利用机器学习创建基于位置的推荐程序
推荐系统被广泛应用于不同的应用程序中,用于预测用户对产品或服务的偏好或评价。在过去的几分钟或几小时里,你很可能在网上遇到过或与某种类型的推荐系统进行过互动。这些推荐系统有不同的类型,其中最突出的包括基于内容的过滤和协作过滤。在本文中,我们将研究基于地理位置的推荐,我们特别关注地理位置,以便利用用户的地理位置提供更相关的推荐。
为了说明基于位置的推荐器的关键方面,我们将使用 K-Means 算法和来自 Kaggle 的 Yelp 数据集执行一个简单的基于位置的推荐。数据是 JSON 文件,可以用 pandas 轻松读取。
下表显示了数据集的前 5 行。表中提供了企业坐标、评级星级和每家企业的评论数量。

探索性数据分析(EDA)与预处理
在本节中,我们将探索并预处理数据集。该数据集包含来自 yelp 用户的评论,并包含许多类别。为了简化我们的分析和对推荐模型的解释,我们将把重点放在餐馆上,您也可以选择您感兴趣的其他类别。
我们首先通过过滤所有包含 "餐馆 "一词的业务来创建一个餐馆数据帧。然后,我们绘制出餐厅星级从 1 星到 5 星的分布图。从图中可以清楚地看出,大多数餐厅的星级为 4.0 或 3.5 星,只有少数餐厅的星级为 5.0 星。

我们还可以根据评论数和星级创建一个排序数据框架,并将数据集中排名前 20 位的餐厅可视化。
这里不仅要根据星级对餐厅进行排序,还要根据餐厅的评论数量进行排序。以下是数据集中所有排名前 20 的餐厅的分布图。
最后,在进入 K-Means 聚类和基于位置的推荐之前,让我们也探索一下这些餐厅的位置,并将其可视化为一张地图。我们将使用 Plotly Express 库,该库提供了一种灵活简便的方法,可以用漂亮的底图绘制地理数据。
为了定制我们的推荐系统,我们将只关注内华达州的拉斯维加斯,因为该数据集中的餐厅数量最多。
我们为拉斯维加斯的所有餐馆绘制了放大地图。下面是拉斯维加斯所有餐厅的地图。地图的颜色基于餐厅的星级数量,而大小则表示该餐厅的评论数量。如您所见,评价较高的餐厅都集中在市中心。
K-Means 聚类
在执行 K-Means 聚类算法之前,我们首先要确定数据集的最佳聚类数量。在这里,我们使用了一种名为 Elbow 方法的技术。
弯头法可以帮助我们确定合适的聚类数量。这并不能给出准确的聚类数量,但有可能帮助我们选择聚类的数量。从下图可以看出,它有多个弯头。
在肘法的帮助下,我们选择了 5 个聚类,并对坐标执行 K-Means 聚类算法。我们还在 lasVegas 数据帧中填充了一列新内容。
最后,我们绘制了 K-Means 算法的聚类散点图。该图清晰地显示了算法的输出结果,有 5 个聚类。

基于位置的推荐
在本节中,我们将把 K 均值聚类和餐厅评级结合起来,根据用户的位置推荐餐厅。首先,让我们创建一个数据帧,根据评论数和星级对拉斯维加斯的餐厅进行排序。我们将其称为 DataFrametop_restaurants_lasVegas。
我们准备创建一个根据用户位置推荐餐厅的函数。我们创建一个根据用户位置推荐餐厅的函数。
在这里,我们的函数将接收经纬度和数据帧。函数首先会预测坐标属于哪个集群,然后进一步将数据帧限制在该集群中,并返回该集群中排名前 5 的餐馆。
这个函数很简单,只接受坐标,但我们可以进一步开发,接受其他输入,如地址或邮编。这需要一些地理编码应用程序,所以现在只需说明基于位置的推荐功能就足够了。在使用推荐函数之前,让我们先创建一个测试数据帧。
现在,我们可以将数据帧中的任何用户作为输入,使用我们的推荐函数来测试我们基于位置的简单推荐的功能。请记住,这些测试数据只是为了方便,推荐函数可以直接接受任何给定的坐标。
对于第一个用户,K-Means 算法会预测聚类,并找出该聚类中排名前 5 的餐厅并进行推荐。红点为用户所在位置,蓝点为推荐餐厅。
让我们再举一个例子,本例中的用户 3。我们的 "recommend_restaurant "函数会再次预测该用户所属的群组,并从中选出该群组中排名前 5 的餐厅。
结论
在本教程中,我们使用 Yelp 数据集演示了基于位置的 python 推荐。我们使用餐馆来展示基于位置的推荐应用。我们的推荐系统使用基于餐厅坐标的 K-Means 聚类,并且只考虑餐厅的评级(评级数和星级)来推荐餐厅。我们还可以考虑餐厅的类型来定制推荐。这一点还可以进一步发展,纳入其他输入方法,如地址或邮政编码。最后,虽然 K-means 聚类限制了推荐餐厅的范围,但我们的推荐并没有明确考虑用户与推荐餐厅之间的距离。
相关文章:
利用机器学习创建基于位置的推荐程序
推荐系统被广泛应用于不同的应用程序中,用于预测用户对产品或服务的偏好或评价。在过去的几分钟或几小时里,你很可能在网上遇到过或与某种类型的推荐系统进行过互动。这些推荐系统有不同的类型,其中最突出的包括基于内容的过滤和协作过滤。在…...
每日一题 429. N 叉树的层序遍历
429. N 叉树的层序遍历 /*class Solution { public:vector<vector<int>> levelOrder(Node* root) {queue<Node*> que;que.push(root);vector<vector<int>> ans;if(root nullptr){return ans;}while(!que.empty()){int sizeQue que.size();vec…...
AIP-132 标准方法:List
编号132原文链接AIP-132: Standard methods: List状态批准创建日期2019-01-21更新日期2022-06-02 在许多API中,通常会向集合URI(例如 /v1/publishers/1/books )发出GET请求,获取集合中资源的列表。 面向资源设计(AIP…...
CSAPP学习:前言
前言 本书简称CS:APP。 背景知识 一些基础的C语言知识 如何阅读 Do-做系统 在真正的系统上解决具体的问题,或是编写和运行程序。 章节 2025-1-27 个人认为如下章节将会对学习408中的操作系统与计算机组成原理提供帮助,于是先凭借记忆将其简单…...
【统计的思想】假设检验(二)
假设检验是根据人为设定的显著水平,对被测对象的总体质量特性进行统计推断的方法。 如果我们通过假设检验否定了零假设,只是说明在设定的显著水平下,零假设成立的概率比较小,并不是说零假设就肯定不成立。如果零假设事实上是成立…...
KNN算法学习实践
1.理论学习 原文链接 ShowMeAI知识社区 2.案例实践 假如一套房子打算出租,但不知道市场价格,可以根据房子的规格(面积、房间数量、厕所数量、容纳人数等),在已有数据集中查找相似(K近邻)规格…...
数据可视化的图表
1.折线图反映了一段时间内事物连续的动态变化规律,适用于描述一个变量随另一个变量变化的趋势,通常用于绘制连续数据,适合数据点较多的情况。 2.散点图是以直角坐标系中各点的密集程度和变化趋势来表示两种现象间的相关关系,常用于显示和比较数值。当要在不考虑时间…...
动手学深度学习-卷积神经网络-3填充和步幅
目录 填充 步幅 小结 在上一节的例子(下图) 中,输入的高度和宽度都为3,卷积核的高度和宽度都为2,生成的输出表征的维数为22。 正如我们在 上一节中所概括的那样,假设输入形状为nhnw,卷积核形…...
【JS|第28期】new Event():前端事件处理的利器
日期:2025年1月24日 作者:Commas 签名:(ง •_•)ง 积跬步以致千里,积小流以成江海…… 注释:如果您觉得有所帮助,帮忙点个赞,也可以关注我,我们一起成长;如果有不对的地方…...
Spring Boot 中的事件发布与监听:深入理解 ApplicationEventPublisher(附Demo)
目录 前言1. 基本知识2. Demo3. 实战代码 前言 🤟 找工作,来万码优才:👉 #小程序://万码优才/r6rqmzDaXpYkJZF 基本的Java知识推荐阅读: java框架 零基础从入门到精通的学习路线 附开源项目面经等(超全&am…...
【Spring】Spring启示录
目录 前言 一、示例程序 二、OCP开闭原则 三、依赖倒置原则DIP 四、控制反转IOC 总结 前言 在软件开发的世界里,随着项目的增长和需求的变化,如何保持代码的灵活性、可维护性和扩展性成为了每个开发者必须面对的问题。传统的面向过程或基于类的设计…...
ospf动态路由配置,cost路径调整,ospf认证实验
一、实验拓扑如图: 接口ip配置网络 :10.17.12.* 10.17.13.* ,10.17.23.* 回环接口配置分别为 10.0.1.1 ,10.0.1.2,10.0.1.3对应三台路由器 ar1配置接口ip interface GigabitEthernet0/0/0 ip address 10.17.12.1…...
在Rust应用中访问.ini格式的配置文件
在Rust应用中访问.ini格式的配置文件,你可以使用第三方库,比如 ini 或 config. 下面是一个使用 ini 库的示例,该库允许你读取和解析.ini文件。 使用 ini 库 添加依赖 首先,你需要在你的 Cargo.toml 文件中添加 ini 库的依赖&am…...
批量处理多个模型的预测任务
#!/bin/bash# 检查是否传入必要的参数,若未传入参数则打印用法并退出 if [ "$#" -lt 1 ]; thenecho "用法: $0 <file_path>"echo "示例: $0 /home/aistudio/work/PaddleSeg/city/cityscapes_urls_extracted.txt"exit 1 fi# 读取…...
Java 编程初体验
Java学习资料 Java学习资料 Java学习资料 一、引言 在当今数字化的时代,编程已然成为一项极具价值的技能。而 Java 作为一门广泛应用于企业级开发、移动应用、大数据等众多领域的编程语言,吸引着无数初学者投身其中。当我们初次踏入 Java 编程的世界&…...
element-plus 的table section如何实现单选
如果是单选那么全新的按钮应该隐藏或者不可编辑的状态。但是我没找到改变成不可编辑的方法,只能采取隐藏 <template><!-- 注意要包一层div根元素,否则css样式可能会不生效,原因不详 --><div><el-table ref"proTab…...
【JavaEE进阶】图书管理系统 - 壹
目录 🌲序言 🌴前端代码的引入 🎋约定前后端交互接口 🚩接口定义 🍃后端服务器代码实现 🚩登录接口 🚩图书列表接口 🎄前端代码实现 🚩登录页面 🚩…...
牛客周赛 Round 77 题解
文章目录 A-时间表B-数独数组D-隐匿社交网络E-1or0 A-时间表 签到题 #include <bits/stdc.h> using namespace std;int main() {int a[6] {20250121,20250123,20250126,20250206,20250208,20250211};int n; cin >> n;cout << a[n - 1];return 0; }B-数独数…...
Mybatis配置文件详解
MyBatis通过XML或注解的方式将Java对象与数据库中的记录进行映射,极大地简化了数据访问层的开发。而在MyBatis的核心组成部分中,配置文件扮演着举足轻重的角色。它不仅定义了MyBatis的运行环境,还配置了数据源、事务管理、映射器等关键元素&a…...
《深度揭秘:TPU张量计算架构如何重塑深度学习运算》
在深度学习领域,计算性能始终是推动技术发展的关键因素。从传统CPU到GPU,再到如今大放异彩的TPU(张量处理单元),每一次硬件架构的革新都为深度学习带来了质的飞跃。今天,就让我们深入探讨TPU的张量计算架构…...
DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI
前一阵子在百度 AI 开发者大会上,看到基于小智 AI DIY 玩具的演示,感觉有点意思,想着自己也来试试。 如果只是想烧录现成的固件,乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外,还提供了基于网页版的 ESP LA…...
Android15默认授权浮窗权限
我们经常有那种需求,客户需要定制的apk集成在ROM中,并且默认授予其【显示在其他应用的上层】权限,也就是我们常说的浮窗权限,那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...
用docker来安装部署freeswitch记录
今天刚才测试一个callcenter的项目,所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...
什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南
文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能,和卷帘图层不一样的是,分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...
IP如何挑?2025年海外专线IP如何购买?
你花了时间和预算买了IP,结果IP质量不佳,项目效率低下不说,还可能带来莫名的网络问题,是不是太闹心了?尤其是在面对海外专线IP时,到底怎么才能买到适合自己的呢?所以,挑IP绝对是个技…...
力扣热题100 k个一组反转链表题解
题目: 代码: func reverseKGroup(head *ListNode, k int) *ListNode {cur : headfor i : 0; i < k; i {if cur nil {return head}cur cur.Next}newHead : reverse(head, cur)head.Next reverseKGroup(cur, k)return newHead }func reverse(start, end *ListNode) *ListN…...
4. TypeScript 类型推断与类型组合
一、类型推断 (一) 什么是类型推断 TypeScript 的类型推断会根据变量、函数返回值、对象和数组的赋值和使用方式,自动确定它们的类型。 这一特性减少了显式类型注解的需要,在保持类型安全的同时简化了代码。通过分析上下文和初始值,TypeSc…...
wpf在image控件上快速显示内存图像
wpf在image控件上快速显示内存图像https://www.cnblogs.com/haodafeng/p/10431387.html 如果你在寻找能够快速在image控件刷新大图像(比如分辨率3000*3000的图像)的办法,尤其是想把内存中的裸数据(只有图像的数据,不包…...
协议转换利器,profinet转ethercat网关的两大派系,各有千秋
随着工业以太网的发展,其高效、便捷、协议开放、易于冗余等诸多优点,被越来越多的工业现场所采用。西门子SIMATIC S7-1200/1500系列PLC集成有Profinet接口,具有实时性、开放性,使用TCP/IP和IT标准,符合基于工业以太网的…...
