当前位置: 首页 > news >正文

策略梯度定理公式的详细推导

策略梯度定理公式的详细推导

以下是策略梯度定理公式从基础概率公式到最终形式的完整推导,帮助更清晰地理解推导过程中的每一个步骤。


1. 策略梯度的目标

我们希望最大化期望累积奖励 ( J ( θ ) J(\theta) J(θ) ),其定义为:

J ( θ ) = E π θ [ R t ] J(\theta) = \mathbb{E}_{\pi_\theta} \left[ R_t \right] J(θ)=Eπθ[Rt]

根据期望的定义,可以将 ( J ( θ ) J(\theta) J(θ) ) 写为积分形式:

J ( θ ) = ∫ τ P ( τ ; θ ) R t d τ J(\theta) = \int_{\tau} P(\tau; \theta) R_t \, d\tau J(θ)=τP(τ;θ)Rtdτ

其中:

  • ( τ = ( s 0 , a 0 , s 1 , a 1 , … ) \tau = (s_0, a_0, s_1, a_1, \dots) τ=(s0,a0,s1,a1,) ) 表示一条轨迹;
  • ( P ( τ ; θ ) P(\tau; \theta) P(τ;θ) ) 是轨迹的概率分布。

接下来,我们对目标 ( J ( θ ) J(\theta) J(θ) ) 求梯度:

∇ θ J ( θ ) = ∇ θ ∫ τ P ( τ ; θ ) R t d τ \nabla_\theta J(\theta) = \nabla_\theta \int_{\tau} P(\tau; \theta) R_t \, d\tau θJ(θ)=θτP(τ;θ)Rtdτ

根据微积分中的交换求导与积分的规则,将梯度符号与积分符号交换位置:

∇ θ J ( θ ) = ∫ τ ∇ θ [ P ( τ ; θ ) R t ] d τ \nabla_\theta J(\theta) = \int_{\tau} \nabla_\theta \left[ P(\tau; \theta) R_t \right] d\tau θJ(θ)=τθ[P(τ;θ)Rt]dτ

因为 ( R t R_t Rt ) 不依赖于参数 ( θ \theta θ ),所以可以提取出来:

∇ θ J ( θ ) = ∫ τ R t ∇ θ P ( τ ; θ ) d τ \nabla_\theta J(\theta) = \int_{\tau} R_t \nabla_\theta P(\tau; \theta) \, d\tau θJ(θ)=τRtθP(τ;θ)dτ


2. 引入对数梯度

为了化简 ( ∇ θ P ( τ ; θ ) \nabla_\theta P(\tau; \theta) θP(τ;θ) ),我们引入对数梯度技巧

∇ θ P ( τ ; θ ) = P ( τ ; θ ) ⋅ ∇ θ log ⁡ P ( τ ; θ ) \nabla_\theta P(\tau; \theta) = P(\tau; \theta) \cdot \nabla_\theta \log P(\tau; \theta) θP(τ;θ)=P(τ;θ)θlogP(τ;θ)

将其代入梯度公式:

∇ θ J ( θ ) = ∫ τ R t ⋅ P ( τ ; θ ) ⋅ ∇ θ log ⁡ P ( τ ; θ ) d τ \nabla_\theta J(\theta) = \int_{\tau} R_t \cdot P(\tau; \theta) \cdot \nabla_\theta \log P(\tau; \theta) \, d\tau θJ(θ)=τRtP(τ;θ)θlogP(τ;θ)dτ

根据概率分布 ( P ( τ ; θ ) P(\tau; \theta) P(τ;θ) ) 的性质,可以用期望形式重新表示:

∇ θ J ( θ ) = E π θ [ R t ⋅ ∇ θ log ⁡ P ( τ ; θ ) ] \nabla_\theta J(\theta) = \mathbb{E}_{\pi_\theta} \left[ R_t \cdot \nabla_\theta \log P(\tau; \theta) \right] θJ(θ)=Eπθ[RtθlogP(τ;θ)]

这一步的重要性在于将积分转化为在策略 ( π θ \pi_\theta πθ ) 下的期望,使得后续计算能够通过采样来实现。


3. 轨迹概率分布的分解

轨迹 ( τ \tau τ ) 的概率 ( P ( τ ; θ ) P(\tau; \theta) P(τ;θ) ) 可以分解为以下形式:

P ( τ ; θ ) = P ( s 0 ) ∏ t = 0 ∞ π θ ( a t ∣ s t ) P ( s t + 1 ∣ s t , a t ) P(\tau; \theta) = P(s_0) \prod_{t=0}^{\infty} \pi_\theta(a_t | s_t) P(s_{t+1} | s_t, a_t) P(τ;θ)=P(s0)t=0πθ(atst)P(st+1st,at)

其中:

  • ( P ( s 0 ) P(s_0) P(s0) ):初始状态的概率;
  • ( π θ ( a t ∣ s t ) \pi_\theta(a_t | s_t) πθ(atst) ):策略分布,表示在状态 ( s t s_t st ) 下采取动作 ( a t a_t at ) 的概率;
  • ( P ( s t + 1 ∣ s t , a t ) P(s_{t+1} | s_t, a_t) P(st+1st,at) ):环境的状态转移概率。

对 ( log ⁡ P ( τ ; θ ) \log P(\tau; \theta) logP(τ;θ) ) 求导时,仅有 ( π θ ( a t ∣ s t ) \pi_\theta(a_t | s_t) πθ(atst) ) 与参数 ( θ \theta θ ) 相关,因此可化简为:

∇ θ log ⁡ P ( τ ; θ ) = ∑ t = 0 ∞ ∇ θ log ⁡ π θ ( a t ∣ s t ) \nabla_\theta \log P(\tau; \theta) = \sum_{t=0}^{\infty} \nabla_\theta \log \pi_\theta(a_t | s_t) θlogP(τ;θ)=t=0θlogπθ(atst)

将此结果代入梯度公式:

∇ θ J ( θ ) = E π θ [ R t ⋅ ∑ t = 0 ∞ ∇ θ log ⁡ π θ ( a t ∣ s t ) ] \nabla_\theta J(\theta) = \mathbb{E}_{\pi_\theta} \left[ R_t \cdot \sum_{t=0}^{\infty} \nabla_\theta \log \pi_\theta(a_t | s_t) \right] θJ(θ)=Eπθ[Rtt=0θlogπθ(atst)]


4. 化简最终公式

将期望中的求和移到外部,可以得到:

∇ θ J ( θ ) = ∑ t = 0 ∞ E π θ [ R t ⋅ ∇ θ log ⁡ π θ ( a t ∣ s t ) ] \nabla_\theta J(\theta) = \sum_{t=0}^{\infty} \mathbb{E}_{\pi_\theta} \left[ R_t \cdot \nabla_\theta \log \pi_\theta(a_t | s_t) \right] θJ(θ)=t=0Eπθ[Rtθlogπθ(atst)]

在每个时间步 ( t t t ),我们只需要计算与当前动作 ( a t a_t at ) 和状态 ( s t s_t st ) 相关的对数梯度,从而得到:

∇ θ J ( θ ) = E π θ [ R t ⋅ ∇ θ log ⁡ π θ ( a t ∣ s t ) ] \nabla_\theta J(\theta) = \mathbb{E}_{\pi_\theta} \left[ R_t \cdot \nabla_\theta \log \pi_\theta(a_t | s_t) \right] θJ(θ)=Eπθ[Rtθlogπθ(atst)]

这就是策略梯度定理的最终公式。


5. 使用对数梯度性质验证

策略梯度公式的核心在于以下对数梯度性质:

∇ θ π θ ( a t ∣ s t ) = π θ ( a t ∣ s t ) ⋅ ∇ θ log ⁡ π θ ( a t ∣ s t ) \nabla_\theta \pi_\theta(a_t | s_t) = \pi_\theta(a_t | s_t) \cdot \nabla_\theta \log \pi_\theta(a_t | s_t) θπθ(atst)=πθ(atst)θlogπθ(atst)

证明如下:

  • 根据对数定义, ( log ⁡ x \log x logx ) 的导数为 ( 1 x \frac{1}{x} x1 );
  • 对 ( π θ ( a t ∣ s t ) \pi_\theta(a_t | s_t) πθ(atst) ) 求梯度:

∇ θ log ⁡ π θ ( a t ∣ s t ) = 1 π θ ( a t ∣ s t ) ⋅ ∇ θ π θ ( a t ∣ s t ) \nabla_\theta \log \pi_\theta(a_t | s_t) = \frac{1}{\pi_\theta(a_t | s_t)} \cdot \nabla_\theta \pi_\theta(a_t | s_t) θlogπθ(atst)=πθ(atst)1θπθ(atst)

两边乘以 ( π θ ( a t ∣ s t ) \pi_\theta(a_t | s_t) πθ(atst) ):

∇ θ π θ ( a t ∣ s t ) = π θ ( a t ∣ s t ) ⋅ ∇ θ log ⁡ π θ ( a t ∣ s t ) \nabla_\theta \pi_\theta(a_t | s_t) = \pi_\theta(a_t | s_t) \cdot \nabla_\theta \log \pi_\theta(a_t | s_t) θπθ(atst)=πθ(atst)θlogπθ(atst)

将此性质代入公式,概率 ( π θ ( a t ∣ s t ) \pi_\theta(a_t | s_t) πθ(atst) ) 被约去,得到:

∇ θ J ( θ ) = E π θ [ R t ⋅ ∇ θ log ⁡ π θ ( a t ∣ s t ) ] \nabla_\theta J(\theta) = \mathbb{E}_{\pi_\theta} \left[ R_t \cdot \nabla_\theta \log \pi_\theta(a_t | s_t) \right] θJ(θ)=Eπθ[Rtθlogπθ(atst)]


总结

通过以上详细推导,可以看出策略梯度定理的核心在于以下两点:

  1. 引入对数梯度性质:将复杂的概率梯度转化为对数形式;
  2. 利用轨迹概率分布的分解:化简梯度公式,使得计算集中在策略部分 ( π θ ( a t ∣ s t ) \pi_\theta(a_t | s_t) πθ(atst) )。

最终的策略梯度公式为:

∇ θ J ( θ ) = E π θ [ R t ⋅ ∇ θ log ⁡ π θ ( a t ∣ s t ) ] \nabla_\theta J(\theta) = \mathbb{E}_{\pi_\theta} \left[ R_t \cdot \nabla_\theta \log \pi_\theta(a_t | s_t) \right] θJ(θ)=Eπθ[Rtθlogπθ(atst)]

这一公式既简洁又高效,是策略梯度方法的理论基础。

后记

2024年12月12日17点00分于上海,在GPT4o大模型辅助下完成。

相关文章:

策略梯度定理公式的详细推导

策略梯度定理公式的详细推导 以下是策略梯度定理公式从基础概率公式到最终形式的完整推导,帮助更清晰地理解推导过程中的每一个步骤。 1. 策略梯度的目标 我们希望最大化期望累积奖励 ( J ( θ ) J(\theta) J(θ) ),其定义为: J ( θ ) E…...

力扣-图论-10【算法学习day.60】

前言 ###我做这类文章一个重要的目的还是给正在学习的大家提供方向和记录学习过程(例如想要掌握基础用法,该刷哪些题?)我的解析也不会做的非常详细,只会提供思路和一些关键点,力扣上的大佬们的题解质量是非…...

《Python WEB安全 库全解析》

《Python WEB安全 库全解析》 一、Python WEB安全 库概述二、常见的 Python WEB安全 库介绍1. Jiasule2. Awesome Python Security3. Flask-Security4. Flask-SeaSurf 三、Python WEB 安全库的优缺点1. 优点2. 缺点 四、Python WEB 安全库的使用场景1. 开发 Web 应用2. 处理敏感…...

Linux yum-config-manager命令异常

错误信息 使用 yum-config-manager命令时错误信息如下 sudo yum-config-manager \ > --add-repo \ > https://download.docker.com/linux/centos/docker-ce.repo sudo: yum-config-manager: command not found 解决办法 第一步: sudo yum -y install yum-u…...

ios 开发配置蓝牙

如果使用了蓝牙功能, 又没有配置, 会出现以下错误: This app has crashed because it attempted to access privacy-sensitive data without a usage description. The apps Info.plist must contain an NSBluetoothAlwaysUsageDescription key with a string value explaini…...

geoserver(1) 发布sql 图层 支持自定义参数

前提使用postgis 数据库支持关联 join 支持 in,not in,like,及其他sql原生函数 新增sql图层 编写自定义sql 编辑sql语句必须输出带有geom数据 正则表达式去除 设置id以及坐标参考系 预览sql图层效果 拼接sql参数 http://xxx.com/geoserver/weather/wms?SERVICEWMS&VERSI…...

Linux:network:添加ip的时候自动添加一个本地路由

文章目录 问题问题 最近在看一个路由的问题,顺便看内核代码,发现在添加IP的时候,内核会自动添加一个local route。 net/ipv4/devinet.c inet_rtm_newaddr->__inet_insert_ifa /* Send message first, then call notifier.Notifier will trigger FIB update, so thatlis…...

go 集成nacos注册中心、配置中心

使用限制 Go>v1.15 Nacos>2.x 安装 使用go get安装SDK: go get -u github.com/nacos-group/nacos-sdk-go/v2 快速使用 初始化客户端配置ClientConfig constant.ClientConfig{TimeoutMs uint64 // 请求Nacos服务端的超时时间,默…...

ssd202d-badblock-坏块检测

这边文章讲述的是坏快检测功能 思路: 1.第一次烧录固件会实现跳坏块,但是后续使用会导致坏块的产生; 于是我在uboot环境变量添加了两个变量来控制坏快 lb_badnum //坏块个数 lb_badoff //坏块所在位置 2.第一次开机会根据lb_badnum是否…...

MySQL-练习-数据介绍

文章目录 一. 数据介绍1. 数据结构2. 创建数据库,数据表3. 员工表(employees)练习1 4. 顾客表(customers)练习2 5. 商品(products)和商品类别(categories)表练习3 6. 供应商表(suppliers)练习4 7. 订单和订单明细表练习5 二. 数据汇总三. 使用CASE WHEN …...

React框架:解锁现代化Web开发的新维度

在当今前端开发领域,React 无疑是一颗璀璨的明星。React 是由 Facebook 开发的用于构建用户界面的 JavaScript 库,它在前端开发中占据着重要的地位,为开发者提供了一种高效、灵活且可维护的方式来构建复杂的用户界面。 一、React 的背景与开…...

电阻功率,限流,等效电阻

1 电阻额定功率 2 电阻限流作用 3 电阻并联等效电阻...

Qt | 开发工具(top1)

Qt Creator 跨平台、完整的集成开发环境(IDE),供应用程序开发者创建用于多个桌面、嵌入式和移动设备平台的应用程序。 Qt Linguist 一套将Qt C和Qt Quick应用程序翻译成本地语言的工具。 qmake Qt自动化构建工具,简化了不同平台的构建过程。…...

Node.js express

1. express 介绍 express 是一个基于 Node.js 平台的极简、灵活的 WEB 应用开发框架,官方网址:https://www.expressjs.com.cn/简单来说,express 是一个封装好的工具包,封装了很多功能,便于我们开发 WEB 应用&#xff…...

ios h5中在fixed元素中的input被focus时,键盘遮挡input (van-popup、van-feild)

问题描述: 前提:我使用的是vant组件库,其中一个页面中有一个van-popup组件,van-popup组件中又嵌套了一个van-field组件预期结果:当点击van-feild输入框时,键盘弹起,输入框显示在键盘上方实际结…...

springboot整合lua脚本在Redis实现商品库存扣减

1、目的 使用lua脚本,可以保证多条命令的操作原子性;同时可以减少操作IO(比如说判断redis对应数据是否小于0,小于0就重置为100,这个场景一般是取出来再判断,再存放进行,就至少存在2次IO,用lua脚…...

MySQL ON DUPLICATE KEY UPDATE影响行数

目录 分析为什么Updates返回7 总结 数据库更新日志如下 insertOrUpdateList|> Preparing: INSERT INTO clue_user_tag (vuid, tag_id, tag_type, content) VALUES (?, ?, ?, ?) , (?, ?, ?, ?) , (?, ?, ?, ?) , (?, ?, ?, ?) ON DUPLICATE KEY UPDATE …...

uniapp小程序 slot中无法传递外部参数的解决方案

最近在封装一个List组件&#xff0c;外部传给我数据&#xff0c;我循环后将每个Item部分slot到外部&#xff0c;由调用者自己去写item布局&#xff0c;类似ElementUI、iView的Tabe列表。 List: <view v-if"list.length > 0" class"list-scroll__item&quo…...

umi实现动态获取菜单权限

文章目录 前景登录组件编写登录逻辑菜单的时机动态路由页面刷新手动修改地址 前景 不同用户拥有不同的菜单权限&#xff0c;现在我们实现登录动态获取权限菜单。 登录组件编写 //当我们需要使用dva的dispatch函数时&#xff0c;除了通过connect函数包裹组件还可以使用这种方…...

Pytest-Bdd-Playwright 系列教程(14):Docstring 参数

Pytest-Bdd-Playwright 系列教程&#xff08;14&#xff09;&#xff1a;Docstring 参数 前言一、什么是docstring?二、基本语法三、主要特点四、实际例子五、注意事项六、使用建议总结 前言 在自动化测试的过程中&#xff0c;我们经常需要处理复杂的测试数据或需要输入多行文…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

【网络安全产品大调研系列】2. 体验漏洞扫描

前言 2023 年漏洞扫描服务市场规模预计为 3.06&#xff08;十亿美元&#xff09;。漏洞扫描服务市场行业预计将从 2024 年的 3.48&#xff08;十亿美元&#xff09;增长到 2032 年的 9.54&#xff08;十亿美元&#xff09;。预测期内漏洞扫描服务市场 CAGR&#xff08;增长率&…...

关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案

问题描述&#xff1a;iview使用table 中type: "index",分页之后 &#xff0c;索引还是从1开始&#xff0c;试过绑定后台返回数据的id, 这种方法可行&#xff0c;就是后台返回数据的每个页面id都不完全是按照从1开始的升序&#xff0c;因此百度了下&#xff0c;找到了…...

【机器视觉】单目测距——运动结构恢复

ps&#xff1a;图是随便找的&#xff0c;为了凑个封面 前言 在前面对光流法进行进一步改进&#xff0c;希望将2D光流推广至3D场景流时&#xff0c;发现2D转3D过程中存在尺度歧义问题&#xff0c;需要补全摄像头拍摄图像中缺失的深度信息&#xff0c;否则解空间不收敛&#xf…...

Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器

第一章 引言&#xff1a;语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域&#xff0c;文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量&#xff0c;支撑着搜索引擎、推荐系统、…...

《通信之道——从微积分到 5G》读书总结

第1章 绪 论 1.1 这是一本什么样的书 通信技术&#xff0c;说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号&#xff08;调制&#xff09; 把信息从信号中抽取出来&am…...

【单片机期末】单片机系统设计

主要内容&#xff1a;系统状态机&#xff0c;系统时基&#xff0c;系统需求分析&#xff0c;系统构建&#xff0c;系统状态流图 一、题目要求 二、绘制系统状态流图 题目&#xff1a;根据上述描述绘制系统状态流图&#xff0c;注明状态转移条件及方向。 三、利用定时器产生时…...

VTK如何让部分单位不可见

最近遇到一个需求&#xff0c;需要让一个vtkDataSet中的部分单元不可见&#xff0c;查阅了一些资料大概有以下几种方式 1.通过颜色映射表来进行&#xff0c;是最正规的做法 vtkNew<vtkLookupTable> lut; //值为0不显示&#xff0c;主要是最后一个参数&#xff0c;透明度…...

C# 类和继承(抽象类)

抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...

微信小程序云开发平台MySQL的连接方式

注&#xff1a;微信小程序云开发平台指的是腾讯云开发 先给结论&#xff1a;微信小程序云开发平台的MySQL&#xff0c;无法通过获取数据库连接信息的方式进行连接&#xff0c;连接只能通过云开发的SDK连接&#xff0c;具体要参考官方文档&#xff1a; 为什么&#xff1f; 因为…...