【第九天】零基础入门刷题Python-算法篇-数据结构与算法的介绍-六种常见的图论算法(持续更新)
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档
文章目录
- 前言
- 一、Python数据结构与算法的详细介绍
- 1.Python中的常用的图论算法
- 2. 图论算法
- 3.详细的图论算法
- 1)深度优先搜索(DFS)
- 2)广度优先搜索(BFS)
- 3)Dijkstra算法
- 4)Prim算法
- 5)Kruskal算法
- 6)Floyd-Warshall算法
- 总结
前言
提示:这里可以添加本文要记录的大概内容:
第一天Python数据结构与算法的详细介绍
第二天五种常见的排序算法
第三天两种常见的搜索算法
第四天两种常见的递归算法
第五天一种常见的动态规划算法
第六天一种常见的贪心算法
第七天一种常见的分治算法
第八天一种常见的回溯算法
第九天六种常见的图论算法
提示:以下是本篇文章正文内容,下面案例可供参考
一、Python数据结构与算法的详细介绍
1.Python中的常用的图论算法
以下是Python中的一些常用算法:
2. 图论算法
图论算法:
- 深度优先搜索(DFS):
用途:用于图的遍历或路径查找。
时间复杂度:O(V+E),其中V是顶点数,E是边数。
空间复杂度:O(V)(递归栈空间)。- 广度优先搜索(BFS):
用途:用于图的遍历或最短路径查找(无权图)。
时间复杂度:O(V+E)。
空间复杂度:O(V)(队列空间)。- Dijkstra算法:
用途:用于计算单源最短路径(有权图)。
时间复杂度:O(V^2)(朴素实现)或O((V+E) log V)(优先队列实现)。
空间复杂度:O(V)。
最小生成树算法:- Prim算法:
用途:用于求解最小生成树。
时间复杂度:
使用邻接矩阵:O(V^2)。
使用斐波那契堆等数据结构:O(E log V)。
空间复杂度:根据具体实现而定,通常与顶点数和边的数量相关。- Kruskal算法:
用途:用于求解最小生成树。
时间复杂度:O(E log E),其中E是边的数量。
空间复杂度:O(E)(存储边)和O(V)(并查集数据结构)。- Floyd-Warshall算法:
用途:用于计算所有顶点对之间的最短路径(有权图)。
时间复杂度:O(V^3),其中V是顶点数。注意这里的复杂度是立方,与上述算法不同。
空间复杂度:O(V^2)(存储距离矩阵)。
3.详细的图论算法
1)深度优先搜索(DFS)
# 图的表示使用邻接表
graph = {'A': ['B', 'C'],'B': ['A', 'D', 'E'],'C': ['A', 'F'],'D': ['B'],'E': ['B', 'F'],'F': ['C', 'E']
}# 深度优先搜索的递归实现
def dfs(graph, start, visited=None):if visited is None:visited = set()visited.add(start)print(start) # 访问节点,这里简单打印出来for neighbor in graph[start]:if neighbor not in visited:dfs(graph, neighbor, visited)return visited# 从节点 'A' 开始进行深度优先搜索
dfs(graph, 'A')
2)广度优先搜索(BFS)
from collections import deque# 图的表示使用邻接表
graph = {'A': ['B', 'C'],'B': ['A', 'D', 'E'],'C': ['A', 'F'],'D': ['B'],'E': ['B', 'F'],'F': ['C', 'E']
}# 广度优先搜索的实现
def bfs(graph, start):visited = set() # 用于跟踪访问过的节点queue = deque([start]) # 初始化队列,将起始节点入队while queue:vertex = queue.popleft() # 从队列左侧出队一个节点if vertex not in visited:visited.add(vertex) # 标记该节点为已访问print(vertex) # 访问节点,这里简单打印出来# 将该节点的所有未访问过的相邻节点入队for neighbor in graph[vertex]:if neighbor not in visited:queue.append(neighbor)# 从节点 'A' 开始进行广度优先搜索
bfs(graph, 'A')
3)Dijkstra算法
import heapq# 图的表示使用邻接表,其中权重作为边的值
graph = {'A': {'B': 1, 'C': 4},'B': {'A': 1, 'C': 2, 'D': 5},'C': {'A': 4, 'B': 2, 'D': 1},'D': {'B': 5, 'C': 1}
}def dijkstra(graph, start):# 初始化距离字典,所有顶点的距离都设为无穷大(float('inf')),源点的距离设为0distances = {vertex: float('inf') for vertex in graph}distances[start] = 0# 优先队列,存储(距离,顶点)对,初始时只包含源点(0,start)priority_queue = [(0, start)]heapq.heapify(priority_queue)# 已访问顶点集合,用于避免重复处理visited = set()while priority_queue:# 弹出当前距离最小的顶点current_distance, current_vertex = heapq.heappop(priority_queue)# 如果该顶点已被访问过,则跳过if current_vertex in visited:continue# 标记该顶点为已访问visited.add(current_vertex)# 更新相邻顶点的距离for neighbor, weight in graph[current_vertex].items():distance = current_distance + weight# 如果通过当前顶点到达相邻顶点的距离更短,则更新距离if distance < distances[neighbor]:distances[neighbor] = distanceheapq.heappush(priority_queue, (distance, neighbor))return distances# 从顶点 'A' 开始进行Dijkstra算法求解最短路径
start_vertex = 'A'
shortest_paths = dijkstra(graph, start_vertex)# 打印结果
for vertex, distance in shortest_paths.items():print(f"从 {start_vertex} 到 {vertex} 的最短距离是 {distance}")
4)Prim算法
import heapqdef prim(graph):start_vertex = next(iter(graph)) # 选择任意一个顶点作为起始点mst = []visited = set()min_heap = [(0, start_vertex, None)] # (权重, 当前顶点, 前驱顶点)while min_heap:weight, current_vertex, prev_vertex = heapq.heappop(min_heap)if current_vertex in visited:continuevisited.add(current_vertex)if prev_vertex is not None:mst.append((prev_vertex, current_vertex, weight))for neighbor, edge_weight in graph[current_vertex].items():if neighbor not in visited:heapq.heappush(min_heap, (edge_weight, neighbor, current_vertex))return mst# 图的表示(邻接表)
graph = {'A': {'B': 1, 'C': 3},'B': {'A': 1, 'C': 1, 'D': 6},'C': {'A': 3, 'B': 1, 'D': 2},'D': {'B': 6, 'C': 2}
}print("Prim's MST:", prim(graph))
5)Kruskal算法
class DisjointSet:def __init__(self, vertices):self.parent = {v: v for v in vertices}self.rank = {v: 0 for v in vertices}def find(self, item):if self.parent[item] != item:self.parent[item] = self.find(self.parent[item])return self.parent[item]def union(self, set1, set2):root1 = self.find(set1)root2 = self.find(set2)if root1 != root2:if self.rank[root1] > self.rank[root2]:self.parent[root2] = root1elif self.rank[root1] < self.rank[root2]:self.parent[root1] = root2else:self.parent[root2] = root1self.rank[root1] += 1def kruskal(graph):edges = []for u in graph:for v, weight in graph[u].items():if u < v: # 避免重复边(无向图)edges.append((weight, u, v))edges.sort() # 按权重排序vertices = set(u for u in graph for v in graph[u])disjoint_set = DisjointSet(vertices)mst = []for weight, u, v in edges:if disjoint_set.find(u) != disjoint_set.find(v):disjoint_set.union(u, v)mst.append((u, v, weight))return mst# 图的表示(邻接表)
graph = {'A': {'B': 1, 'C': 3},'B': {'A': 1, 'C': 1, 'D': 6},'C': {'A': 3, 'B': 1, 'D': 2},'D': {'B': 6, 'C': 2}
}print("Kruskal's MST:", kruskal(graph))
6)Floyd-Warshall算法
def floyd_warshall(graph):# 初始化距离矩阵,使用无穷大表示不可达的顶点对num_vertices = len(graph)dist = [[float('inf')] * num_vertices for _ in range(num_vertices)]# 设置顶点到自身的距离为0for i in range(num_vertices):dist[i][i] = 0# 设置图的边权重for u in range(num_vertices):for v, weight in graph[u].items():v = list(graph.keys()).index(v) # 将顶点转换为索引dist[u][v] = weight# Floyd-Warshall算法核心for k in range(num_vertices):for i in range(num_vertices):for j in range(num_vertices):if dist[i][k] != float('inf') and dist[k][j] != float('inf') and dist[i][k] + dist[k][j] < dist[i][j]:dist[i][j] = dist[i][k] + dist[k][j]# 输出结果for u in range(num_vertices):for v in range(num_vertices):if dist[u][v] == float('inf'):print(f"从顶点 {u} 到顶点 {v} 不可达", end='\t')else:print(f"从顶点 {u} 到顶点 {v} 的最短距离是 {dist[u][v]}", end='\t')print()# 图的表示(邻接表转换为索引表示)
# 注意:这里为了简化,我们假设顶点已经按字母顺序排列,并可以直接用字母的ASCII码减去'A'的ASCII码来作为索引
# 在实际应用中,你可能需要一个映射来将顶点名称转换为索引
graph = [{'B': 1, 'C': 3},{'A': 1, 'C': 1, 'D': 6},{'A': 3, 'B': 1, 'D': 2},{'B': 6, 'C': 2}
]# 由于Floyd-Warshall算法需要顶点索引,而上面的graph表示是基于顶点名称的邻接表,
# 在这里我们直接按字母顺序和数量假设了顶点索引,并跳过了转换步骤。
# 在实际应用中,请确保图的表示与算法输入要求相匹配。# 调用Floyd-Warshall算法
floyd_warshall(graph)
总结
提示:这里对文章进行总结:
例如:以上就是今天要讲的内容,本文简单介绍六种常见的图论算法。
相关文章:
【第九天】零基础入门刷题Python-算法篇-数据结构与算法的介绍-六种常见的图论算法(持续更新)
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、Python数据结构与算法的详细介绍1.Python中的常用的图论算法2. 图论算法3.详细的图论算法1)深度优先搜索(DFS)2…...
落地 轮廓匹配
个人理解为将一幅不规则的图形,通过最轮廓发现,最大轮廓匹配来确定图像的位置,再通过pt将不规则的图像放在规定的矩形里面,在通过透视变换将不规则的图形放进规则的图像中。 1. findHomography 函数 • Mat h findHomography(s…...
【漫话机器学习系列】064.梯度下降小口诀(Gradient Descent rule of thume)
梯度下降小口诀 为了帮助记忆梯度下降的核心原理和关键注意事项,可以用以下简单口诀来总结: 1. 基本原理 损失递减,梯度为引:目标是让损失函数减少,依靠梯度指引方向。负梯度,反向最短:沿着负…...
JAVA(SpringBoot)集成Kafka实现消息发送和接收。
SpringBoot集成Kafka实现消息发送和接收。 一、Kafka 简介二、Kafka 功能三、POM依赖四、配置文件五、生产者六、消费者 君子之学贵一,一则明,明则有功。 一、Kafka 简介 Kafka 是由 Apache 软件基金会开发的一个开源流处理平台,最初由 Link…...
AI刷题-蛋糕工厂产能规划、优质章节的连续选择
挑两个简单的写写 目录 一、蛋糕工厂产能规划 问题描述 输入格式 输出格式 解题思路: 问题理解 数据结构选择 算法步骤 关键点 最终代码: 运行结果:编辑 二、优质章节的连续选择 问题描述 输入格式 输出格式 解题思路&a…...
在线可编辑Excel
1. Handsontable 特点: 提供了类似 Excel 的表格编辑体验,包括单元格样式、公式计算、数据验证等功能。 支持多种插件,如筛选、排序、合并单元格等。 轻量级且易于集成到现有项目中。 具备强大的自定义能力,可以调整外观和行为…...
什么是词嵌入?Word2Vec、GloVe 与 FastText 的区别
自然语言处理(NLP)领域的核心问题之一,是如何将人类的语言转换成计算机可以理解的数值形式,而词嵌入(Word Embedding)正是为了解决这个问题的重要技术。本文将详细讲解词嵌入的概念及其经典模型(Word2Vec、GloVe 和 FastText)的原理与区别。 1. 什么是词嵌入(Word Em…...
WPS数据分析000010
基于数据透视表的内容 一、排序 手动调动 二、筛选 三、值显示方式 四、值汇总依据 五、布局和选项 不显示分类汇总 合并居中带标签的单元格 空单元格显示 六、显示报表筛选页...
Qt中QVariant的使用
1.使用QVariant实现不同类型数据的相加 方法:通过type函数返回数值的类型,然后通过setValue来构造一个QVariant类型的返回值。 函数: QVariant mainPage::dataPlus(QVariant a, QVariant b) {QVariant ret;if ((a.type() QVariant::Int) &a…...
Avalonia UI MVVM DataTemplate里绑定Command
Avalonia 模板里面绑定ViewModel跟WPF写法有些不同。需要单独绑定Command. WPF里面可以直接按照下面的方法绑定DataContext. <Button Content"Button" Command"{Binding DataContext.ClickCommand, RelativeSource{RelativeSource AncestorType{x:Type User…...
动态规划DP 数字三角型模型 最低通行费用(题目详解+C++代码完整实现)
最低通行费用 原题链接 AcWing 1018. 最低同行费用 题目描述 一个商人穿过一个 NN的正方形的网格,去参加一个非常重要的商务活动。 他要从网格的左上角进,右下角出。每穿越中间 1个小方格,都要花费 1个单位时间。商人必须在 (2N−1)个单位…...
deepseek R1的确不错,特别是深度思考模式
deepseek R1的确不错,特别是深度思考模式,每次都能自我反省改进。比如我让 它写文案: 【赛博朋克版程序员新春密码——2025我们来破局】 亲爱的代码骑士们: 当CtrlS的肌肉记忆遇上抢票插件,当Spring Boot的…...
Linux 常用命令 - sort 【对文件内容进行排序】
简介 sort 命令源于英文单词 “sort”,表示排序。其主要功能是对文本文件中的行进行排序。它可以根据字母、数字、特定字段等不同的标准进行排序。sort 通过逐行读取文件(没有指定文件或指定文件为 - 时读取标准输入)内容,并按照…...
MyBatis最佳实践:提升数据库交互效率的秘密武器
第一章:框架的概述: MyBatis 框架的概述: MyBatis 是一个优秀的基于 Java 的持久框架,内部对 JDBC 做了封装,使开发者只需要关注 SQL 语句,而不关注 JDBC 的代码,使开发变得更加的简单MyBatis 通…...
选择困难?直接生成pynput快捷键字符串
from pynput import keyboard# 文档:https://pynput.readthedocs.io/en/latest/keyboard.html#monitoring-the-keyboard # 博客(pynput相关源码):https://blog.csdn.net/qq_39124701/article/details/145230331 # 虚拟键码(十六进制):https:/…...
DeepSeek-R1:强化学习驱动的推理模型
1月20日晚,DeepSeek正式发布了全新的推理模型DeepSeek-R1,引起了人工智能领域的广泛关注。该模型在数学、代码生成等高复杂度任务上表现出色,性能对标OpenAI的o1正式版。同时,DeepSeek宣布将DeepSeek-R1以及相关技术报告全面开源。…...
国内优秀的FPGA设计公司主要分布在哪些城市?
近年来,国内FPGA行业发展迅速,随着5G通信、人工智能、大数据等新兴技术的崛起,FPGA设计企业的需求也迎来了爆发式增长。很多技术人才在求职时都会考虑城市的行业分布和发展潜力。因此,国内优秀的FPGA设计公司主要分布在哪些城市&a…...
3.日常英语笔记
screening discrepancies 筛选差异 The team found some screening discrepancies in the data. 团队在数据筛选中发现了些差异。 Don’t tug at it ,or it will fall over and crush you. tug 拉,拽,拖 He tugged the door open with all his might…...
基于RIP的MGRE实验
实验拓扑 实验要求 按照图示配置IP地址配置静态路由协议,搞通公网配置MGRE VPNNHRP的配置配置RIP路由协议来传递两端私网路由测试全网通 实验配置 1、配置IP地址 [R1]int g0/0/0 [R1-GigabitEthernet0/0/0]ip add 15.0.0.1 24 [R1]int LoopBack 0 [R1-LoopBack0]i…...
【开源免费】基于Vue和SpringBoot的美食推荐商城(附论文)
本文项目编号 T 166 ,文末自助获取源码 \color{red}{T166,文末自助获取源码} T166,文末自助获取源码 目录 一、系统介绍二、数据库设计三、配套教程3.1 启动教程3.2 讲解视频3.3 二次开发教程 四、功能截图五、文案资料5.1 选题背景5.2 国内…...
SpringBoot-17-MyBatis动态SQL标签之常用标签
文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...
RestClient
什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端,它允许HTTP与Elasticsearch 集群通信,而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级ÿ…...
龙虎榜——20250610
上证指数放量收阴线,个股多数下跌,盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型,指数短线有调整的需求,大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的:御银股份、雄帝科技 驱动…...
基于FPGA的PID算法学习———实现PID比例控制算法
基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容:参考网站: PID算法控制 PID即:Proportional(比例)、Integral(积分&…...
逻辑回归:给不确定性划界的分类大师
想象你是一名医生。面对患者的检查报告(肿瘤大小、血液指标),你需要做出一个**决定性判断**:恶性还是良性?这种“非黑即白”的抉择,正是**逻辑回归(Logistic Regression)** 的战场&a…...
Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)
文章目录 1.什么是Redis?2.为什么要使用redis作为mysql的缓存?3.什么是缓存雪崩、缓存穿透、缓存击穿?3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...
【配置 YOLOX 用于按目录分类的图片数据集】
现在的图标点选越来越多,如何一步解决,采用 YOLOX 目标检测模式则可以轻松解决 要在 YOLOX 中使用按目录分类的图片数据集(每个目录代表一个类别,目录下是该类别的所有图片),你需要进行以下配置步骤&#x…...
Matlab | matlab常用命令总结
常用命令 一、 基础操作与环境二、 矩阵与数组操作(核心)三、 绘图与可视化四、 编程与控制流五、 符号计算 (Symbolic Math Toolbox)六、 文件与数据 I/O七、 常用函数类别重要提示这是一份 MATLAB 常用命令和功能的总结,涵盖了基础操作、矩阵运算、绘图、编程和文件处理等…...
rnn判断string中第一次出现a的下标
# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...
Go 并发编程基础:通道(Channel)的使用
在 Go 中,Channel 是 Goroutine 之间通信的核心机制。它提供了一个线程安全的通信方式,用于在多个 Goroutine 之间传递数据,从而实现高效的并发编程。 本章将介绍 Channel 的基本概念、用法、缓冲、关闭机制以及 select 的使用。 一、Channel…...
