阿里巴巴国际网站官网入口/提高关键词排名的软文案例
大家好,我是 展菲,目前在上市企业从事人工智能项目研发管理工作,平时热衷于分享各种编程领域的软硬技能知识以及前沿技术,包括iOS、前端、Harmony OS、Java、Python等方向。在移动端开发、鸿蒙开发、物联网、嵌入式、云原生、开源等领域有深厚造诣。
图书作者:《ESP32-C3 物联网工程开发实战》
图书作者:《SwiftUI 入门,进阶与实战》
超级个体:COC上海社区主理人
特约讲师:大学讲师,谷歌亚马逊分享嘉宾
科技博主:极星会首批签约作者
文章目录
- 摘要
- 引言
- K-Means 算法原理
- K-Means 算法的使用步骤
- 使用 K-Means 进行聚类的实现
- 代码示例
- 代码解释
- QA 环节
- 总结
- 未来展望
- 参考资料
摘要
K-Means 是一种广泛应用的聚类算法,用于将数据集分组为 K 个簇。由于其简单易懂和高效的计算性能,K-Means 被广泛应用于各种数据分析任务中。本文将详细讲解 K-Means 的基本算法原理,使用步骤,并通过代码示例展示其在 Python 中的实现,帮助读者更好地理解和应用该算法。
引言
在机器学习领域,聚类是无监督学习中的一种重要方法。K-Means 聚类算法因其简单、高效且易于实现,成为了最受欢迎的聚类算法之一。然而,对于许多初学者而言,K-Means 的工作原理常常难以理解。本文将从基础的概念讲起,逐步带你理解 K-Means 算法,并通过具体的代码示例展示如何在实际项目中使用它进行聚类分析。
K-Means 算法原理
K-Means 算法的核心思想是将数据集分为 K 个簇,每个簇由与簇中心最接近的点组成。算法的步骤如下:
- 初始化:随机选择 K 个数据点作为初始簇中心。
- 分配阶段:将每个数据点分配到距离其最近的簇中心。
- 更新阶段:计算每个簇的新的簇中心(即簇内所有点的平均值)。
- 重复:重复步骤 2 和 3,直到簇中心不再变化或达到指定的迭代次数。
K-Means 算法的使用步骤
- 选择 K 值:首先确定簇的数量 K。可以通过领域知识、经验、肘部法则(Elbow Method)等方法来选择最优的 K 值。
- 数据标准化:确保数据的每个特征具有相同的尺度。标准化可以通过减去均值、除以标准差等方法完成。
- 运行 K-Means 算法:使用算法实现将数据聚类为 K 个簇。
- 结果评估:使用聚类的内部度量(如 SSE 或 Silhouette Score)来评估聚类效果。
使用 K-Means 进行聚类的实现
以下是一个简单的 K-Means 聚类算法实现,使用了 Python 的 sklearn
库。
代码示例
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.datasets import make_blobs
from sklearn.preprocessing import StandardScaler# 生成一个示例数据集
X, y = make_blobs(n_samples=300, centers=4, cluster_std=1.0, random_state=42)# 数据标准化
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)# 使用 KMeans 聚类
kmeans = KMeans(n_clusters=4, random_state=42)
kmeans.fit(X_scaled)# 获取聚类的标签
y_kmeans = kmeans.predict(X_scaled)# 可视化聚类结果
plt.scatter(X_scaled[:, 0], X_scaled[:, 1], c=y_kmeans, s=50, cmap='viridis')# 绘制簇的中心
centers = kmeans.cluster_centers_
plt.scatter(centers[:, 0], centers[:, 1], c='red', s=200, alpha=0.5, marker='X')
plt.title("K-Means 聚类结果")
plt.xlabel("特征 1")
plt.ylabel("特征 2")
plt.show()
代码解释
- 数据生成:使用
make_blobs
函数生成一个有 4 个簇的数据集,适合用来演示 K-Means 聚类。 - 标准化:使用
StandardScaler
对数据进行标准化处理,确保每个特征在相同的尺度上,避免某些特征的影响过大。 - KMeans 聚类:使用
KMeans
类初始化模型,指定簇的数量为 4,并将数据拟合到模型中。 - 可视化结果:使用
matplotlib
绘制聚类结果,并显示簇的中心。
QA 环节
Q1: 如何选择 K 的值?
A1: 常用的方法有肘部法则(Elbow Method)和轮廓系数(Silhouette Score)。肘部法则通过绘制不同 K 值的误差平方和(SSE)图,选择 “肘部” 处的 K 值。轮廓系数则衡量聚类的紧密性和分离度,值越高越好。
Q2: K-Means 聚类的局限性有哪些?
A2: K-Means 对初始簇中心选择敏感,容易受到噪声和异常值的影响。同时,K-Means 假设簇是球形的,不适合处理非球形簇或密度不均匀的情况。
总结
K-Means 算法是一个简单且高效的聚类方法,适用于各种数据分析任务。通过本文的讲解与示例,读者应该能够掌握 K-Means 的基本原理,并通过 Python 实现聚类分析。K-Means 的优势在于其易于理解和实现,但也存在一些局限性,读者可以在实际应用中结合其他算法一起使用。
未来展望
- K-Means 改进:研究更先进的聚类算法,如 DBSCAN 和 Mean Shift,以应对 K-Means 的局限性。
- 大数据处理:如何在大规模数据集上高效实现 K-Means 聚类,并结合分布式计算框架如 Spark。
- 自动选择 K 值:发展更多自动化方法来选择最优的 K 值,减少人工干预。
参考资料
- K-Means 聚类算法 - Wikipedia
- Scikit-learn 官方文档
- 机器学习实战
相关文章:

【机器学习篇】K-Means 算法详解:从理论到实践的全面解析
网罗开发 (小红书、快手、视频号同名) 大家好,我是 展菲,目前在上市企业从事人工智能项目研发管理工作,平时热衷于分享各种编程领域的软硬技能知识以及前沿技术,包括iOS、前端、Harmony OS、Java、Python等…...

IntelliJ IDEA远程开发代理远程服务器端口(免费内网穿透)
IntelliJ IDEA远程开发代理远程服务器端口(免费内网穿透)(JetBrains家的其他IDE应该也支持) 之前看到宇宙第一IDE VS Code好像默认代理了远程的端口,但是一直没找到IDEA的同类功能,这次终于发现了 以Intell…...

内核定时器3-用户空间定时器
用户空间定时器与内核定时器的关系 虽然用户空间定时器和内核定时器在实现上各自独立,但用户空间定时器通常依赖于内核定时器提供的基础设施。以下是具体关系: 依赖性 用户空间定时器的实现基于内核定时器。 例如,POSIX 定时器使用内核的 h…...

C++ 字面量深度解析:从基础到实战进阶
在 C 开发中,字面量(Literal)不仅是基础语法的一部分,更是提升代码可读性、安全性和性能的关键工具。本文将深入探讨 C 字面量的高级特性、最新标准支持(C11/14/17/20)以及实际开发中的应用技巧,…...

论文paper(更新...)
目录 是否rebuttal?rebuttal 技巧 是否rebuttal? 如果不rebuttal 肯定会拒稿,编辑也会给审稿人发信息,如下: Comment: Thanks for your efforts in reviewing this paper. The authors have neither submitted a rebu…...

变形金刚多元宇宙
1 涉及的公司 1.1 孩之宝HasBro 孩之宝与Takara签订协议后,孩之宝开始使用Takara的专利进行研发。 1.2 日本特佳丽Takara公司 特佳丽Takara Diaclone可变形恐龙的机器人玩具 Microman可变形汽车的机器人玩具 1.3 日本东映TOEI ANIMTION 1.4 美国漫威 为了推广玩具…...

HTTP协议的无状态和无连接
无连接 ①无连接的含义 这里所说的无连接并不是指不连接,客户与服务器之间的HTTP连接是一种一次性连接,它限制每次连接只处理一个请求,当服务器返回本次请求的应答后便立即关闭连接,下次请求再重新建立连接。这种一次性连接主要考…...

ASP.NET代码审计 SQL注入篇(简单记录)
sql注入,全局搜索 Request QueryString ToString() select select * aspx是设计页面,而aspx.cs是类页面,也就是说设计页面用到的类信息在这个页面里面,其实就是把设计和实现分离开来。 源码 using System; using System.Collect…...

毫秒级响应的VoIP中的系统组合推荐
在高并发、低延迟、毫秒级响应的 VoIP 场景中,选择合适的操作系统组合至关重要。以下是针对 Ubuntu linux-lowlatency、CentOS Stream kernel-rt 和 Debian 自定义 PREEMPT_RT 的详细对比及推荐: 1. 系统组合对比 特性Ubuntu linux-lowlatencyCentO…...

w186格障碍诊断系统spring boot设计与实现
🙊作者简介:多年一线开发工作经验,原创团队,分享技术代码帮助学生学习,独立完成自己的网站项目。 代码可以查看文章末尾⬇️联系方式获取,记得注明来意哦~🌹赠送计算机毕业设计600个选题excel文…...

shell -c
个人博客地址:shell -c | 一张假钞的真实世界 shell -c {string}:表示命令从-c后的字符串读取。在需要使用管道或者重定向需要sudo时很有用,如下: $ sudo find ../*/exportFiles -mtime 15 -name "*" | xargs -I {} r…...

(笔记+作业)书生大模型实战营春节卷王班---L1G3000 浦语提示词工程实践
学员闯关手册:https://aicarrier.feishu.cn/wiki/QtJnweAW1iFl8LkoMKGcsUS9nld 课程视频:https://www.bilibili.com/video/BV13U1VYmEUr/ 课程文档:https://github.com/InternLM/Tutorial/tree/camp4/docs/L0/Python 关卡作业:htt…...

文献学习笔记:中风醒脑液(FYTF-919)临床试验解读:有效还是无效?
【中风醒脑液(FYTF-919)临床试验解读:有效还是无效?】 在发表于 The Lancet (2024 年 11 月 30 日,第 404 卷)的临床研究《Traditional Chinese medicine FYTF-919 (Zhongfeng Xingnao oral pr…...

Chapter2 Amplifiers, Source followers Cascodes
Chapter2 Amplifiers, Source followers & Cascodes MOS单管根据输入输出, 可分为CS放大器, source follower和cascode 三种结构. Single-transistor amplifiers 这一章学习模拟电路基本单元-单管放大器 单管运放由Common-Source加上DC电流源组成. Avgm*Rds, gm和rds和…...

从0开始使用面对对象C语言搭建一个基于OLED的图形显示框架(绘图设备封装)
目录 图像层的底层抽象——绘图设备抽象 如何抽象一个绘图设备? 桥接绘图设备,特化为OLED设备 题外话:设备的属性,与设计一个相似函数化简的通用办法 使用函数指针来操作设备 总结一下 图像层的底层抽象——绘图设备抽象 在…...

Android学习19 -- 手搓App
1 前言 之前工作中,很多时候要搞一个简单的app去验证底层功能,Android studio又过于重型,之前用gradle,被版本匹配和下载外网包折腾的堪称噩梦。所以搞app都只有找应用的同事帮忙。一直想知道一些简单的app怎么能手搓一下&#x…...

pytorch基于GloVe实现的词嵌入
PyTorch 实现 GloVe(Global Vectors for Word Representation) 的完整代码,使用 中文语料 进行训练,包括 共现矩阵构建、模型定义、训练和测试。 1. GloVe 介绍 基于词的共现信息(不像 Word2Vec 使用滑动窗口预测&…...

SpringCloud篇 微服务架构
1. 工程架构介绍 1.1 两种工程架构模型的特征 1.1.1 单体架构 上面这张图展示了单体架构(Monolithic Architecture)的基本组成和工作原理。单体架构是一种传统的软件架构模式,其中所有的功能都被打包在一个单一的、紧密耦合的应用程序中。 …...

背包问题和单调栈
背包问题(动态规划) 动态五步曲 dp数组及下标索引的含义递推公式dp数组如何初始化遍历顺序打印dp数组 01背包:n种物品,有一个,二维数组遍历顺序可以颠倒,(滚动数组)一维数组遍历顺序不可颠倒…...

Java | CompletableFuture详解
关注:CodingTechWork CompletableFuture 概述 介绍 CompletableFuture是 Java 8 引入的一个非常强大的类,属于 java.util.concurrent 包。它是用于异步编程的一个工具,可以帮助我们更方便地处理并发任务。与传统的线程池或 Future 对比&…...

【背包问题】二维费用的背包问题
目录 二维费用的背包问题详解 总结: 空间优化: 1. 状态定义 2. 状态转移方程 3. 初始化 4. 遍历顺序 5. 时间复杂度 例题 1,一和零 2,盈利计划 二维费用的背包问题详解 前面讲到的01背包中,对物品的限定条件…...

Golang 并发机制-5:详解syn包同步原语
并发性是现代软件开发的一个基本方面,Go(也称为Golang)为并发编程提供了一组健壮的工具。Go语言中用于管理并发性的重要包之一是“sync”包。在本文中,我们将概述“sync”包,并深入研究其最重要的同步原语之一…...

实验六 项目二 简易信号发生器的设计与实现 (HEU)
声明:代码部分使用了AI工具 实验六 综合考核 Quartus 18.0 FPGA 5CSXFC6D6F31C6N 1. 实验项目 要求利用硬件描述语言Verilog(或VHDL)、图形描述方式、IP核,结合数字系统设计方法,在Quartus开发环境下ÿ…...

如何用微信小程序写春联
生活没有模板,只需心灯一盏。 如果笑能让你释然,那就开怀一笑;如果哭能让你减压,那就让泪水流下来。如果沉默是金,那就不用解释;如果放下能更好地前行,就别再扛着。 一、引入 Vant UI 1、通过 npm 安装 npm i @vant/weapp -S --production 2、修改 app.json …...

LabVIEW无人机航线控制系统
介绍了一种无人机航线控制系统,该系统利用LabVIEW软件与MPU6050九轴传感器相结合,实现无人机飞行高度、速度、俯仰角和滚动角的实时监控。系统通过虚拟仪器技术,有效实现了数据的采集、处理及回放,极大提高了无人机航线的控制精度…...

C++哈希表深度解析:从原理到实现,全面掌握高效键值对存储
目录 一、核心组件与原理 1. 哈希函数(Hash Function) 2. 冲突解决(Collision Resolution) 3. 负载因子(Load Factor)与扩容 二、C实现:std::unordered_map 1. 模板参数 2. 关键操作与复…...

Vue.js组件开发-实现字母向上浮动
使用Vue实现字母向上浮动的效果 实现步骤 创建Vue项目:使用Vue CLI来创建一个新的Vue项目。定义组件结构:在组件的模板中,定义包含字母的元素。添加样式:使用CSS动画来实现字母向上浮动的效果。绑定动画类:在Vue组件…...

自研有限元软件与ANSYS精度对比-Bar2D2Node二维杆单元模型-四连杆实例
目录 1、四连杆工程实例以及手算求解 2、四连杆的自研有限元软件求解 2.1、选择单元类型 2.2、导入四连杆工程 2.3、节点坐标定义 2.4、单元连接关系、材料定义 2.5、约束定义 2.6、外载定义 2.7、矩阵求解 2.8、变形云图展示 2.9、节点位移 2.10、单元应力 2.11、…...

04树 + 堆 + 优先队列 + 图(D1_树(D11_伸展树))
目录 一、基本介绍 二、伸展操作 1. 左右情况的伸展 2. 左左情况的伸展 3. 右左情况的伸展 4. 右右情况的伸展 三、其它操作 1. 插入 2. 删除 四、代码实现 一、基本介绍 伸展树是一种二叉搜索树,伸展树也是一种平衡树,不过伸展树并不像AVL树那…...

c语言练习题【数据类型、递归、双向链表快速排序】
练习1:数据类型 请写出以下几个数据的数据类型 整数 a a 的地址 存放a的数组 b 存放a的地址的数组 b的地址 c的地址 指向 printf 函数的指针 d 存放 d的数组 整数 a 的类型 数据类型是 int a 的地址 数据类型是 int*(指向 int 类型的指针) …...