近在看一个路由的问题,顺便看内核代码,发现在添加IP的时候,内核会自动添加一个local route。 net/ipv4/devinet.c inet_rtm_newaddr->__inet_insert_ifa /* Send message first, then call notifier.Notifier will trigger FIB update, so thatlis…...
go 集成nacos注册中心、配置中心
使用限制 Go>v1.15 Nacos>2.x 安装 使用go get安装SDK: go get -u github.com/nacos-group/nacos-sdk-go/v2 快速使用 初始化客户端配置ClientConfig constant.ClientConfig{TimeoutMs uint64 // 请求Nacos服务端的超时时间,默…...
ssd202d-badblock-坏块检测
这边文章讲述的是坏快检测功能 思路: 1.第一次烧录固件会实现跳坏块,但是后续使用会导致坏块的产生; 于是我在uboot环境变量添加了两个变量来控制坏快 lb_badnum //坏块个数 lb_badoff //坏块所在位置 2.第一次开机会根据lb_badnum是否…...
MySQL-练习-数据介绍
文章目录 一. 数据介绍1. 数据结构2. 创建数据库,数据表3. 员工表(employees)练习1 4. 顾客表(customers)练习2 5. 商品(products)和商品类别(categories)表练习3 6. 供应商表(suppliers)练习4 7. 订单和订单明细表练习5 二. 数据汇总三. 使用CASE WHEN …...
React框架:解锁现代化Web开发的新维度
在当今前端开发领域,React 无疑是一颗璀璨的明星。React 是由 Facebook 开发的用于构建用户界面的 JavaScript 库,它在前端开发中占据着重要的地位,为开发者提供了一种高效、灵活且可维护的方式来构建复杂的用户界面。 一、React 的背景与开…...
电阻功率,限流,等效电阻
1 电阻额定功率 2 电阻限流作用 3 电阻并联等效电阻...
Qt | 开发工具(top1)
Qt Creator 跨平台、完整的集成开发环境(IDE),供应用程序开发者创建用于多个桌面、嵌入式和移动设备平台的应用程序。 Qt Linguist 一套将Qt C和Qt Quick应用程序翻译成本地语言的工具。 qmake Qt自动化构建工具,简化了不同平台的构建过程。…...
Node.js express
1. express 介绍 express 是一个基于 Node.js 平台的极简、灵活的 WEB 应用开发框架,官方网址:https://www.expressjs.com.cn/简单来说,express 是一个封装好的工具包,封装了很多功能,便于我们开发 WEB 应用ÿ…...
ios h5中在fixed元素中的input被focus时,键盘遮挡input (van-popup、van-feild)
问题描述: 前提:我使用的是vant组件库,其中一个页面中有一个van-popup组件,van-popup组件中又嵌套了一个van-field组件预期结果:当点击van-feild输入框时,键盘弹起,输入框显示在键盘上方实际结…...
springboot整合lua脚本在Redis实现商品库存扣减
1、目的 使用lua脚本,可以保证多条命令的操作原子性;同时可以减少操作IO(比如说判断redis对应数据是否小于0,小于0就重置为100,这个场景一般是取出来再判断,再存放进行,就至少存在2次IO,用lua脚…...
MySQL ON DUPLICATE KEY UPDATE影响行数
目录 分析为什么Updates返回7 总结 数据库更新日志如下 insertOrUpdateList|> Preparing: INSERT INTO clue_user_tag (vuid, tag_id, tag_type, content) VALUES (?, ?, ?, ?) , (?, ?, ?, ?) , (?, ?, ?, ?) , (?, ?, ?, ?) ON DUPLICATE KEY UPDATE …...
uniapp小程序 slot中无法传递外部参数的解决方案
最近在封装一个List组件,外部传给我数据,我循环后将每个Item部分slot到外部,由调用者自己去写item布局,类似ElementUI、iView的Tabe列表。 List: <view v-if"list.length > 0" class"list-scroll__item&quo…...
umi实现动态获取菜单权限
文章目录 前景登录组件编写登录逻辑菜单的时机动态路由页面刷新手动修改地址 前景 不同用户拥有不同的菜单权限,现在我们实现登录动态获取权限菜单。 登录组件编写 //当我们需要使用dva的dispatch函数时,除了通过connect函数包裹组件还可以使用这种方…...
Pytest-Bdd-Playwright 系列教程(14):Docstring 参数
Pytest-Bdd-Playwright 系列教程(14):Docstring 参数 前言一、什么是docstring?二、基本语法三、主要特点四、实际例子五、注意事项六、使用建议总结 前言 在自动化测试的过程中,我们经常需要处理复杂的测试数据或需要输入多行文…...
交互开发---测量工具(适用VTK或OpenGL开发的应用程序)
简介: 经常使用RadiAnt DICOM Viewer来查看DICOM数据,该软件中的测量工具比较好用,就想着仿照其交互方式自己实现下。后采用VTK开发应用程序时,经常需要开发各种各样的测量工具,如果沿用VTK的widgets的思路,…...
Qt 一个简单的QChart 绘图
Qt 一个简单的QChart 绘图 先上程序运行结果图: “sample9_1QChart.h” 文件代码如下: #pragma once#include <QtWidgets/QMainWindow> #include "ui_sample9_1QChart.h"#include <QtCharts> //必须这么设置 QT_CHARTS_USE_NAME…...
【Java笔记】LinkedList 底层结构
一、LinkedList 的全面说明 LinkedList底层实现了双向链表和双端队列特点可以添加任意元素(元素可以重复),包括null线程不安全,没有实现同步 二、LinkedList 的底层操作机制 三、LinkedList的增删改查案例 public class LinkedListCRUD { public stati…...
el-table组件树形数据修改展开箭头
<style lang"scss" scoped> ::v-deep .el-table__expand-icon .el-icon-arrow-right:before {content: ">"; // 箭头样式font-size: 16px; }::v-deep .el-table__expand-icon{ // 没有展开的状态background-color: rgba(241, 242, 245, 1);color:…...
太速科技-FMC154-基于FMC 八路SFP+万兆光纤子卡
FMC154-基于FMC 八路SFP万兆光纤子卡 一、板卡概述 本卡是一个FPGA夹层卡(FMC)模块,可提供高达8个SFP / SFP 模块接口,直接插入千兆位级收发器(MGT)的赛灵思FPGA。支持业界标准的小型可插拔࿰…...
记:排查设备web时慢时快问题,速度提升100%
问题描述 问题1: 发现web登录界面刷新和登录功能都比较卡,开浏览器控制台看了下,让我很惊讶,居然能这么慢: 公司2个局域网内的表现不同,局域网A中的都比较卡,局域网B中的又不存在该现象。 问…...
音视频入门基础:MPEG2-TS专题(13)——FFmpeg源码中,解析Section Header的实现
一、引言 在《音视频入门基础:MPEG2-TS专题(11)—— TS中的Section》中讲述了Section Header的基本概念,本文讲述FFmpeg源码中是怎样解析Section Header的。 二、parse_section_header函数的定义 FFmpeg源码中通过parse_section…...
根据PDF模板单个PDF导出到浏览器和多个PDF打包ZIP导出到浏览器
一、单个PDF导出到浏览器 /*** * param templatePath 模板路径* param fileName 文件名称* param data 填充文本* param images 填充图片* param response* throws IOException*/public static void generateTempPDF(String templatePath, String fileName, Map<String, S…...
如何创建一个基本的Spring Boot应用程序
以下是一个简单的Spring Boot应用开发代码示例,它展示了如何创建一个基本的Spring Boot应用程序,并实现一个简单的RESTful API服务。 步骤1:创建项目 使用Spring Initializr或您喜欢的IDE(如IntelliJ IDEA或Eclipse)…...
1.2 计算机网络的分类和应用(重要知识点)
1.2.1 计算机网络的分类 计算机网络的定义: 由通信线路互相连接的、能自主工作的计算机构成,强调各计算机(工作站)拥有独立的计算资源和任务能力。与多终端分时系统不同,后者终端仅作为主机接口,不具备计…...
网站开发技术三大件/优化seo方案
nginx访问日志 查看nginx.conf文件 vim /usr/local/nginx/conf/nginx.conf 中间有一行是定义log的格式 log_format combined_realip $remote_addr $http_x_forwarded_for [$time_local] $host "$request_uri" $status "$http_referer" "$http_user_ag…...
wordpress个人博客绅士模板/可靠的网站优化
最近在做公司PC端低版本浏览器兼容性问题,现将检测浏览器版本号接口封装一下,和大家一起分享交流下。 browserCheck.html <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>浏览器…...
广州专门做网站的公司/推广计划书范文
求职 地图 网页 应用 更多 关键词:C/C面试技巧及试题? C/C 试题有难有易,不能因为容易,我们就轻视,更不能因为难,我们就放弃。我们面对高薪就业的态度永远不变,那就是坚持、坚持、再坚持。出现问…...
一般做网站多少钱/菏泽百度推广公司电话
在工程勘察设计企业高质量发展的大背景下,对人才的要求越来越高,很多企业希望通过传统的培训有效提升员工能力,实际上往往收效甚微。笔者认为一场有效的培训必须基于人员与岗位的匹配度,而匹配度确定的一个基础工作是岗位胜任力。…...
电子商务网站建设与规划/百度上怎么免费开店
目 录 摘 要 i Abstract ii 1 绪论 1 1.1 课题背景及意义 1 1.2 开发工具的选用及介绍 1 1.3 选题目的和意义 2 1.4 本文主要研究的内容 2 2 需求分析 3 2.1 可行性分析 3 2.2 扫雷游戏功能描述 3 2.3 扫雷游戏用例图 4 2.4 扫雷游戏功能需求 4 2.5 扫雷游戏界面需求 5 2.6 扫雷…...
知名设计公司网站/宝安网站建设
本周 Linux 刚刚迎来它的 28 岁生日。自 20 世纪 90 年代初期以来,Linux 桌面也已从简单的窗口管理器发展为成熟、完整的桌面。那么它究竟是如何一步步发展至今的呢?作为从 1993 年就开始使用 Linux 的资深用户,FreeDOS 创始人 Jim Hall 从初…...