当前位置: 首页 > news >正文

路径规划之启发式算法之十六:和声搜索算法(Harmony Search, HS)

        和声搜索算法(Harmony Search, HS)是一种新兴的启发式全局搜索算法,是一种模拟音乐家即兴演奏过程的群体智能优化算法。这种算法由Zong Woo Geem等人在2001年提出,灵感来源于音乐家在寻找和声时的创造性思维过程。HS算法通过模拟音乐家演奏音乐时的选择过程来寻找问题的最优解。

一、基本原理

        和声搜索算法受音乐创作过程中乐师们凭记忆反复调整乐器音调以达到和谐状态的启发。在音乐中,每个乐器代表一个设计变量,乐器的和声对应一个解向量,而和声的评价则相当于目标函数。和声搜索算法通过不断调整和改进一组解(和声)来找到问题的最优解。

        在路径规划问题中,和声搜索算法可以将每个可能的路径看作一个和声,通过迭代搜索找到最优路径。

二、核心组件

        (1)和声记忆库(Harmony Memory, HM):这是算法的核心数据结构,用于存储当前最优解集合。它类似于遗传算法中的种群,存储多个解向量,每个解向量代表一个可能的解决方案。

        (2)和声记忆库的大小(Harmony Memory Size, HMS)是一个预定义的参数,指HM中和声的数量。

        (3)和声记忆考虑率(Harmony Memory Considering Rate, HMCR):这个参数决定了在生成新的和弦(即新的解)时,从和声记忆库中选取值的概率。如果生成的随机数小于HMCR,则从HM中选取一个值;否则,随机生成一个新的值。HMCR的取值通常介于0和1之间,即HMCR∈[0,1]

        (4)音调调整率(Pitch Adjusting Rate, PAR):这个参数决定了从和声记忆库中选择的值是否需要进行微调。如果从和声记忆库中选择了某个值,并且生成的随机数小于PAR,则该值会进行微调。微调通常是通过添加一个小的随机扰动来实现的。PAR的取值也通常介于0和1之间,即PAR∈[0,1]。

        (5)音调微调带宽(Bandwidth, bw):用于连续变量的微调,表示最大变化量。

        (6)新解的生成:通过结合HMCR和PAR,HS算法生成新的和声,这些和声可能是对现有和声的复制、修改或完全随机生成的。

三、算法流程

        1. 初始化:

        算法开始时,HMS会被随机填充一组初始解。这些初始解通常是在问题的搜索空间内随机生成的。设置和声记忆库大小(HMS)、和声记忆库取值概率(HMCR)、音调微调概率(PAR)、音调微调带宽(bw)和最大迭代次数(Tmax)。

        2. 迭代过程:

        (1)以概率HMCR在HM内搜索新解,以概率1-HMCR在HM外变量可能值域中搜索。

        (2)如果选择了HM中的和声,以概率PAR对新解产生局部扰动调整。如果没有选择HM中的和声,则随机生成一个新的和声。

        对于每个决策变量x_{i}的新值x_{new,i},可以通过以下方式生成:

  • 以 HMCR的概率从和声记忆库中选择。
  • 以 1−HMCR 的概率在变量的可行解空间中随机选择。
  • 以 PAR的概率对选定的值进行微调: ,其中,rand 是一个在[0, 1]范围内的随机数。

        (3)更新HM:判断新解目标函数值(新生成的和声)是否优于HM内的最差解,若是,则用新和声替换HM中最差的和声。

        3.终止条件:

        重复上述过程直到达到最大迭代次数或其他终止条件。

        停止准则:算法迭代过程会一直持续,直到满足一定的停止条件。常用的停止条件包括达到预设的最大迭代次数、找到满意的解、适应度改进不再明显等。

图1 和声搜索算法流程图

相关文章:

路径规划之启发式算法之十六:和声搜索算法(Harmony Search, HS)

和声搜索算法(Harmony Search, HS)是一种新兴的启发式全局搜索算法,是一种模拟音乐家即兴演奏过程的群体智能优化算法。这种算法由Zong Woo Geem等人在2001年提出,灵感来源于音乐家在寻找和声时的创造性思维过程。HS算法通过模拟音乐家演奏音乐时的选择过程来寻找问题的最优…...

Redis - 实战之 全局 ID 生成器 RedisIdWorker

概述 定义:一种分布式系统下用来生成全局唯一 ID 的工具 特点 唯一性,满足优惠券需要唯一的 ID 标识用于核销高可用,随时能够生成正确的 ID高性能,生成 ID 的速度很快递增性,生成的 ID 是逐渐变大的,有利于…...

matlab 连接远程服务器

通过matlab 控制远程服务器 查看 matlab 中 python 接口脚本 对于 matlab 2010b 兼容的 最高 Python版本是 3.10 安装 3.10 版本的Python,并安装 paramiko 库 pip install paramikomatlab 中设置 Python的环境 例如 pyversion(D:/Anaconda3/python.e…...

在服务器自主选择GPU使用

比如说,程序使用第 2 张显卡(从 0 开始计数)。它的作用是告诉系统和深度学习框架(如 PyTorch 或 TensorFlow)只可见某些 GPU。 export CUDA_VISIBLE_DEVICES1 然后再查看当前使用的显卡: echo $CUDA_VIS…...

【设计模式】享元模式(Flyweight Pattern)

享元模式(Flyweight Pattern)是一种结构型设计模式,它通过共享尽可能多的对象来有效支持大量细粒度的对象。这个模式主要用于减少内存使用和提高性能,特别是在需要创建大量相似对象的场景中。享元模式的核心思想是将对象的状态分为…...

题目 1688: 数据结构-字符串插入

第一种方式字符串 #include<iostream> #include<cstring> #include<algorithm> using namespace std; int main(){string s1,s2;int n;cin>>s1>>s2>>n;s1.insert(n-1,s2);cout<<s1<<endl;return 0; } 第二种方式字符数组 …...

28.攻防世界PHP2

进入场景 扫描目录 [04:12:32] 403 - 303B - /.ht_wsr.txt [04:12:32] 403 - 306B - /.htaccess.bak1 [04:12:32] 403 - 308B - /.htaccess.sample [04:12:…...

QML QT6 WebEngineView 、Echarts使用和数据交互

QML 中的 WebEngineView 是用于显示网页内容的组件,它基于 Qt WebEngine,支持现代网页渲染和与 JavaScript 的交互。它通常用来在 QML 应用中嵌入浏览器或加载在线资源。WebEngineView 可以展示 HTML、CSS、JavaScript 等网页内容,并提供多种属性和方法来控制其行为。 如下…...

SpringBoot 整合 Mail 轻松实现邮件自动推送

简单使用 1、pom 包配置 pom 包里面添加 spring-boot-starter-mail 包引用 <dependencies><dependency> <groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-mail</artifactId></dependency> </de…...

MyBatis 核心知识与实践

一、MyBatis 概述 1. 框架简介 MyBatis 是一款支持自定义 SQL、存储过程以及高级映射的持久层框架。它避免了几乎所有的 JDBC 代码和手动设置参数以及获取结果集的操作&#xff0c;使开发人员能够更专注于 SQL 语句的编写和业务逻辑的处理。 2. 核心组件 SqlSessionFactoryB…...

机器学习期末速成

文章目录 一、机器学习分类二、逻辑回归三、决策树四、集成学习算法五、支持向量机六、聚类七、特征工程和指标 文章参考自B站机器学习期末速成课 本文仅作者个人复习使用 一、机器学习分类 聚类和分类的区别&#xff1a; 分类&#xff1a;一开始就知道有哪些类别 聚类&#…...

Linux中的线程

目录 线程的概念 进程与线程的关系 线程创建 线程终止 线程等待 线程分离 原生线程库 线程局部存储 自己实现线程封装 线程的优缺点 多线程共享与独占资源 线程互斥 互斥锁 自己实现锁的封装 加锁实现互斥的原理 死锁 线程同步 线程的概念 回顾进程相关概念 …...

AI大模型学习笔记|多目标算法梳理、举例

多目标算法学习内容推荐&#xff1a; 1.通俗易懂讲算法-多目标优化-NSGA-II(附代码讲解)_哔哩哔哩_bilibili 2.多目标优化 (python pyomo pareto 最优)_哔哩哔哩_bilibili 学习笔记&#xff1a; 通过网盘分享的文件&#xff1a;多目标算法学习笔记 链接: https://pan.baidu.com…...

蓝桥杯刷题——day3

蓝桥杯刷题——day3 题目一题干题目解析代码 题目二题干题目解析代码 题目一 题干 每张票据有唯一的 ID 号&#xff0c;全年所有票据的 ID 号是连续的&#xff0c;但 ID 的开始数码是随机选定的。因为工作人员疏忽&#xff0c;在录入 ID 号的时候发生了一处错误&#xff0c;造…...

企业级日志分析系统ELK之ELK概述

ELK 概述 ELK 介绍 什么是 ELK 早期IT架构中的系统和应用的日志分散在不同的主机和文件&#xff0c;如果应用出现问题&#xff0c;开发和运维人员想排 查原因&#xff0c;就要先找到相应的主机上的日志文件再进行查找和分析&#xff0c;所以非常不方便&#xff0c;而且还涉及…...

【开源项目】经典开源项目数字孪生体育馆—开源工程及源码

飞渡科技数字孪生体育馆管理平台&#xff0c;融合物联网IOT、BIM数据模型、三维GIS等技术&#xff0c;实现体育馆的全方位监控和实时全局掌握&#xff0c;同时&#xff0c;通过集成设备设施管理、人员管理等子系统&#xff0c;减少信息孤岛&#xff0c;让场馆“可视、可控、可管…...

C++多线程实战:掌握图像处理高级技巧

文章结尾有最新热度的文章,感兴趣的可以去看看。 本文是经过严格查阅相关权威文献和资料,形成的专业的可靠的内容。全文数据都有据可依,可回溯。特别申明:数据和资料已获得授权。本文内容,不涉及任何偏颇观点,用中立态度客观事实描述事情本身 导读 在当今的计算世界中,…...

解决MAC装win系统投屏失败问题(AMD显卡)

一、问题描述 电脑接上HDMI线后&#xff0c;电脑上能显示有外部显示器接入&#xff0c;但是外接显示器无投屏画面 二、已测试的方法 1 更改电脑分辨&#xff0c;结果无效 2 删除BootCamp&#xff0c;结果无效 3更新电脑系统&#xff0c;结果无效 4 在设备管理器中&#…...

网易游戏分享游戏场景中MongoDB运行和分析实践

在游戏行业中&#xff0c;数据库的稳定和性能直接影响了游戏质量和用户满意度。在竞争激烈的游戏市场中&#xff0c;一个优秀的数据库产品无疑能为游戏的开发和后期的运营奠定良好的基础。伴随着MongoDB在不同类型游戏场景中的应用越来越广泛&#xff0c;许多知名的游戏公司都在…...

Android14 AOSP 允许system分区和vendor分区应用进行AIDL通信

在Android14上&#xff0c;出于种种原因&#xff0c;system分区的应用无法和vendor分区的应用直接通过AIDL的方法进行通信&#xff0c;但是项目的某个功能又需要如此。 好在Binder底层其实是支持的&#xff0c;只是在上层进行了屏蔽。 修改 frameworks/native/libs/binder/Bp…...

Java 语言特性(面试系列1)

一、面向对象编程 1. 封装&#xff08;Encapsulation&#xff09; 定义&#xff1a;将数据&#xff08;属性&#xff09;和操作数据的方法绑定在一起&#xff0c;通过访问控制符&#xff08;private、protected、public&#xff09;隐藏内部实现细节。示例&#xff1a; public …...

脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)

一、数据处理与分析实战 &#xff08;一&#xff09;实时滤波与参数调整 基础滤波操作 60Hz 工频滤波&#xff1a;勾选界面右侧 “60Hz” 复选框&#xff0c;可有效抑制电网干扰&#xff08;适用于北美地区&#xff0c;欧洲用户可调整为 50Hz&#xff09;。 平滑处理&…...

Golang dig框架与GraphQL的完美结合

将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用&#xff0c;可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器&#xff0c;能够帮助开发者更好地管理复杂的依赖关系&#xff0c;而 GraphQL 则是一种用于 API 的查询语言&#xff0c;能够提…...

[10-3]软件I2C读写MPU6050 江协科技学习笔记(16个知识点)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16...

laravel8+vue3.0+element-plus搭建方法

创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...

在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)

考察一般的三次多项式&#xff0c;以r为参数&#xff1a; p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]&#xff1b; 此多项式的根为&#xff1a; 尽管看起来这个多项式是特殊的&#xff0c;其实一般的三次多项式都是可以通过线性变换化为这个形式…...

论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing

Muffin 论文 现有方法 CRADLE 和 LEMON&#xff0c;依赖模型推理阶段输出进行差分测试&#xff0c;但在训练阶段是不可行的&#xff0c;因为训练阶段直到最后才有固定输出&#xff0c;中间过程是不断变化的。API 库覆盖低&#xff0c;因为各个 API 都是在各种具体场景下使用。…...

【Elasticsearch】Elasticsearch 在大数据生态圈的地位 实践经验

Elasticsearch 在大数据生态圈的地位 & 实践经验 1.Elasticsearch 的优势1.1 Elasticsearch 解决的核心问题1.1.1 传统方案的短板1.1.2 Elasticsearch 的解决方案 1.2 与大数据组件的对比优势1.3 关键优势技术支撑1.4 Elasticsearch 的竞品1.4.1 全文搜索领域1.4.2 日志分析…...

spring Security对RBAC及其ABAC的支持使用

RBAC (基于角色的访问控制) RBAC (Role-Based Access Control) 是 Spring Security 中最常用的权限模型&#xff0c;它将权限分配给角色&#xff0c;再将角色分配给用户。 RBAC 核心实现 1. 数据库设计 users roles permissions ------- ------…...

文件上传漏洞防御全攻略

要全面防范文件上传漏洞&#xff0c;需构建多层防御体系&#xff0c;结合技术验证、存储隔离与权限控制&#xff1a; &#x1f512; 一、基础防护层 前端校验&#xff08;仅辅助&#xff09; 通过JavaScript限制文件后缀名&#xff08;白名单&#xff09;和大小&#xff0c;提…...