当前位置: 首页 > news >正文

【llm对话系统】大模型 Llama 源码分析之 LoRA 微调

1. 引言

微调 (Fine-tuning) 是将预训练大模型 (LLM) 应用于下游任务的常用方法。然而,直接微调大模型的所有参数通常需要大量的计算资源和内存。LoRA (Low-Rank Adaptation) 是一种高效的微调方法,它通过引入少量可训练参数,固定预训练模型的权重,从而在保持性能的同时大大减少了计算开销。

本文将深入分析 LoRA 的原理,并结合 Llama 源码解读其实现逻辑,最后探讨 LoRA 的优势。

2. LoRA 原理

LoRA 的核心思想是:预训练模型中已经包含了大量的低秩 (low-rank) 特征,微调时只需要对这些低秩特征进行微调即可。

具体来说,LoRA 假设权重更新矩阵 ΔW 也是低秩的。对于一个预训练的权重矩阵 W ∈ R^(d×k),LoRA 将其更新表示为:

W' = W + ΔW = W + BA

其中:

  • W 是预训练的权重矩阵。
  • ΔW 是权重更新矩阵。
  • B ∈ R^(d×r)A ∈ R^(r×k) 是两个低秩矩阵,r 远小于 dkr 被称为 LoRA 的秩 (rank)。

在训练过程中,W 被冻结,只有 AB 是可训练的。

直观理解:

可以将 W 看作一个编码器,将输入 x 编码成一个高维表示 Wx。LoRA 认为,在微调过程中,我们不需要完全改变这个编码器,只需要通过 BA 对其进行一个低秩的调整即可。

3. Llama 中 LoRA 的实现

虽然 Llama 官方代码没有直接集成 LoRA,但我们可以使用一些流行的库 (例如 peft by Hugging Face) 来实现 Llama 的 LoRA 微调。peft 库提供了 LoraConfigget_peft_model 等工具,可以方便地将 LoRA 应用于各种 Transformer 模型。

3.1 使用 peft 库实现 Llama 的 LoRA 微调

以下是一个使用 peft 库实现 Llama 的 LoRA 微调的简化示例:

from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import get_peft_model, LoraConfig, TaskType# 加载预训练的 Llama 模型和分词器
model_name = "meta-llama/Llama-2-7b-hf"  # 假设使用 Llama 2 7B
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)# LoRA 配置
config = LoraConfig(task_type=TaskType.CAUSAL_LM,inference_mode=False,r=8,  # LoRA 的秩lora_alpha=32,  # LoRA 的缩放因子lora_dropout=0.1,  # Dropout 比例target_modules=["q_proj", "v_proj"], # 需要应用 LoRA 的模块
)# 获取支持 LoRA 的模型
model = get_peft_model(model, config)# 打印可训练参数的比例
model.print_trainable_parameters()# ... (加载数据,进行训练) ...

代码解释:

  1. 加载预训练模型:使用 transformers 库加载预训练的 Llama 模型和分词器。
  2. LoRA 配置:创建一个 LoraConfig 对象,指定 LoRA 的配置参数:
    • task_type:任务类型,这里是因果语言模型 (Causal Language Modeling)。
    • r:LoRA 的秩。
    • lora_alpha:LoRA 的缩放因子,用于控制 LoRA 模块的权重。
    • lora_dropout:Dropout 比例。
    • target_modules: 指定需要应用 LoRA 的模块, 通常是注意力层中的 q_proj, v_proj, 还可以是k_proj, o_proj, gate_proj, up_proj, down_proj等。不同的模型需要根据实际情况配置。
  3. 获取支持 LoRA 的模型:使用 get_peft_model 函数将原始的 Llama 模型转换为支持 LoRA 的模型。
  4. 打印可训练参数:使用 model.print_trainable_parameters() 可以查看模型中可训练参数的比例,通常 LoRA 的可训练参数比例非常小。

3.2 peft 库中 LoRA 的实现细节 (部分)

peft 库中 LoraModel 类的部分代码 (为了清晰起见,已进行简化):

class LoraModel(torch.nn.Module):# ...def _find_and_replace(self, model):# ... (遍历模型的每一层) ...if isinstance(module, nn.Linear) and name in self.config.target_modules:new_module = Linear(module.in_features,module.out_features,bias=module.bias is not None,r=self.config.r,lora_alpha=self.config.lora_alpha,lora_dropout=self.config.lora_dropout,)# ... (将原模块的权重赋值给新模块) ...# ...class Linear(nn.Linear):def __init__(self,in_features: int,out_features: int,r: int = 0,lora_alpha: int = 1,lora_dropout: float = 0.0,**kwargs,):super().__init__(in_features, out_features, **kwargs)# LoRA 参数self.r = rself.lora_alpha = lora_alpha# 初始化 A 和 Bif r > 0:self.lora_A = nn.Parameter(torch.randn(r, in_features))self.lora_B = nn.Parameter(torch.zeros(out_features, r)) # B 初始化为全 0self.scaling = self.lora_alpha / self.rdef forward(self, x: torch.Tensor):result = F.linear(x, self.weight, bias=self.bias) # W @ xif self.r > 0:result += (self.lora_B @ self.lora_A @ x.transpose(-2, -1) # (B @ A) @ x).transpose(-2, -1) * self.scalingreturn result

代码解释:

  1. _find_and_replace 函数:遍历模型的每一层,找到需要应用 LoRA 的线性层 (例如,q_proj, v_proj),并将其替换为 Linear 层。
  2. Linear 类:继承自 nn.Linear,并添加了 LoRA 的参数 lora_Alora_B
    • lora_A 初始化为随机值。
    • lora_B 初始化为全 0,这是为了保证在训练开始时,LoRA 部分的输出为 0,不影响预训练模型的原始行为。
    • scaling 是一个缩放因子,用于控制 LoRA 模块的权重。
  3. forward 函数:
    • F.linear(x, self.weight, bias=self.bias) 计算原始的线性变换 W @ x
    • (self.lora_B @ self.lora_A @ x.transpose(-2, -1)).transpose(-2, -1) * self.scaling 计算 LoRA 部分的输出 (B @ A) @ x,并乘以缩放因子。
    • 将两者相加,得到最终的输出。

4. LoRA 的优势

  • 高效的参数利用:LoRA 只需微调少量的参数 (A 和 B),而冻结了预训练模型的大部分参数,大大减少了训练时的内存占用和计算开销。
  • 快速的训练速度:由于可训练参数较少,LoRA 的训练速度通常比全量微调快得多。
  • 防止过拟合:LoRA 的低秩约束起到了一定的正则化作用,有助于防止过拟合。
  • 性能相当:在许多任务上,LoRA 可以达到与全量微调相当的性能。
  • 易于部署:训练完成后,可以将 WBA 相加,得到新的权重矩阵 W',然后像使用原始的预训练模型一样进行部署,无需额外的计算开销。

相关文章:

【llm对话系统】大模型 Llama 源码分析之 LoRA 微调

1. 引言 微调 (Fine-tuning) 是将预训练大模型 (LLM) 应用于下游任务的常用方法。然而,直接微调大模型的所有参数通常需要大量的计算资源和内存。LoRA (Low-Rank Adaptation) 是一种高效的微调方法,它通过引入少量可训练参数,固定预训练模型…...

算法随笔_35: 每日温度

上一篇:算法随笔_34: 最后一个单词的长度-CSDN博客 题目描述如下: 给定一个整数数组 temperatures ,表示每天的温度,返回一个数组 answer ,其中 answer[i] 是指对于第 i 天,下一个更高温度出现在几天后。如果气温在这之后都不会升…...

嵌入式硬件篇---CPUGPUTPU

文章目录 第一部分:处理器CPU(中央处理器)1.通用性2.核心数3.缓存4.指令集5.功耗和发热 GPU(图形处理器)1.并行处理2.核心数量3.内存带宽4.专门的应用 TPU(张量处理单元)1.为深度学习定制2.低精…...

STM32 PWM驱动舵机

接线图: 这里将信号线连接到了开发板的PA1上 代码配置: 这里的PWM配置与呼吸灯一样,呼吸灯连接的是PA0引脚,输出比较单元用的是OC1通道,这里只需改为OC2通道即可。 完整代码: #include "servo.h&quo…...

设计心得——平衡和冗余

一、平衡 在前面分析了一些软件设计的基础和原则后,今天分析一下整体设计上的一些实践问题。首先分析一下设计上的平衡问题。平衡非常好理解,看到过天平或者标称的同学们应该都知道什么平衡。无论在哪个环境里,平衡都是稳定的基础。 既然说到…...

webrtc协议详细解释

### 一、概述与背景 WebRTC(Web Real-Time Communication)最早由 Google 在 2011 年开源,旨在为浏览器与移动端应用提供客户端直连(点对点)方式进行实时音视频及数据传输的能力。传统的网络应用在进行高实时性音视频通…...

动手学强化学习(四)——蒙特卡洛方法

一、蒙特卡洛方法 蒙特卡洛方法是一种无模型(Model-Free)的强化学习算法,它通过直接与环境交互采样轨迹(episodes)来估计状态或动作的价值函数(Value Function),而不需要依赖环境动态…...

网络原理(3)—— 传输层详解

目录 一. 再谈端口号 二. UDP协议(用户数据报协议) 2.1 UDP协议端格式 2.2 UDP报文长度 2.3 UDP校验和 三. TCP协议(传输控制协议) 3.1 TCP协议段格式 3.2 核心机制 3.2.1 确认应答 —— “感知对方是否收到” 3.2.2 超时重传 3.3.3 连接管理 —— 三次握手与四…...

2025美赛美国大学生数学建模竞赛A题完整思路分析论文(43页)(含模型、可运行代码和运行结果)

2025美国大学生数学建模竞赛A题完整思路分析论文 目录 摘要 一、问题重述 二、 问题分析 三、模型假设 四、 模型建立与求解 4.1问题1 4.1.1问题1思路分析 4.1.2问题1模型建立 4.1.3问题1样例代码(仅供参考) 4.1.4问题1样例代码运行结果&…...

Elasticsearch的开发工具(Dev Tools)

目录 说明1. **Console**2. **Search Profiler**3. **Grok Debugger**4. **Painless Lab**总结 说明 Elasticsearch的开发工具(Dev Tools)在Kibana中提供了多种功能强大的工具,用于调试、优化和测试Elasticsearch查询和脚本。以下是关于Cons…...

Python-基于PyQt5,pdf2docx,pathlib的PDF转Word工具

前言:日常生活中,我们常常会跟WPS Office打交道。作表格,写报告,写PPT......可以说,我们的生活已经离不开WPS Office了。与此同时,我们在这个过程中也会遇到各种各样的技术阻碍,例如部分软件的PDF转Word需要收取额外费用等。那么,可不可以自己开发一个小工具来实现PDF转…...

小程序-视图与逻辑

前言 1. 声明式导航 open-type"switchTab"如果没有写这个,因为是tabBar所以写这个,就无法跳转。路径开始也必须为斜线 open-type"navigate"这个可以不写 现在开始实现后退的效果 现在我们就在list页面里面实现后退 2.编程式导航…...

UE5制作视差图

双目深度估计开源数据集很多都是用UE制作的,那么我们自己能否通过UE制作自己想要的场景的数据集呢。最近花了点时间研究了一下,分享给需要的小伙伴。 主要使用的是UnrealCV插件,UnrealCV是一个开源项目,旨在帮助计算机视觉研究人…...

海浪波高预测(背景调研)

#新星杯14天创作挑战营第7期# ps:图片由通义千问生成 历史工作: 针对更高细粒度、更高精度的波浪高度预测任务: Mumtaz Ali 等人提出了一种多元线性回归模型(MLR-CWLS),该模型利用协方差加权最小二乘法&a…...

代码随想录算法训练营第四十二天-动态规划-股票-188.买卖股票的最佳时机IV

题目要求进行k次买卖其实就是上一题的扩展,把2次扩展为k次定义动规数组依然是二维,第一个维度表示第几天,第二个维度表示第几次买入和卖出所以第二个维度的长度应该是2k1在for循环内,要使用一个内循环来表示第几次买入或卖出&…...

Gradle配置指南:深入解析settings.gradle.kts(Kotlin DSL版)

文章目录 Gradle配置指南:深入解析settings.gradle.kts(Kotlin DSL版)settings.gradle.kts 基础配置选项单项目配置多项目配置 高级配置选项插件管理(Plugin Management)基础配置模板案例:Android项目标准配…...

软件工程经济学-日常作业+大作业

目录 一、作业1 作业内容 解答 二、作业2 作业内容 解答 三、作业3 作业内容 解答 四、大作业 作业内容 解答 1.建立层次结构模型 (1)目标层 (2)准则层 (3)方案层 2.构造判断矩阵 (1)准则层判断矩阵 (2)方案层判断矩阵 3.层次单排序及其一致性检验 代码 …...

论文阅读(三):微阵列数据的图形模型和多变量分析

1.论文链接:Graphical Models and Multivariate Analysis of Microarray Data 摘要: 基因表达数据的通常分析忽略了基因表达值之间的相关性。从生物学上讲,这种假设是不合理的。本章介绍的方法允许通过稀疏高斯图形模型来描述基因之间的相关…...

【大模型LLM面试合集】大语言模型架构_MHA_MQA_GQA

MHA_MQA_GQA 1.总结 在 MHA(Multi Head Attention) 中,每个头有自己单独的 key-value 对;标准的多头注意力机制,h个Query、Key 和 Value 矩阵。在 MQA(Multi Query Attention) 中只会有一组 k…...

向上调整算法(详解)c++

算法流程: 与⽗结点的权值作⽐较,如果⽐它⼤,就与⽗亲交换; 交换完之后,重复 1 操作,直到⽐⽗亲⼩,或者换到根节点的位置 这里为什么插入85完后合法? 我们插入一个85,…...

【Transformer】手撕Attention

import torch from torch import nn import torch.functional as F import mathX torch.randn(16,64,512) # B,T,Dd_model 512 # 模型的维度 n_head 8 # 注意力头的数量多头注意力机制 class multi_head_attention(nn.Module): def __init__(self, d_model, n_hea…...

844.比较含退格的字符串

目录 题目思路解法收获 题目 给定 s 和 t 两个字符串,当它们分别被输入到空白的文本编辑器后,如果两者相等,返回 true 。# 代表退格字符。 注意:如果对空文本输入退格字符,文本继续为空。 思路 如何解退格之后left…...

图书管理系统 Axios 源码__编辑图书

目录 功能概述: 代码实现(index.js): 代码解析: 图书管理系统中,删除图书功能是核心操作之一。下是基于 HTML、Bootstrap、JavaScript 和 Axios 实现的删除图书功能的详细介绍。 功能概述: …...

LabVIEW纤维集合体微电流测试仪

LabVIEW开发纤维集合体微电流测试仪。该设备精确测量纤维材料在特定电压下的电流变化,以分析纤维的结构、老化及回潮率等属性,对于纤维材料的科学研究及质量控制具有重要意义。 ​ 项目背景 在纤维材料的研究与应用中,电学性能是评估其性能…...

Commander 一款命令行自定义命令依赖

一、安装 commander 插件 npm install commander 二、基本用法 1. 创建一个简单的命令行程序 创建一个 JavaScript 文件,例如 mycli.js,并添加以下代码: // 引入 commander 模块并获取 program 对象。const { program } require("…...

Day24 洛谷普及2004(内涵前缀和与差分算法)

零基础洛谷刷题记录 Day01 2024.11.18 Day02 2024.11.25 Day03 2024.11.26 Day04 2024.11.28 Day05 2024.11.29 Day06 2024 12.02 Day07 2024.12.03 Day08 2024 12 05 Day09 2024.12.07 Day10 2024.12.09 Day11 2024.12.10 Day12 2024.12.12 Day13 2024.12.16 Day14 2024.12.1…...

遗传算法与深度学习实战(33)——WGAN详解与实现

遗传算法与深度学习实战(33)——WGAN详解与实现 0. 前言1. 训练生成对抗网络的挑战2. GAN 优化问题2.1 梯度消失2.2 模式崩溃 2.3 无法收敛3 Wasserstein GAN3.1 Wasserstein 损失3.2 使用 Wasserstein 损失改进 DCGAN 小结系列链接 0. 前言 原始的生成…...

gitlab云服务器配置

目录 1、关闭防火墙 2、安装gitlab 3、修改配置 4、查看版本 GitLab终端常用命令 5、访问 1、关闭防火墙 firewall-cmd --state 检查防火墙状态 systemctl stop firewalld.service 停止防火墙 2、安装gitlab xftp中导入安装包 [rootgitlab ~]#mkdir -p /service/tool…...

SAP SD学习笔记27 - 请求计划(开票计划)之1 - 定期请求(定期开票)

上两章讲了贩卖契约(框架协议)的概要,以及贩卖契约中最为常用的 基本契约 - 数量契约和金额契约。 SAP SD学习笔记26 - 贩卖契约(框架协议)的概要,基本契约 - 数量契约_sap 框架协议-CSDN博客 SAP SD学习笔记27 - 贩卖契约(框架…...

HTML DOM 修改 HTML 内容

HTML DOM 修改 HTML 内容 引言 HTML DOM(文档对象模型)是浏览器内部用来解析和操作HTML文档的一种机制。通过DOM,我们可以轻松地修改HTML文档的结构、样式和行为。本文将详细介绍如何使用HTML DOM来修改HTML内容,包括元素的增删改查、属性修改以及事件处理等。 1. HTML …...