Python生成对抗神经网络GAN预测股票及LSTMs、ARIMA对比分析ETF金融时间序列可视化
全文链接:https://tecdat.cn/?p=38528
本文聚焦于利用生成对抗网络(GANs)进行金融时间序列的概率预测。介绍了一种新颖的基于经济学驱动的生成器损失函数,使 GANs 更适用于分类任务并置于监督学习环境中,能给出价格回报的全条件概率分布,突破传统点估计方式,实现不确定性估计。通过股票数据的数值实验验证了所提方法的有效性,相比经典监督学习模型如 LSTMs 和 ARIMA 获得了更高的夏普比率。
引言
时间序列预测多年来一直是工业界和学术界关注的核心话题。现实世界中多数过程天然具备时间序列结构,在金融和经济领域,像金融工具价格、通货膨胀率以及诸多关键宏观经济指标都是如此。交易策略往往基于对某一金融工具价格走势(上升或下降以及变动幅度)的合理判断,所以时间序列的预测与分类在金融环境中极为重要。传统上,这项任务主要依靠仅基于点估计的方法来完成。而本文旨在突破这类传统方法,借助生成对抗网络(GANs)为目标变量的未来分布提供概率预测。
生成对抗网络
(一)经典 GAN
生成对抗网络(GANs)由 Goodfellow 等人在 2014 年提出,当前在诸多任务中处于领先地位,尤其在图像和视频生成方面表现突出,在科学、视频游戏、照片编辑、视频质量提升等众多领域也有着广泛应用。它属于生成模型家族,其任务是从未知的数据分布中生成新样本。
从博弈论角度来看,可假设有两个参与者,即生成器 G
和判别器 D
,它们相互博弈。G
负责生成它认为看起来真实的样本,而 D
则判断给到它的样本是来自真实数据还是来自生成器。G
的目标是让 D
相信其输出是来自真实数据,并尽可能生成看起来真实的样本;反过来,D
要学习如何正确区分数据样本和来自生成器的样本。G
会利用从 D
得到的反馈来改进生成的样本。在 GANs 中,生成器 G
和判别器 D
相对于它们的参数都是可微函数,并且通常用神经网络来表示。G
以通常为高斯分布的噪声作为输入,输出一个生成的样本。D
以 G
生成的样本或者来自真实数据的样本作为输入,输出其输入为真实样本的概率。GANs 通过对抗过程进行训练,也就是同时训练两个不同的模型(生成器和判别器),若是采用神经网络,可通过反向传播高效实现训练。
# 以下是简单示意代码,并非完整实现
import torch
import torch.nn as nn
# 定义生成器G
class Generator(nn.Module):def __init__(self):super(Generator, self).__init__()# 这里可以添加生成器的网络结构相关代码,比如一些线性层等def forward(self, noise):# 实现生成器前向传播,将输入噪声转换为生成的样本generated_sample = None # 这里需按实际情况替换为具体生成逻辑代码return generated_sample
# 定义判别器D
class Discriminator(nn.Module):def __init__(self):super(Discriminator, self).__init__()# 这里可以添加判别器的网络结构相关代码,比如一些线性层等def forward(self, input_sample):# 实现判别器前向传播,判断输入样本是真实还是生成的概率probability = None # 这里需按实际情况替换为具体判断逻辑代码return probability
(二)条件 GAN
条件生成对抗网络是标准 GAN 的自然延伸,最早在最初的 GAN 论文中被提及,并由 Mirza 和 Osindero 在 2014 年首次进行探索。它假设数据 x
来自一个条件分布 pdata(x|condition)
(给定某个确定性条件),与标准 GAN 不同的是,生成器和判别器除了标准输入外,还会被给予进一步的确定性信息(条件)。当这个条件是标签时,通常将其编码为独热向量,判别器也会被给予相同条件。
比如我们想要生成猫和狗的照片,我们有猫和狗的标签(以独热向量形式给出),生成器会将噪声和一个标签(比如猫的标签)作为输入,输出它认为是猫的照片。判别器会将来自原始数据的猫照片以及生成器网络生成的猫照片,连同表明是猫照片的标签一起作为输入,然后对来自真实数据的猫照片和来自生成器的猫照片给出反馈并学习。
(三)ForGAN
ForGAN 是一种条件 GAN,其架构非常适合用于时间序列的概率预测,由 Koochali 等人在 2019 年提出。其思路是利用条件 GAN,根据时间序列之前的 L
个值(记为 x-Lt+1
,也就是 xt, x t−1,..., x t−(L−1)
)对 xt+1
进行概率预测。与标准点估计相比,它能利用更多信息,并且便于获得不确定性估计。
为利用时间序列结构,生成器和判别器首先会将它们的输入通过一个循环神经网络层。ForGAN 架构根据数据情况包含门控循环单元(GRU)或者长短期记忆(LSTM)单元,本文因 LSTM 单元在金融领域应用广泛而选用它。
Fin-GAN损失函数
我们工作的主要贡献在于为生成器引入了一种新颖的经济驱动损失函数,这将生成对抗网络(GANs)置于有监督学习环境中。这种方法使我们能够超越传统的逐点预测方法,转向概率预测,从而提供不确定性估计。此外,我们基于预测的符号(方向)来评估性能,这意味着我们对分类感兴趣,而我们的损失函数更适合于此。
动机
GANs的主要目标是创建模仿真实数据的合成样本。然而,一个重要的问题是,我们希望通过模拟重现真实数据的哪些属性。在我们的案例中,是预测的符号。我们更感兴趣的是正确地对收益/超额收益进行分类,特别是当价格变动幅度较大时,而不是生成接近实际值的预测。其动机在于,可能会产生一个接近时间序列实际值但符号相反的预测。在金融时间序列预测中,在最重要的时候正确估计符号通常比预测接近实际值更为重要。我们旨在为生成器提供更多信息,使其更好地复制数据的符号,这是任务的关键组成部分。使用新颖损失函数项的主要原因和好处可总结如下:
- 将生成的条件分布向正确方向移动;
- 使GANs更适合分类任务;
- 提供有效的正则化;
- 帮助生成器学习更多,特别是在梯度较弱的情况下;
- 有助于避免模式崩溃;通过使生成器损失表面更加复杂,生成器可能会收敛到尖锐的局部最小值。
我们已经看到了不同损失函数的几个示例以及它们带来的好处。最值得注意的是,W-GAN-GP(Gulrajani等人,2017)在判别器损失中添加了一个额外项,以强制执行Lipschitz约束。向生成器添加损失项不太常见,但在Bhatia等人(2021)最近的工作中用于生成极端样本,在VolGAN(Vuleti´c和Cont,2023)中用于模拟无套利隐含波动率表面。其他定制损失函数在金融领域也被证明是有用的,例如Tail-GAN(Cont等人,2022),其侧重于投资组合尾部风险的估计。
新颖损失函数
假设我们的GAN旨在预测(x_i),其中(i = 1,\cdots,n_{batch})。对于每个(x_i),给定噪声样本(z)和由时间序列(x)的前(L)个值组成的条件(x_{-Li}),生成器的输出为
设(x=(x_1,\cdots,x_{n_{batch}}))和(\hat{x}=(\hat{x}1,\cdots,\hat{x}{n_{batch}}))是(x)的预测。我们定义三个损失函数项,即基于PnL、均方误差(MSE)和夏普比率(Sharpe Ratio)的项,我们用它们来训练生成器。
(一)PnL项
在生成器训练目标(最大化)中包含的损失函数项的第一个也是最明显的选择是PnL。然而,符号函数不可微,使得无法执行反向传播。为了缓解这个问题,我们提出了对(PnL)的平滑近似,我们将其表示为(PnL^*),定义为
其中(PnL_a^*)是对特定预测的(PnL)的平滑近似
并且(\tanh(x))定义为
超参数(k_{tanh})控制我们近似的准确性。由于超额收益的值通常较小,期望(k_{tanh})足够大以获得良好的近似,但同时又足够小以使生成器能够从中学习到强梯度。请注意,在PnL项的表达式中,我们考虑的是每笔交易的PnL。这不是在每天平均的PnL,因为训练数据集在每个训练周期开始时都会被打乱。我们使用(k_{tanh}=100)。
Fin-GAN损失函数的好处和挑战
新颖的损失函数项确实会移动生成的分布,有助于避免模式崩溃,并提高夏普比率性能,我们在大量数值实验中证明了这一点。包含新的损失函数项引入了四个需要调整的新超参数,使得优化成为一个更具挑战性的问题。然而,梯度范数匹配方法缓解了这个问题。
此外,损失表面变得更加复杂,增加了收敛挑战。在初始数值实验中,当探索更广泛的超参数(\alpha,\beta,\gamma)范围时,MSE和夏普比率项似乎鼓励生成器产生非常狭窄的分布。为什么具有高(\gamma)系数的夏普比率项会导致模式崩溃并不明显,因为它鼓励PnL具有低标准差,而不是生成的样本。然而,包含基于PnL的项有助于缓解模式崩溃问题,这与收敛到尖锐局部最小值有关(Durall等人,2021)。PnL项帮助生成器逃离损失表面的此类区域。当使用梯度范数匹配来调整超参数(\alpha,\beta,\gamma,\delta)时,无论网络权重的初始化如何,Fin-GAN都没有模式崩溃。然而,我们注意到使用Xavier初始化(Glorot和Bengio,2010)而不是He初始化(He等人,2015)有助于减少ForGAN出现模式崩溃的迭代次数。使用He初始化时,这种情况在67%的案例中发生。使用普通Xavier初始化解决了这个问题。
Fin-GAN算法
输入:生成器的隐藏维度、判别器的隐藏维度、噪声维度。目标大小、条件窗口、滑动窗口。判别器学习率、生成器学习率。训练数据、验证数据、测试数据。梯度匹配的训练周期数(n_{grad})、训练周期数(n_{epochs})、小批量大小(n_{batch})、模式崩溃阈值(\alpha)。加权策略的样本数量(B)。
步骤0:从训练数据集中取出前(n_{batch})个项目作为数据归一化的参考批次。初始化生成器(gen)和判别器(disc)网络。
步骤1:匹配梯度范数以找到(\alpha,\beta,\gamma,\delta)。
for n_grad 个训练周期 do将训练数据分割成小批量。for 小批量数量 do计算关于\(\theta_g\)的BCE、PnL*、MSE、SR*、STD项的梯度范数。将它们标记为grad0、gradα、gradβ、gradγ、gradδ。通过RMSProp和BCE损失更新disc,然后更新gen参数。end for
end for
\alpha \leftarrow mean(grad0/gradα); \beta \leftarrow mean(grad0/gradβ);
\gamma \leftarrow mean(grad0/gradγ); \delta \leftarrow mean(grad0/gradδ)
步骤2:训练和验证。
将可能的损失函数组合((PnL*)、(PnL&STD)、(PnL*&MSE)、(PnL&SR*)、(PnL&MSE&STD)、(PnL*&MSE&SR)、(SR*)、(SR*&MSE))分别标记为(L_i),对于(i = 1,\cdots,8)。
for i = 1,\cdots,8 dogeni \leftarrow gen; disci \leftarrow disc.for nepochs do将训练数据分割成小批量。for 小批量数量 do通过RMSProp和J(D)更新disc。通过RMSProp和Li更新gen。end forend for从验证集中的每一天从geni中取出B个样本。SR_ival \leftarrow 验证集上加权策略的夏普比率。
end for
i^* \leftarrow argmax\{SR_ival : i = 1,\cdots,8\}; gen^* \leftarrow geni^*
步骤3:在测试集上评估。
对于测试集中的每个时间(t),从(geni^*)中取出(B)个独立同分布的输出(\hat{r}_{it}),(i = 1,\cdots,B)。
每个时间的点估计(\tilde{r}t \leftarrow mean(\hat{r}{it}))。
(MAE \leftarrow MAE(r_t,\tilde{r}_t); RMSE \leftarrow RMSE(r_t,\tilde{r}_t));
实施加权策略,将天数配对成两组。
计算年化夏普比率(SR_w)和平均每日PnL (PnL_w)。
if std(\{\hat{r}_{i0}\}_{i = 1,\cdots,B}) < \alpha 或 std(\{\tilde{r}_t\}_{t\in测试集}) < \alpha then模式崩溃。
else无模式崩溃。
end if
上述论文对Fin - GAN损失函数进行了较为全面的阐述,包括其动机、新颖损失函数的构建、带来的好处与挑战以及相关算法流程等内容。在实际应用中,可根据具体的金融数据和需求进一步调整和优化相关参数与模型结构,以达到更好的预测和分类效果。
数据描述与实现考量
在本节中,我们将对所使用数据集的主要特征进行阐述,介绍ForGAN架构,讨论训练设置情况,并展示Fin - GAN模型在数值实验中的一般行为表现。
数据描述
我们选取的是CRSP中提取的每日股票ETF超额收益以及每日原始ETF收益数据,时间跨度为2000年1月至2021年12月。所有时间序列按照80 - 10 - 10的比例划分训练 - 验证 - 测试阶段,具体而言,训练期是2000年1月3日至2017年8月9日,验证期为2017年8月10日至2019年10月22日,测试期则是2019年10月23日至2021年12月31日。值得注意的是,测试数据涵盖了新冠疫情起始阶段,这无疑增加了问题的挑战性。
在收益考量方面,我们依次关注开盘 - 收盘和收盘 - 开盘收益,将它们分别视作一个时间单位,也就是说输入的时间序列交替呈现日内收盘 - 开盘以及隔夜开盘 - 收盘收益情况。其中,滑动窗口设定为一个时间单位,条件窗口设为十个时间单位(对应五个交易日收益,即一个完整交易周),预测窗口是提前一个时间单位。
以下是用于数值实验的股票代码及对应的ETF等相关信息展示:
data_ETFs = pd.read_csv("ETFsta.csv")
data_ETFs['date_dt'] = pd.to_datetime(data_ETFs['date'])
data_ETFs['AdjClose'] = data_ETFs['PRC'] / data_ETFs['CFACPR']
data_ETFs['AdjOpen'] = data_ETFs['OPENPRC'] / data_ETFs['CFACPR']
ETF_list = data_ETFs['TICKER'].unique()[2:]ETF_dfs = [None] * len(ETF_list)for i in tqdm(range(len(ETF_list))):ETF = ETF_list[i]ETF_dfs[i] = data_ETFs[data_ETFs.TICKER == ETF].copy().reset_index()ETF_dfs[i].to_csv("C:\\"+ETF+".csv")plt.figure(ETF + "price")plt.plot(ETF_dfs[i]['date_dt'],ETF_dfs[i]['AdjOpen'],label='open')plt.plot(ETF_dfs[i]['date_dt'],ETF_dfs[i]['AdjClose'],label='close')
ForGAN架构
针对单只股票/ETF数值实验,利用LSTM单元构建的经典ForGAN架构。鉴于所使用数据集规模较小,相应各层维度以及噪声维度统一设置为8。生成器激活函数选用ReLU,而判别器激活函数采用sigmoid函数。
基线算法
除了标准的ForGAN(通过BCE损失训练、具备ForGAN架构的GAN)之外,我们还将Fin - GAN模型与更为常见的时间序列预测监督学习方法,像ARIMA和LSTM进行对比分析。
sgn_fake = torch.sign(predicted)PnL = torch.sum(sgn_fake*real)PnL = 10000*PnL/nsampreturn PnL
上述两图用于展示Fin - GAN损失函数项对生成分布产生影响的情况,图中所有分布都是基于相同的条件窗口生成,黑色垂直线代表真实值,也就是目标值。
此图所使用的数据是PFE的ETF超额收益,通过不同损失函数组合训练后,展示在测试集上生成的样本外(一步超前)均值情况。比如在该特定实例中,在验证集上夏普比率性能表现最佳的损失函数是PnL - MSE - SR。
另外,我们训练了LSTM - Fin,即在(基线)MSE损失、(PnL*)、(SR*)和STD损失项的合适组合上对LSTM开展训练,目的是更好地与Fin - GAN进行对比。训练过程中运用和Fin - GAN设置相同的方法,通过执行梯度范数匹配来确定与新加入的损失项对应的超参数值。
数值实验
首先,在单只股票设置情境下,我们针对特定股票/ETF的ETF超额收益/原始收益对Fin - GAN和各基线模型展开训练。随后,依照Sirignano和Cont(2019)所提出的思路,在三组不同股票数据上探究普遍性概念。我们把单只股票设置中不同股票代码对应的数据进行整合,模拟数据来自同一数据源对Fin - GAN进行训练。
不同模型在股票和ETF上的各项性能指标总结如下表所示:
注:SR指年化夏普比率,PnL指平均每日PnL,MAE和RMSE分别表示平均绝对误差和均方根误差,表格中突出显示的是各指标下表现最优的结果。
图呈现的是Fin - GAN不同损失函数组合在不同股票代码上达成的累积PnL情况,其中投资组合PnL是图中黑色显示的平均PnL乘以工具数量。
图展示的是不同模型的投资组合累积PnL,图中虚线对应的是由合适的Fin - GAN损失函数组合(仅包含MSE)生成的PnL路径。
通过上述实验可知,平均来看,Fin - GAN方法在性能上优于ForGAN、LSTM、ARIMA以及长期持有这些基线模型。进一步分析单个股票代码层面的夏普比率情况,从各模型和股票代码对应的年化夏普比率性能图能发现,Fin - GAN模型比其他基线模型表现更佳,能够获取极具竞争力的夏普比率,尤其考虑到处理的是单只股票投资组合这一情况。Fin - GAN所实现的夏普比率相较于LSTM更加稳定,唯一夏普比率低于 - 1的股票代码是XLY(可选消费),这是由于该板块ETF在新冠疫情初期出现暴跌,而在验证阶段又持续增长所致。在LSTM实现夏普比率高于1或2的数据集上,Fin - GAN同样能达到相近甚至更高的夏普比率,比如在CL的情况中。总之,对比其他方法,Fin - GAN在夏普比率性能方面优势明显。
从整体性能角度而言,Fin - GAN和LSTM的表现优于其他被研究的方法。各投资组合累积PnL情况如图所示,深度学习模型从新冠疫情冲击中恢复的速度明显快于ARIMA和长期持有模型,并且生成的PnL波动大多源于疫情影响。图中展示的不同Fin - GAN损失组合对应的累积PnL情况表明,使用验证环节来确定损失组合(而非一开始就对各数据集使用固定的损失组合)有助于提升整体性能。虽然LSTM的投资组合PnL相对较高,但其波动更大,特别是在2020年3月至6月期间,这也使得其夏普比率低于Fin - GAN。
针对图展示的平均每日PnL性能,ARIMA和长期持有方法生成的平均每日PnL规模相近,LSTM平均获得的PnL最高,不过LSTM的PnL在不同股票代码间波动明显较大。GAN方法实现的平均每日PnL标准差(Fin - GAN为4.85,ForGAN为4.00)明显低于LSTM(7.48)、LSTM - Fin(7.53)、ARIMA(6.26)和长期持有(5.97),这体现出利用不确定性估计来构建动态规模加权策略的优势。
接下来,我们对影响Fin - GAN性能的所选损失函数组合细分情况展开探讨。
图展示的是Fin - GAN在测试集上通过不同损失组合得到的SR(年化夏普比率),各股票代码括号内所报告的是在验证集上实现最高夏普比率的所选损失组合。
图呈现的是Fin - GAN损失项组合在不同股票代码上的平均样本外(测试)PnL相关性情况。
图是通用模型中单个股票的夏普比率性能总结,每列代表损失函数项的不同组合,“单只股票”列展示的是针对特定股票/ETF训练时Fin - GAN的最优性能表现,其中CCL、EBAY、TROW和CERN在训练阶段未被模型涉及。
图是对XLP板块股票成分的SR性能总结,每列表示损失函数项的不同组合,SYY和TSN在训练阶段未被模型纳入。
图呈现的是在训练数据包含XLP数据时,属于XLP板块股票的SR性能总结,同样每列代表损失函数项的不同组合,SYY和TSN在训练阶段未被模型关注到。
综上所述,在对Fin - GAN模型的多方面研究中,从数据的特征分析、架构搭建,再到与其他算法对比等环节,都为深入认识其性能提供了详实依据。数据的不同阶段划分、不同板块股票数据运用,以及与ARIMA、LSTM等算法在各类性能指标对比上,都凸显出Fin - GAN在金融数据处理及预测领域的独特价值与优势。特别是其在夏普比率、平均PnL等关键指标的表现,还有不同损失函数组合对最终结果的影响等内容,对于后续进一步优化和拓展Fin - GAN模型应用有着重要的参考意义。
结论
在金融数据背景下,我们已证明生成对抗网络(GANs)可成功应用于概率时间序列预测,尤其是在预测方向(符号)至关重要的情况下,如在大幅价格波动前的预测。我们引入了一种新颖的经济驱动生成器损失函数,它包含适当加权的利润与损失(PnL)、PnL 的标准差、均方误差(MSE)、基于夏普比率的损失函数项,这使得 GANs 更适用于分类任务,并将其置于有监督学习环境中。
通过一系列全面的数值实验,我们将自己的方法与标准 GAN 模型、长短期记忆网络(LSTM)、自回归移动平均模型(ARIMA)以及长期持有策略进行了比较,并在实现的夏普比率方面展示了我们模型的优越性能。此外,我们在三种设定下考虑了通用模型:汇集来自不同板块股票和板块 ETF 的数据;考虑一个板块,将板块 ETF 纳入训练数据以及将板块 ETF 排除在训练阶段之外。尽管股票范围较小,但我们注意到即使在未见过的股票上也可能有良好表现。并且,当板块 ETF 被纳入训练数据时,单板块设定中的性能有所提升。
我们的工作引出了一些有趣的未来研究方向。探索新损失函数项的添加如何影响路径模拟,以及如何利用跨资产交互、从相关性中学习并在更大的股票范围内探索普遍性概念,可能会带来深刻见解。超越股票数据并探索其他资产类别(如期权),可能在一个联合框架中进行,是未来工作的另一个有趣途径。
参考文献
- Arjovsky, M. and Bottou, L., Towards principled methods for training generative adversarial networks. In International Conference on Learning Representations, 2017.
- Arjovsky, M., Chintala, S. and Bottou, L., Wasserstein generative adversarial networks. In International Conference on Machine Learning, pp. 214–223, 2017 (PMLR).
- Assefa, S.A., Dervovic, D., Mahfouz, M., Tillman, R.E., Reddy, P. and Veloso, M., Generating synthetic data in finance: Opportunities, challenges and pitfalls. In Proceedings of the First ACM International Conference on AI in Finance, pp. 1–8, 2020.
- Bhatia, S., Jain, A. and Hooi, B., ExGAN: Adversarial generation of extreme samples. Proc. AAAI Conf. Artif. Intell., May 2021, 35(8), 6750–6758. doi:10.1609/aaai.v35i8.16834.
- Box, G.E., Jenkins, G.M., Reinsel, G.C. and Ljung, G.M., Time Series Analysis: Forecasting and Control, 2015 (John Wiley & Sons: Hoboken, NJ).
- Buehler, H., Gonon, L., Teichmann, J. and Wood, B., Deep hedging. Quant. Finance, 2019, 19(8), 1271–1291.
- Buehler, H., Horvath, B., Lyons, T., Perez Arribas, I. and Wood, B., Generating financial markets with signatures. Available at SSRN 3657366, 2020.
- Chen, T. and Guestrin, C., Xgboost: A scalable tree boosting system. In KDD, 2016.
- Cho, K., van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H. and Bengio, Y., Learning phrase representations using RNN encoder-decoder for statistical machine translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1724–1734, October 2014 (Association for Computational Linguistics: Doha, Qatar).
相关文章:
Python生成对抗神经网络GAN预测股票及LSTMs、ARIMA对比分析ETF金融时间序列可视化
全文链接:https://tecdat.cn/?p38528 本文聚焦于利用生成对抗网络(GANs)进行金融时间序列的概率预测。介绍了一种新颖的基于经济学驱动的生成器损失函数,使 GANs 更适用于分类任务并置于监督学习环境中,能给出价格回…...
深入了解C++中const的用法
文章目录 一、C中的const如何理解?二、C中的const与C语言中的const有何区别?三、const与指针、引用的结合使用 一、C中的const如何理解? 在C中,const是一个关键字,用来表示常量性,意在告诉编译器某些变量或…...
【Linux金典面试题(上)】41道Linux金典面试问题+详细解答,包含基本操作、系统维护、网络配置、脚本编程等问题。
大家好,我是摇光~,用大白话讲解所有你难懂的知识点 之前写了一篇关于 python 的面试题,感觉大家都很需要,所以打算出一个面试专栏。 【数据分析岗】Python金典面试题 这个专栏主要针对面试大数据岗位、数据分析岗位、数据运维等…...
利用Python实现多元回归预测汽车价格
引言: AI技术的热门使得大家对机器学习有了更多的关注,作为与AI技术息息相关的一门课程,从头了解基础的机器学习算法就显得十分有必要,如:梯度下降,线性回归等。 正文: 本文将讲解线性回归中多元回回归的案例 机器学习大致可以分为监督学习,非监督学习、半监督学习还…...
抓包软件fiddler和wireshark使用手册
fiddler官方文档 Fiddler 抓包教程1 Fiddler 抓包教程2 wireshark抓包学习 2添加链接描述 ip 过滤 ip.src_host ip.dst_host ip.addr mac 过滤 eth.src eth.dst eth.addr 端口过滤 tcp.port tcp.srcport tcp.dstport 协议类型过滤 arp dhcp 规则组合 and or...
初识三大 Observer
文章目录 ResizeObserver、MutationObserver和IntersectionObserver用MutationObserver实现图片懒加载MutationObserver 兼容性问题IntersectionObserver 应用MutationObserver和IntersectionObserver的区别IntersectionObserver 实例示例一:图片懒加载示例二&#…...
Eclipse MAT(Memory Analyzer Tool) 使用手册
参考:JAVA内存泄露使用MAT(Memory Analyzer Tool)快速定位代码 Eclipse MAT 1.15.0提示JDK版本最低需要使用17版本的,如果不想安装可以下载ZIP包,或者使用较低版本的MAT。 为了避免下载的17版本JDK和本地环境干扰,可以直接在MAT配…...
TongWe7.0-东方通TongWeb控制台无法访问 排查
**问题描述:**无法访问TongWeb的控制台 逐项排查: 1、控制台访问地址是否正确:http://IP:9060/console #IP是服务器的实际IP地址 2、确认TongWeb进程是否存在,执行命令:ps -ef|grep tongweb 3、确认TongWeb服务启动…...
Ariba Procurement: Administration_Master data
采购主数据集成Procurement Master Data Integration 注意:并非所有元素都是必需的,数据元素的名称可能根据ERP的不同,有所不同。 Types of Master Data Accounting 在SAP Ariba中的各种会计元素字段中,填充有效值选择列表。建…...
爬虫学习案例4
爬取猪八戒网站数据:2024-12-12 使用xpath解析元素,安装依赖库 pip install lxml使用selenium步骤我的上篇博客有提到,这里就不重复了 selenium使用博客导航 # 安装pip install lxml,使用xpath from lxml import etree import time from s…...
Angular模块化应用构建详解
文章目录 前言一、理解Angular模块(NgModule)二、创建功能模块三、懒加载模块以提高性能四、共享模块五、库模块六、最佳实践与注意事项七、案例研究:重构电子商务平台结语 前言 Angular是一款由Google支持的、用于构建动态Web应用程序的前端…...
51c大模型~合集89
我自己的原文哦~ https://blog.51cto.com/whaosoft/12815167 #OpenAI很会营销 而号称超强AI营销的灵感岛实测成效如何? OpenAI 是懂营销的,连续 12 天发布,每天一个新花样,如今刚过一半,热度依旧不减。 毫无疑问&…...
【蓝桥杯备战】Day 1
1.基础题目 LCR 018.验证回文串 给定一个字符串 s ,验证 s 是否是 回文串 ,只考虑字母和数字字符,可以忽略字母的大小写。 本题中,将空字符串定义为有效的 回文串 。 示例 1: 输入: s "A man, a plan, a canal: Panama…...
FedAdam算法:供给方信用,数据质量;更新一致性
FedAdam算法:供给方信用,数据质量;更新一致性 FedAdam算法概述 FedAdam是一种联邦学习(Federated Learning)算法。联邦学习是一种机器学习技术,它允许在多个设备或数据中心(称为客户端)上训练模型,而无需将数据集中到一个中央服务器,从而保护数据隐私。FedAdam主要用于…...
内存卡格式化后的数据恢复全攻略
一、内存卡格式化简述 内存卡,作为现代电子设备中不可或缺的存储媒介,广泛应用于手机、相机、行车记录仪等各类设备中。然而,在使用过程中,我们可能会遇到内存卡需要格式化的情况。格式化是一种将内存卡上的所有数据和文件系统清…...
介绍交叉熵损失(Cross-Entropy Loss)以及交叉熵在对比学习中的应用:中英双语
中文版 本文解释 交叉熵损失(Cross-Entropy Loss),并结合对比学习的应用说明它如何工作,以及如何让正样本对更近、负样本对更远。 什么是交叉熵损失? 交叉熵损失是机器学习中常用的一种损失函数,主要用于…...
RabbitMQ的几个概念
注:这篇文章会随时添加新的内容,就是将RabbtiMQ中的概念添加到这里。助力大家的学习 自动ACK和手动ACK的区别 自动ACK和手动ACK是消息队列中两种不同的消息确认机制,它们在消息处理的可靠性和灵活性方面存在显著差异。 自动ACK(…...
Ollama部署大模型并安装WebUi
Ollama用于在本地运行和部署大型语言模型(LLMs)的工具,可以非常方便的部署本地大模型 安装 Linux curl -fsSL https://ollama.com/install.sh | sh我是ubuntu系统安装,其他系统可以看项目的开源地址有写 GitHub - ollama/ollama: Get up and running with Llama 3, Mist…...
Debedium如何忽略Oracle的purge命令
报错 截至目前3.0版本,Debezium的Oracle Connector并不支持purge table这个指令。 所以,在使用Debezium解析Oracle变更的时候,如果在源端执行了类似 purge table "$BIN… 的语句,就会导致Debezium罢工,日志里显…...
PlantUML 语言
PlantUML 是一种开源工具,用于通过简单的文本描述生成 UML 图。它支持多种 UML 图类型,如类图、序列图、用例图、活动图、组件图、状态图等。PlantUML 语言非常简洁,采用类似编程语言的语法,允许用户使用文本定义模型,…...
linux的 .so和.ko文件分别是什么?主要区别是什么?
前言: .so和.ko文件的主要区别在于它们的应用层次和功能不同。 应用层次 .so文件:这是用户层的动态链接库(Shared Object),主要用于用户态的程序中。 它用于动态链接,多个程序可以共享同一个库文件&…...
XX服务器上的npm不知道咋突然坏了
收到同事的V,说是:182上的npm不知道咋突然坏了,查到这里了,不敢动了。 咱一定要抓重点:突然坏了。这里的突然肯定不是瞬间(大概率是上次可用,这次不可用,中间间隔了多长时间&#x…...
数据结构(优先级队列 :Priority Queue)
前言: 在计算机科学中,队列是一种非常常见的数据结构,它遵循先进先出(FIFO)的原则,也就是说,先进入队列的元素会先被处理。然而,在许多实际应用中,我们不仅仅需要按顺序…...
nginx.conf 请求时间部分参数说明新手教程
下面来说下nginx.conf 的部分参数,配置如下: http {include mime.types;default_type application/octet-stream;client_max_body_size 1000M;#log_format main $remote_addr - $remote_user [$time_local] "$request" # …...
【Linux-ubuntu通过USB传输程序点亮LED灯】
Linux-ubuntu通过USB传输程序点亮LED灯 一,初始化GPIO配置1.使能时钟2.其他寄存器配置 二,程序编译三,USB传输程序 一,初始化GPIO配置 1.使能时钟 使能就是一个控制信号,用于决定时钟信号是否能够有效的传递或者被使用,就像一个…...
《开源时间序列数据:探索与应用》
《开源时间序列数据:探索与应用》 一、开源时间序列数据概述二、热门的开源时间序列数据库1. InfluxDB2. TimescaleDB3. Prometheus4. OpenTSDB5. Graphite6. Druid 三、开源时间序列数据的应用场景1. 物联网领域2. 金融领域3. 运维监控领域4. 能源领域 四、开源时间…...
三相异步电动机跳闸的原因是什么?
三相异步电动机是现代工业生产和日常生活中广泛应用的一种电动机,因其结构简单、维护方便和功率范围广泛而受到广泛青睐。然而,在实际使用过程中,电动机的跳闸现象时有发生,这不仅影响了设备的正常运行,甚至可能导致经…...
连续思维链Coconut ,打开LLM推理新范式
语言与推理之间有着什么样内涵上的联系与本质上的差别? 系统二的长链复杂分步推理与系统一分别在训练时与推理时的正/反向传播链路、模型神经网络内部的潜在机制(虽然是黑盒)以及网络链路对应的模型训练过程中“压缩”的数据(认知)流形所映射出的隐含碎片化泛化分布…...
阿里云数据库MongoDB版助力极致游戏高效开发
客户简介 成立于2010年的厦门极致互动网络技术股份有限公司(以下简称“公司”或“极致游戏”),是一家集网络游戏产品研发与运营为一体的重点软件企业,公司专注于面向全球用户的网络游戏研发与运营。在整个产业链中,公…...
ESP32-S3模组上跑通ES8388(29)
接前一篇文章:ESP32-S3模组上跑通ES8388(28) 二、利用ESP-ADF操作ES8388 2. 详细解析 上一回解析到了es8388_init函数中的第11段也是最后一段代码,没有解析完,本回继续解析。为了便于理解和回顾,再次贴出该片段,在components\audio_hal\driver\es8388\es8388.c中,如下…...
wordpress nginx 302/网站排名大全
系统吞吐量和系统并发数以及响应时间的关系理解为高速公路的通行状况:吞吐量是每天通过收费站的车辆数目(可以换算成收费站收取的高速费),并发数是高速公啃噬 上的正在行驶的车辆数目,响应时间是车速。车辆很少时&…...
为什么我自己做的网站百度不到/苏州网站建设书生
C语言中的函数指针学习笔记一、定义函数指针return_type (*func_pointer)(parameter_list)普通指针变量的定义int * p;char * pointer;类型的限定都在变量前面;函数指针类型的限定是前后都有,前面是返回类型,后面是输入参数。利用typedef 可以…...
女朋友做网站/关键词收录
出人意料,去年哈佛最受欢迎的选修课是“幸福课”,听课人数超过了王牌课《经济学导论》。教这门课的是一位名不见经传的年轻讲师,名叫泰勒本-沙哈尔。 在一周两次的“幸福课”上,本-沙哈尔没有大讲…...
wordpress做的视听网站/nba最新消息交易
一、中文乱码window系统下,Eclipse中导入新的项目的时候,可能会遇到中文乱码的问题。解决方案:将系统默认的格式为GBK改成UTF-8。以下是具体解决方法,可以根据需要选择不同的方法。1、设置整个工作空间的编码,此操作会…...
驻马店市旅游网站建设/平台推广文案
强力推荐该布局方式 然后再东南西北分别放上 然后你就可以随意调整你的GUI界面了...
页面设计需求需要做哪些方面/优化大师绿色版
今天,我们将介绍Anime4K(动漫图片超分辨率算法),这是目前最热门的开源项目,特点:实时、视频动画放大算法。 在一周内,Anime4K在Github上收获了将近3千颗星。作者在6天前介绍了reddit上的项目&a…...