当前位置: 首页 > news >正文

Win10微调大语言模型ChatGLM2-6B

在《Win10本地部署大语言模型ChatGLM2-6B-CSDN博客》基础上进行,官方文档在这里,参考了这篇文章

首先确保ChatGLM2-6B下的有ptuning

 AdvertiseGen下载地址1,地址2,文件中数据留几行

模型文件下载地址 (注意:ChatGLM2-6B对话用到的的模型文件不能简单的用到这里,bin文件可以复用,但其他文件一定要重新下载,否则要报一些错)

anaconda prompt中运行,进行虚拟环境

cd /d D:\openai.wiki\ChatGLM2-6B
conda activate D:\openai.wiki\ChatGLM2-6B\ENV

运行微调除 ChatGLM2-6B 的依赖之外,还需要安装以下依赖

pip install rouge_chinese nltk jieba datasets

先了解一下train.sh(仅在Linux中使用)里面各行的意义

PRE_SEQ_LEN=128 #  soft prompt 长度
LR=2e-2     # 训练学习率
NUM_GPUS=2  # GPU卡的数量torchrun --standalone --nnodes=1 --nproc-per-node=$NUM_GPUS main.py \--do_train \   # 执行训练功能,还可以执行评估功能--train_file AdvertiseGen/train.json \   # 训练文件目录--validation_file AdvertiseGen/fval.json \   # 验证文件目录--prompt_column content \       # 训练集中prompt提示名称,对应训练文件,测试文件的"content"--response_column summary \      # 训练集中答案名称,对应训练文件,测试文件的"summary"--overwrite_cache \              # 缓存,重复训练一次的时候可删除--model_name_or_path THUDM/chatglm-6b \  # 加载模型文件目录,也可修改为本地模型的路径--output_dir output/adgen-chatglm-6b-pt-$PRE_SEQ_LEN-$LR \    # 保存训练模型文件目录--overwrite_output_dir \     # 覆盖训练文件目录--max_source_length 64 \     # 最大输入文本的长度--max_target_length 128 \--per_device_train_batch_size 1 \    # batch_size 训练批次根据显存调节--per_device_eval_batch_size 1 \     # 验证批次--gradient_accumulation_steps 16 \   # 梯度累加的步数--predict_with_generate \--max_steps 3000 \    # 最大训练模型的步数--logging_steps 10 \  # 多少步打印日志一次--save_steps 1000 \    # 多少步保存模型一次--learning_rate $LR \  # 学习率--pre_seq_len $PRE_SEQ_LEN \--quantization_bit 4   # 量化,也可修改为int8

 Windows下用以下的train.bat

因我的电脑显存只有8G,故将per_device_train_batch_size改为8

去掉--quantization_bit 4

set PRE_SEQ_LEN=128
set LR=1e-4python main.py ^--do_train ^--train_file AdvertiseGen/train.json ^--validation_file AdvertiseGen/dev.json ^--preprocessing_num_workers 10 ^--prompt_column content ^--response_column summary ^--overwrite_cache ^--model_name_or_path D:\\openai.wiki\\ChatGLM2-6B\\ptuning\\THUDM\\chatglm2-6b ^--output_dir D:/openai.wiki/ChatGLM2-6B/ptuning/output ^--overwrite_output_dir ^--max_source_length 64 ^--max_target_length 128 ^--per_device_train_batch_size 8 ^# batch_size 训练批次根据显存调节--per_device_eval_batch_size 1 ^--gradient_accumulation_steps 16 ^--predict_with_generate ^--max_steps 3000 ^--logging_steps 10 ^--save_steps 1000 ^--learning_rate %LR% ^--pre_seq_len %PRE_SEQ_LEN% 

进入ptuning文件夹

cd ptuning

运行train.bat,即可开始训练(有问题的话继续往后看)

train.bat

 可能遇到的几个问题

  • 问题一

TypeError: JsonConfig.init() got an unexpected keyword argument 'use_auth_token’

解决方式

pip uninstall datasets
pip install datasets==2.21.0
  • 问题二

name ‘round_up‘ is not defined

解决方式

将train.bat中的–quantization_bit 4删除

或者pip install cpm_kernels

  • 问题三

AttributeError: ‘ChatGLMModel‘ object has no attribute ‘prefix_encoder‘

解决方式

https://huggingface.co/THUDM/chatglm2-6b/tree/main

下载除bin文件以外的最新文件

相关文章:

Win10微调大语言模型ChatGLM2-6B

在《Win10本地部署大语言模型ChatGLM2-6B-CSDN博客》基础上进行,官方文档在这里,参考了这篇文章 首先确保ChatGLM2-6B下的有ptuning AdvertiseGen下载地址1,地址2,文件中数据留几行 模型文件下载地址 (注意&#xff1…...

什么叫区块链?怎么保证区块链的安全性?

区块链(Blockchain)是一种分布式数据库或账本技术,它通过去中心化的方式记录交易或其他数据,并确保这些记录是安全、透明和不可篡改的。区块链最初是作为比特币(Bitcoin)加密货币的基础技术而被公众所知&am…...

一、智能体强化学习——强化学习基础

1.1 强化学习与深度学习的基本概念 1.1.1 强化学习的核心思想 什么是强化学习? 强化学习(Reinforcement Learning, RL):指在与环境(Environment)的反复交互中,智能体(Agent&#x…...

【DES加密】

什么是DES DES(Data Encryption Standard) 是一种对称加密算法。它的设计目标是提供高度的数据安全性和性能。 DES的概念 DES使用56位的密钥和64位的明文块进行加密。DES算法的分组大小是64位,因此,如果需要加密的明文长度不足64位,需要进…...

.NET中的框架和运行环境

在.NET生态系统中,框架和运行环境是两个不同的概念,它们各自扮演着重要的角色。 下面我将分别介绍.NET中的框架和运行环境,并解释它们之间的区别。 .NET 框架(Frameworks) 框架提供了一套预定义的类库、工具和服务&…...

探索微软 M365 安全:全方位守护数字世界

在当今这个科技呈井喷式飞速发展,数字化浪潮以汹涌澎湃、锐不可当之势席卷全球的时代,企业与个人仿若置身于一片浩瀚无垠、信息奔涌的海洋之中,尽情畅享着技术革新所带来的无穷无尽便利。然而,恰如平静海面下潜藏着暗礁与汹涌暗流,网络安全问题恰似隐匿在暗处、随时可能给…...

深入探索AI核心模型:CNN、RNN、GAN与Transformer

在人工智能的飞速发展中,众多深度学习模型和算法不断涌现,推动了许多领域的进步。特别是在图像识别、自然语言处理、生成建模等方向,AI模型的应用越来越广泛。本文将介绍几种最常用的AI模型,包括卷积神经网络(CNN&…...

Java - Http 通讯

Java - Http 通讯 PS&#xff1a; 1. Http 协议 POST | GET 请求&#xff1b; 2. 支持 报头、报文、参数 自定义配置&#xff1b; 3. GET 返回支持 String | Stream; 4. 相关依赖&#xff1a; <dependency><groupId>org.apache.httpcomponents</groupId><…...

C++ Qt练习项目 QChar功能测试

个人学习笔记 代码仓库 GitCode - 全球开发者的开源社区,开源代码托管平台 新建项目 设计UI 1、拖入group box去掉名字 2、拖入2个LineEdit 3、拖入两个Label 4、拖入两个PushButton 5、点栅格布局 1、拖入GroupBox 2、拖入4个PushButton 3、点栅格布局 1、拖入GroupBo…...

android 官网刷机和线刷

nexus、pixel可使用google官网线上刷机的方法。网址&#xff1a;https://flash.android.com/ 本文使用google线上刷机&#xff0c;将Android14 刷为Android12 以下是失败的线刷经历。 准备工作 下载升级包。https://developers.google.com/android/images?hlzh-cn 注意&…...

二叉树层序遍历 Leetcode102.二叉树的层序遍历

二叉树的层序遍历相当于图论的广度优先搜索&#xff0c;用队列来实现 &#xff08;二叉树的递归遍历相当于图论的深度优先搜索&#xff09; 102.二叉树的层序遍历 给你二叉树的根节点 root &#xff0c;返回其节点值的 层序遍历 。 &#xff08;即逐层地&#xff0c;从左到右…...

DELTA并联机械手视觉方案荣获2024年度机器人应用典型案例奖

直击现场 2025年1月9日晚&#xff0c;2024深圳市机器人年度评选颁奖典礼在深圳市南山区圣淘沙酒店正式拉开帷幕。本次颁奖活动由中国科学院深圳先进技术研究院指导&#xff0c;深圳市机器人协会与《机器人与智能系统》杂志组织承办。 正运动公司受邀参与此次典礼&#xff0c;…...

Netty 入门学习

前言 学习Spark源码绕不开通信&#xff0c;Spark通信是基于Netty实现的&#xff0c;所以先简单学习总结一下Netty。 Spark 通信历史 最开始: Akka Spark 1.3&#xff1a; 开始引入Netty&#xff0c;为了解决大块数据&#xff08;如Shuffle&#xff09;的传输问题 Spark 1.6&…...

Magentic-One、AutoGen、LangGraph、CrewAI 或 OpenAI Swarm:哪种多 AI 代理框架最好?

目录 一、说明 二、 AutoGen-自动生成&#xff08;微软&#xff09; 2.1 特征 2.2 局限性 三、 CrewAI 3.1 特征 3.2 限制&#xff1a; 四、LangGraph 4.1 特征&#xff1a; 4.2 限制&#xff1a; 五、OpenAI Swarm 5.1 特征 5.2 限制 六、Magentic-One 6.1 特征 6.2 限制 七、…...

openstack下如何生成centos9 centos10 和Ubuntu24 镜像

如何生成一个centos 10和centos 9 的镜像1. 下载 对应的版本 wget https://cloud.centos.org/centos/10-stream/x86_64/images/CentOS-Stream-GenericCloud-x86_64-10-latest.x86_64.qcow2 wget https://cloud.centos.org/centos/9-stream/x86_64/images/CentOS-Stream-Gener…...

Kivy App开发之UX控件Slider滑块

在app中可能会调节如音量,亮度等,可以使用Slider来实现,该控件调用方便,兼容性好,滑动平稳。在一些参数设置中,也可以用来调整数值。 支持水平和垂直方向,可以设置默认值,最小及最大值。 使用方法,需用引入Slider类,通过Slider类生成一个滑块并设置相关的样式后,再…...

CSS——22.静态伪类(伪类是选择不同元素状态)

<!DOCTYPE html> <html><head><meta charset"UTF-8"><title>静态伪类</title> </head><body><a href"#">我爱学习</a></body> </html>单击链接前的样式 左键单击&#xff08;且…...

python学opencv|读取图像(三十)使用cv2.getAffineTransform()函数倾斜拉伸图像

【1】引言 前序已经学习了如何平移和旋转缩放图像&#xff0c;相关文章链接为&#xff1a; python学opencv|读取图像&#xff08;二十七&#xff09;使用cv2.warpAffine&#xff08;&#xff09;函数平移图像-CSDN博客 python学opencv|读取图像&#xff08;二十八&#xff0…...

Unity3D中基于ILRuntime的组件化开发详解

前言 在Unity3D开发中&#xff0c;组件化开发是一种高效且灵活的软件架构方式。通过将游戏功能拆分为独立的、可重用的组件&#xff0c;开发者可以更容易地管理、扩展和维护代码。而ILRuntime作为一款基于C#的热更新框架&#xff0c;为Unity3D开发者提供了一种高效的热更新和组…...

ELK的搭建

ELK elk&#xff1a;elasticsearch logstatsh kibana统一日志收集系统 elasticsearch&#xff1a;分布式的全文索引引擎点非关系型数据库,存储所有的日志信息&#xff0c;主和从&#xff0c;最少需要2台 logstatsh&#xff1a;动态的从各种指定的数据源&#xff0c;获取数据…...

AI Agent与Agentic AI:原理、应用、挑战与未来展望

文章目录 一、引言二、AI Agent与Agentic AI的兴起2.1 技术契机与生态成熟2.2 Agent的定义与特征2.3 Agent的发展历程 三、AI Agent的核心技术栈解密3.1 感知模块代码示例&#xff1a;使用Python和OpenCV进行图像识别 3.2 认知与决策模块代码示例&#xff1a;使用OpenAI GPT-3进…...

关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案

问题描述&#xff1a;iview使用table 中type: "index",分页之后 &#xff0c;索引还是从1开始&#xff0c;试过绑定后台返回数据的id, 这种方法可行&#xff0c;就是后台返回数据的每个页面id都不完全是按照从1开始的升序&#xff0c;因此百度了下&#xff0c;找到了…...

渲染学进阶内容——模型

最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...

el-switch文字内置

el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...

页面渲染流程与性能优化

页面渲染流程与性能优化详解&#xff08;完整版&#xff09; 一、现代浏览器渲染流程&#xff08;详细说明&#xff09; 1. 构建DOM树 浏览器接收到HTML文档后&#xff0c;会逐步解析并构建DOM&#xff08;Document Object Model&#xff09;树。具体过程如下&#xff1a; (…...

Python如何给视频添加音频和字幕

在Python中&#xff0c;给视频添加音频和字幕可以使用电影文件处理库MoviePy和字幕处理库Subtitles。下面将详细介绍如何使用这些库来实现视频的音频和字幕添加&#xff0c;包括必要的代码示例和详细解释。 环境准备 在开始之前&#xff0c;需要安装以下Python库&#xff1a;…...

拉力测试cuda pytorch 把 4070显卡拉满

import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试&#xff0c;通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小&#xff0c;增大可提高计算复杂度duration: 测试持续时间&#xff08;秒&…...

【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统

目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索&#xff08;基于物理空间 广播范围&#xff09;2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...

Python ROS2【机器人中间件框架】 简介

销量过万TEEIS德国护膝夏天用薄款 优惠券冠生园 百花蜂蜜428g 挤压瓶纯蜂蜜巨奇严选 鞋子除臭剂360ml 多芬身体磨砂膏280g健70%-75%酒精消毒棉片湿巾1418cm 80片/袋3袋大包清洁食品用消毒 优惠券AIMORNY52朵红玫瑰永生香皂花同城配送非鲜花七夕情人节生日礼物送女友 热卖妙洁棉…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...