当前位置: 首页 > news >正文

12.6深度学习_模型优化和迁移_整体流程梳理

七、整体流程梳理

1. 引入使用的包

用到什么包,临时引入就可以,不用太担心。

import time
import osimport numpy as np
import pandas as pd
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from torchvision.datasets import CIFAR10from torchvision.models import resnet18, ResNet18_Weights
import wandb
from torch.utils.tensorboard import SummaryWriter
from sklearn.metrics import *
import matplotlib.pyplot as plt

2. 数据

# 下面和以前就一样了
train_dataset = CIFAR10(root=datapath,train=True,download=True,transform=transform,
)
# 构建训练数据集
train_loader = DataLoader(#dataset=train_dataset,batch_size=batzh_size,shuffle=True,num_workers=2,
)

3. 模型

# 再次获取resnet18原始神经网络并对齐fc层进行调整
model = resnet18(weights=None)in_features = model.fc.in_features
# 重写FC:我们这里做的是10分类
model.fc = nn.Linear(in_features=in_features, out_features=10)# 需要对权重信息进行处理:要加载我们训练之后最新的权重文件
weights_default = torch.load(weightpath)
weights_default.pop("fc.weight")
weights_default.pop("fc.bias")# 把权重参数进行同步
new_state_dict = model.state_dict()
weights_default_process = {k: v for k, v in weights_default.items() if k in new_state_dict
}
new_state_dict.update(weights_default_process)
model.load_state_dict(new_state_dict)
model.to(device)

4. 训练

4.1 数据增强

为了防止过拟合,增加模型的泛化能力,我们会数据增强

transform = transforms.Compose([transforms.RandomRotation(45),  # 随机旋转,-45到45度之间随机选transforms.RandomCrop(32, padding=4),  # 随机裁剪transforms.RandomHorizontalFlip(p=0.5),  # 随机水平翻转 选择一个概率概率transforms.RandomVerticalFlip(p=0.5),  # 随机垂直翻转transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2471, 0.2435, 0.2616)),]
)transformtest = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2471, 0.2435, 0.2616)),]
)

4.2 开始训练

    # 损失函数和优化器loss_fn = nn.CrossEntropyLoss()optimizer = optim.Adam(model.parameters(), lr=lr)for epoch in range(epochs):# 开始时间start = time.time()# 总的损失值total_loss = 0.0# 样本数量:最后一次样本数量不是128samp_num = 0# 总的预测正确的分类correct = 0model.train()for i, (x, y) in enumerate(train_loader):x, y = x.to(device), y.to(device)# 累加样本数量samp_num += len(y)out = model(x)# 预测正确的样本数量correct += out.argmax(dim=1).eq(y).sum().item()loss = loss_fn(out, y)# 损失率累加total_loss += loss.item() * len(y)optimizer.zero_grad()loss.backward()optimizer.step()if i % 100 == 0:img_grid = torchvision.utils.make_grid(x)write1.add_image(f"r_m_{epoch}_{i}", img_grid, epoch * len(train_loader) + i)print("批次:%d 损失率:%.4f 准确率:%.4f 耗时:%.4f"% (epoch, total_loss / samp_num, correct / samp_num, time.time() - start))# log metrics to wandbwandb.log({"acc": correct / samp_num, "loss": total_loss / samp_num})

4.3 保存模型

torch.save(model.state_dict(), weightpath)

4.4 训练过程可视化

wandb

 # 训练过程可视化wandb.init(project="my-qianyi-project",config={"learning_rate": lr,"architecture": "CNN","dataset": "CIFAR-100","batch_size": batzh_size,"epochs": epochs,},)

tensorboard

write1 = SummaryWriter(log_dir=log_dir)
# 保存模型结构到tensorboard
write1.add_graph(model, input_to_model=torch.randn(1, 3, 32, 32).to(device=device))

5. 验证阶段

5.1 数据验证

weights_default = torch.load(weightpath)# 再次获取resnet18原始神经网络并对齐fc层进行调整model = resnet18(pretrained=False)in_features = model.fc.in_features# 重写FC:我们这里做的是10分类model.fc = nn.Linear(in_features=in_features, out_features=10)model.load_state_dict(weights_default)model.to(device)model.eval()samp_num = 0correct = 0data2csv = np.empty(shape=(0, 13))for x, y in vaild_loader:x = x.to(device)y = y.to(device)# 累加样本数量samp_num += len(y)# 模型运算out = model(x)# 数组的合并data2csv = np.concatenate((data2csv, outdata_softmax), axis=0)# 预测正确的样本数量correct += out.argmax(dim=1).eq(y).sum().item()print("准确率:%.4f" % (correct / samp_num))

5.2 验证结果可视化

验证数据保存到Excel

data2csv = np.empty(shape=(0, 13))#数据整理
out = model(x)
outdata = out.cpu().detach()
outdata_softmax = torch.softmax(outdata, dim=1)
# 合并目标值到样本  [5, 7,9,0,1,,1,2,3,4,3,4]
outdata_softmax = np.concatenate((# 本身预测的值outdata_softmax.numpy(),# 真正的目标值y.cpu().numpy().reshape(-1, 1),# 预测值outdata_softmax.argmax(dim=1).reshape(-1, 1),# 分类名称np.array([vaild_dataset.classes[i] for i in y.cpu().numpy()]).reshape(-1, 1),),axis=1,
)
# 数组的合并
data2csv = np.concatenate((data2csv, outdata_softmax), axis=0)#写入CSV
columns = np.concatenate((vaild_dataset.classes, ["target", "prep", "分类"]))
pddata = pd.DataFrame(data2csv, columns=columns)
pddata.to_csv(csvpath, encoding="GB2312")

指标分析:可视化

def analy():# 读取csv数据data1 = pd.read_csv(csvpath, encoding="GB2312")print(type(data1))# 整体数据分析报告report = classification_report(y_true=data1["target"].values,y_pred=data1["prep"].values,)print(report)# 准确度 Accprint("准确度Acc:",accuracy_score(y_true=data1["target"].values,y_pred=data1["prep"].values,),)# 精确度print("精确度Precision:",precision_score(y_true=data1["target"].values, y_pred=data1["prep"].values, average="macro"),)# 召回率print("召回率Recall:",recall_score(# 100y_true=data1["target"].values,y_pred=data1["prep"].values,average="macro",),)# F1 Scoreprint("F1 Score:",f1_score(y_true=data1["target"].values,y_pred=data1["prep"].values,average="macro",),)passdef matrix():# 读取csv数据data1 = pd.read_csv(csvpath, encoding="GB2312", index_col=0)confusion = confusion_matrix(# 0y_true=data1["target"].values,y_pred=data1["prep"].values,# labels=data1.columns[0:10].values,)print(confusion)# 绘制混淆矩阵plt.rcParams["font.sans-serif"] = ["SimHei"]plt.rcParams["axes.unicode_minus"] = Falseplt.matshow(confusion, cmap=plt.cm.Greens)plt.colorbar()for i in range(confusion.shape[0]):for j in range(confusion.shape[1]):plt.text(j, i, confusion[i, j], ha="center", va="center", color="b")plt.title("验证数据混淆矩阵")plt.xlabel("Predicted label")plt.xticks(range(10), data1.columns[0:10].values, rotation=45)plt.ylabel("True label")plt.yticks(range(10), data1.columns[0:10].values)plt.show()

6. 使用

def app():dir = os.path.dirname(__file__)imgpath = os.path.join("./write", "6.png")# 读取图像文件 '8.png'img = cv2.imread(imgpath)# 将图像转换为灰度图img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)# 对灰度图进行二值化处理,采用OTSU自适应阈值方法,并反转颜色ret, img = cv2.threshold(img, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)plt.imshow(img)plt.show()# img = cv2.resize(img, (32, 32))img = torch.Tensor(img).unsqueeze(0)transform = transforms.Compose([transforms.Resize((32, 32)),  # 调整输入图像大小为32x32transforms.ToTensor(),transforms.Normalize((0.1307,), (0.3081,)),])img = transform(img).unsqueeze(0)# 加载我们的模型net = LeNet5()net.load_state_dict(torch.load(modelpath))# 预测outputs = net(img)print(outputs)print(outputs.argmax(axis=1))

相关文章:

12.6深度学习_模型优化和迁移_整体流程梳理

七、整体流程梳理 1. 引入使用的包 用到什么包,临时引入就可以,不用太担心。 import time import osimport numpy as np import pandas as pd import torch import torch.nn as nn import torch.optim as optim import torchvision import torchvisio…...

TCP 和 UDP 可以使用同一个端口吗

TCP 和 UDP 可以使用同一个端口吗 简单来说 可以使用同一个端口,关键在于它们属于不同的传输层协议,在内核中是两个完全独立的软件模块,各自维护独立的端口空间,虽然端口号相同,但通过协议类型可以确定是哪种协议。 …...

信而泰网络测试仪校准解决方案

一、影响仪表精度的因素 网络测试仪是用于对数据网络及其相关设备性能参数进行测试的仪表,可以模拟网络终端产生流量,进行网络性能测试,对网络状态进行实时监测,分析和统计。数字计量对于精准数据的网络测试仪来说是一剂强心针&a…...

Java 实现给pdf文件指定位置盖章功能

Java 实现给pdf文件指定位置盖章功能 开发中遇到一个需求, 需要给用户上传的的pdf文件, 指定位置上盖公章的功能, 经过调研和对比, 最终确定实现思路. 这里是使用pdf文件中的关键字进行章子的定位, 之所以这样考虑是因为如果直接写死坐标的话, 可能会出现因pdf大小, 缩放, 盖章…...

机器学习支持向量机(SVM)算法

一、引言 在当今数据驱动的时代,机器学习算法在各个领域发挥着至关重要的作用。支持向量机(Support Vector Machine,SVM)作为一种强大的监督学习算法,以其在分类和回归任务中的卓越性能而备受瞩目。SVM 具有良好的泛化…...

解决 MySQL 启动失败与大小写问题,重置数据库

技术文档:解决 MySQL 启动失败与大小写问题,重置数据库 1. 问题背景 在使用 MySQL 时,可能遇到以下问题: MySQL 启动失败,日志显示 “permission denied” 或 “Can’t create directory” 错误。MySQL 在修改配置文…...

计算生成报价单小程序系统开发方案

计算生成报价单小程序报价系统,是根据商品品牌、类型、型号、规格、芯数、特性、颜色、分类进行选择不同的参数进行生成报价单,要求报价单支持生成图片、pdf、excel表格。 计算生成报价单小程序系统的主要功能模块有: 1、在线生成报价单&…...

若依集成Uflo2工作流引擎

文章目录 1. 创建子模块并添加依赖1.1 新建子模块 ruoyi-uflo1.2 引入 Uflo2 相关依赖 2. 配置相关 config2.1 配置 ServletConfig2.2 配置 UfloConfig2.3 配置 TestEnvironmentProvider 3. 引入Uflo配置文件4. 启动并访问 Uflo2 是由 BSTEK 自主研发的一款基于 Java 的轻量级工…...

STM32模拟I2C通讯的驱动程序

目录 STM32模拟I2C通讯的驱动程序 开发环境 引脚连接 驱动程序 STM32模拟I2C通讯的驱动程序 开发环境 立创天空星开发板、主控芯片为STM32F407VxT6 引脚连接 使用stm32的PB9引脚模拟I2C时钟线SCL、PB8引脚模拟I2C数据线SDA 驱动程序 i2c.h文件如下:#ifndef…...

Unity简单操作及使用教程

Unity 是一款强大的跨平台游戏引擎,它不仅支持 2D 和 3D 游戏的开发,还可以用于虚拟现实 (VR)、增强现实 (AR)、动画、建筑可视化等多个领域。Unity 提供了完整的开发环境,具有丰富的功能、工具和资源,可以帮助开发者快速实现创意…...

网络安全法-监测预警与应急处置

第五章 监测预警与应急处置 第五十一条 国家建立网络安全监测预警和信息通报制度。国家网信部门应当统筹协调有关部门加强网络安全信息收集、分析和通报工作,按照规定统一发布网络安全监测预警信息。 第五十二条 负责关键信息基础设施安全保护工作的部门&#xf…...

qt 设置系统缩放为150%,导致的文字和界面的问题

1 当我们设置好布局后,在100%的设置里面都是正常的,但是当我们修改缩放为150%后,字体图标,界面大小就出现问题了,这就需要我们设置一些参数。 QCoreApplication::setAttribute(Qt::AA_EnableHighDpiScaling);QCoreAppl…...

Scala的正则表达式二

验证用户名是否合法 规则 1.长度在6-12之间 2.不能数字开头 3.只能包含数字,大小写字母,下划线def main(args: Array[String]): Unit {val name1 "1admin"//不合法,是数字开头val name2 "admin123"//合法val name3 &quo…...

软考系分:今日成绩已出

前言 今年报考了11月份的软考高级:系统分析师。 考试时间:11月9日。 总体感觉偏简单,但是知识点记得不牢,估计机会不大。 今日 12.11 ,成绩已出,每科总分 75分,全部45分以上为通过。 成绩总…...

DevExpress WPF中文教程:Grid - 如何移动和调整列大小?(一)

DevExpress WPF拥有120个控件和库,将帮助您交付满足甚至超出企业需求的高性能业务应用程序。通过DevExpress WPF能创建有着强大互动功能的XAML基础应用程序,这些应用程序专注于当代客户的需求和构建未来新一代支持触摸的解决方案。 无论是Office办公软件…...

Docker 安装 sentinel

Docker 安装系列 1、拉取 [rootTseng ~]# docker pull bladex/sentinel-dashboard Using default tag: latest latest: Pulling from bladex/sentinel-dashboard 4abcf2066143: Pull complete 1ec1e81da383: Pull complete 56bccb36a894: Pull complete 7cc80011dc6f: Pull…...

PyCharm 2024.1 解锁版 (Python集成开发IDE)详细安装步骤

分享文件:PyCharm 2024.1 解锁版 (Python集成开发IDE) 链接:https://pan.xunlei.com/s/VOAa_CiVVvZnyQgLfpmCIOABA1 提取码:cx4h 安装步骤 1、下载解压后点击如下进行安装 2、选择安装路径 3、默认勾选将PyCharm创建桌面快捷方式 4、默认…...

SQL中的函数介绍

大多数SQL实现支持以下类型 文本函数:用于处理文本字符串(如删除或填充值,转换值为大写或小写)。数值函数:用于在数值数据上进行算术操作(如返回绝对值,进行代数运算)。日期和时间函…...

【工业机器视觉】基于深度学习的水表盘读数识别(2-数据采集与增强)

【工业机器视觉】基于深度学习的仪表盘识读(1)-CSDN博客 数据采集与增强 为了训练出适应多种表型和环境条件的模型,确保数据集的质量与多样性对于模型的成功至关重要。高质量的数据不仅需要准确无误、具有代表性,还需要涵盖尽可能…...

爬虫基础知识点

最近看了看爬虫相关知识点,做了记录,具体代码放到了仓库,本文仅学习使用,如有违规请联系博主删除。 这个流程图是我使用在线AI工具infography生成的,这个网站可以根据url或者文本等数据自动生成流程图,挺…...

零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?

一、核心优势:专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发,是一款收费低廉但功能全面的Windows NAS工具,主打“无学习成本部署” 。与其他NAS软件相比,其优势在于: 无需硬件改造:将任意W…...

【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密

在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...

前端导出带有合并单元格的列表

// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...

dedecms 织梦自定义表单留言增加ajax验证码功能

增加ajax功能模块&#xff0c;用户不点击提交按钮&#xff0c;只要输入框失去焦点&#xff0c;就会提前提示验证码是否正确。 一&#xff0c;模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...

微信小程序 - 手机震动

一、界面 <button type"primary" bindtap"shortVibrate">短震动</button> <button type"primary" bindtap"longVibrate">长震动</button> 二、js逻辑代码 注&#xff1a;文档 https://developers.weixin.qq…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法&#xff0c;用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理&#xff0c;能够自动确定一个阈值&#xff0c;将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

基础测试工具使用经验

背景 vtune&#xff0c;perf, nsight system等基础测试工具&#xff0c;都是用过的&#xff0c;但是没有记录&#xff0c;都逐渐忘了。所以写这篇博客总结记录一下&#xff0c;只要以后发现新的用法&#xff0c;就记得来编辑补充一下 perf 比较基础的用法&#xff1a; 先改这…...

[Java恶补day16] 238.除自身以外数组的乘积

给你一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法&#xff0c;且在 O(n) 时间复杂度…...

ABAP设计模式之---“简单设计原则(Simple Design)”

“Simple Design”&#xff08;简单设计&#xff09;是软件开发中的一个重要理念&#xff0c;倡导以最简单的方式实现软件功能&#xff0c;以确保代码清晰易懂、易维护&#xff0c;并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计&#xff0c;遵循“让事情保…...

20个超级好用的 CSS 动画库

分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码&#xff0c;而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库&#xff0c;可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画&#xff0c;可以包含在你的网页或应用项目中。 3.An…...