新公司在哪做网站/百度如何注册公司网站
初始化模型
# Step 4. 初始化模型, 该行初始化与 智谱 的 GLM - 4 模型进行连接,将其设置为处理和生成响应。
chat = ChatZhipuAI(model="glm-4",temperature=0.8,
)
此提示告诉模型接收聊天历史记录和用户的最新问题,然后重新表述问题,以便可以独立于聊天历史记录来理解问题。明确指示模型不要回答问题,而是在必要时重新表述问题。
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder# 此提示告诉模型接收聊天历史记录和用户的最新问题,然后重新表述问题,以便可以独立于聊天历史记录来理解问题。明确指示模型不要回答问题,而是在必要时重新表述问题。contextualize_q_system_prompt = """Given a chat history and the latest user question \
which might reference context in the chat history, formulate a standalone question \
which can be understood without the chat history. Do NOT answer the question, \
just reformulate it if needed and otherwise return it as is."""# Step 3. 创建提示模板来构建模型的交互
# 该模板包括带有说明的系统消息、聊天历史记录的占位符 ( MessagesPlaceholder ) 以及由 {input} 标记的最新用户问题。
contextualize_q_prompt = ChatPromptTemplate.from_messages([("system", contextualize_q_system_prompt),MessagesPlaceholder("chat_history"),("human", "{input}"),]
)
...
中间省略加载文档并切分文档 # Step 9. 使用 Chroma VectorStore 创建检索器 retriever = chroma_store.as_retriever()
# Step 10. 设置历史信息感知检索器:
# create_history_aware_retriever 函数旨在接受输入和“chat_history”的键,用于创建集成聊天历史记录以进行上下文感知处理的检索器。
# 官方文档:https://python.langchain.com/v0.1/docs/modules/chains/
from langchain.chains import create_history_aware_retriever
"""
如果历史记录存在,它会构建一个有效组合提示、大型语言模型 (LLM) 和结构化输出解析器 ( StrOutputParser ) 的序列,后跟检索器。此顺序可确保最新问题在累积的历史数据中得到体现。
"""
# 他会结合历史信息重构子问题,他不实际回答问题,
history_aware_retriever = create_history_aware_retriever(chat,retriever,contextualize_q_prompt
)
# Step 12. 定义 QA 系统的提示模板,指定系统应如何根据检索到的上下文响应输入。 # 该字符串设置语言模型的指令,指示它使用提供的上下文来简洁地回答问题。如果答案未知,则指示模型明确说明这一点。
MessagesPlaceholder(variable_name="chat_history")
是一个占位符,用于在对话模型或系统中插入动态的聊天记录(chat_history
)。
在提示结构中合并了一个名为“chat_history”的变量,它充当历史消息的占位符。通过使用“chat_history”输入键,我们可以将以前的消息列表无缝地注入到提示中。
qa_system_prompt = """You are an assistant for question-answering tasks. \
Use the following pieces of retrieved context to answer the question. \
If you don't know the answer, just say that you don't know. \
Use three sentences maximum and keep the answer concise.\{context}"""
# 在提示结构中合并了一个名为“chat_history”的变量,它充当历史消息的占位符。通过使用“chat_history”输入键,我们可以将以前的消息列表无缝地注入到提示中。
qa_prompt = ChatPromptTemplate.from_messages([("system", qa_system_prompt),MessagesPlaceholder("chat_history"),("human", "{input}"),]
)
# 此函数用于创建一个将文档处理与其他流程相结合的链,通常涉及文档检索和在问答等任务中的使用。
from langchain.chains.combine_documents import create_stuff_documents_chain# Step 13 构建问答链:question_answer_chain 是使用 create_stuff_documents_chain 函数创建的,该函数利用语言模型 ( llm ) 和定义的提示 ( qa_prompt )。
# 官方文档链接:https://python.langchain.com/v0.1/docs/modules/chains/
question_answer_chain = create_stuff_documents_chain(chat, qa_prompt)
# Step 14. 组装 RAG 链条:该链代表完整的工作流程,其中历史感知检索器首先处理查询以合并任何相关的历史上下文,然后由 question_answer_chain 处理处理后的查询以生成最终答案。 rag_chain = create_retrieval_chain(history_aware_retriever, question_answer_chain)
手动构建 历史聊天信息
# 以下代码演示了如何使用 RAG 链来处理一系列问题,并能够引用之前的交互。该代码模拟聊天交互,其中用户提出问题,收到答案,然后提出可以利用初始交流上下文的后续问题。以下是包含代码片段的详细说明:
from langchain_core.messages import HumanMessage# 聊天历史记录被初始化为空列表。该列表将存储会话期间交换的消息以维护上下文。
chat_history = []# 第一个问题和响应:定义一个问题,并使用该问题和当前(空)聊天历史记录调用 RAG 链。
question = "What is Task Decomposition?"
ai_msg_1 = rag_chain.invoke({"input": question, "chat_history": chat_history})
# print("First ans: %s" % ai_msg_1["answer"])# 然后,用户的问题和 AI 生成的答案分别作为 HumanMessage 实例和响应对象添加到聊天历史记录中。
chat_history.extend([HumanMessage(content=question), ai_msg_1["answer"]])# 第二个问题和响应:利用现在包含第一次交流上下文的更新的聊天历史记录,提出后续问题。
second_question = "What are common ways of doing it?"
ai_msg_2 = rag_chain.invoke({"input": second_question, "chat_history": chat_history})
自动化构聊天记录
# Step 9. 使用基本字典结构管理聊天历史记录
store = {}def get_session_history(session_id: str) -> BaseChatMessageHistory:if session_id not in store:store[session_id] = ChatMessageHistory()return store[session_id]# 官方Docs:https://python.langchain.com/v0.2/docs/how_to/message_history/
conversational_rag_chain = RunnableWithMessageHistory(rag_chain,get_session_history,input_messages_key="input",history_messages_key="chat_history",output_messages_key="answer",
)# 现在我们问第一个问题
first_ans = conversational_rag_chain.invoke({"input": "What is Task Decomposition?"},config={"configurable": {"session_id": "abc123"}},
)["answer"]secone_ans = conversational_rag_chain.invoke({"input": "What are common ways of doing it?"},config={"configurable": {"session_id": "abc123"}},
)["answer"]print(f"first_ans:{first_ans}")
print(f"secone_ans:{secone_ans}")
相关文章:

RAG 与历史信息相结合
初始化模型 # Step 4. 初始化模型, 该行初始化与 智谱 的 GLM - 4 模型进行连接,将其设置为处理和生成响应。 chat ChatZhipuAI(model"glm-4",temperature0.8, ) 此提示告诉模型接收聊天历史记录和用户的最新问题,然后重新表述问题&#x…...

99,[7] buuctf web [羊城杯2020]easyphp
进入靶场 <?php// 使用 scandir 函数扫描当前目录(即脚本所在目录)下的所有文件和文件夹// 该函数会返回一个包含目录下所有文件和文件夹名称的数组$files scandir(./); // 遍历扫描得到的文件和文件夹名称数组foreach($files as $file) {// 使用 …...

BUUCTF_[安洵杯 2019]easy_web(preg_match绕过/MD5强碰撞绕过/代码审计)
打开靶场,出现下面的静态html页面,也没有找到什么有价值的信息。 查看页面源代码 在url里发现了img传参还有cmd 求img参数 这里先从img传参入手,这里我发现img传参好像是base64的样子 进行解码,解码之后还像是base64的样子再次进…...

Vue05
目录 一、学习目标 1.自定义指令 2.插槽 3.综合案例:商品列表 4.路由入门 二、自定义指令 1.指令介绍 2.自定义指令 3.自定义指令的语法 三、自定义指令-指令的值 1.需求 2.语法 3.代码示例 五、插槽-默认插槽 1.作用 2.需求 4.使用插槽的基本语法…...

ubuntu18.04环境下,Zotero 中pdf translate划线后不翻译问题解决
问题: 如果使用fastgithub,在/etc/profile中设置全局代理,系统重启后会产生划线后不翻译的问题,包括所有翻译代理均不行。终端中取消fastgithub代理,也不行。 解决: 1)不在/etc/profile中设置…...

基于Python的简单企业维修管理系统的设计与实现
以下是一个基于Python的简单企业维修管理系统的设计与实现,这里我们会使用Flask作为Web框架,SQLite作为数据库来存储相关信息。 1. 需求分析 企业维修管理系统主要功能包括: 维修工单的创建、查询、更新和删除。设备信息的管理。维修人员…...

【C++】B2120 单词的长度
博客主页: [小ᶻ☡꙳ᵃⁱᵍᶜ꙳] 本文专栏: C 文章目录 💯前言💯题目描述💯我的做法代码实现:思路解析: 💯老师的第一种做法代码实现:思路解析: 💯老师的…...

2501,编写dll
DLL的优点 简单的说,dll有以下几个优点: 1)节省内存.同一个软件模块,若是源码重用,则会在不同可执行程序中编译,同时运行这些exe时,会在内存中重复加载这些模块的二进制码. 如果使用dll,则只在内存中加载一次,所有使用该dll的进程会共享此块内存(当然,每个进程会复制一份的d…...

【router路由的配置】
router路由的配置 App.vuerouter在main.ts引入插件 App.vue <template><RouterView /> </template><script setup lang"ts"></script><style scoped lang"scss"></style>router import { createRouter, creat…...

算法基础——一致性
引入 最早研究一致性的场景既不是大数据领域,也不是分布式系统,而是多路处理器。 可以将多路处理器理解为单机计算机系统内部的分布式场景,它有多个执行单元,每一个执行单元都有自己的存储(缓存),一个执行单元修改了…...

刷题记录 动态规划-6: 62. 不同路径
题目:62. 不同路径 难度:中等 一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。 机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” &#x…...

docker直接运行arm下的docker
运行环境是树莓派A 处理器是 arm32v6 安装了docker,运行lamp 编译安装php的时候发现要按天来算,于是用电脑vm下的Ubuntu系统运行arm的docker 然后打包到a直接导入运行就可以了 第一种方法 sudo apt install qemu-user-static 导入直接运行就可以了…...

014-STM32单片机实现矩阵薄膜键盘设计
1.功能说明 本设计主要是利用STM32驱动矩阵薄膜键盘,当按下按键后OLED显示屏上会对应显示当前的按键键值,可以将此设计扩展做成电子秤、超市收银机、计算器等需要多个按键操作的单片机应用。 2.硬件接线 模块管脚STM32单片机管脚矩阵键盘行1PA0矩阵键盘…...

Sentinel 断路器在Spring Cloud使用
文章目录 Sentinel 介绍同类对比微服务雪崩问题问题原因问题解决方案请求限流线程隔离失败处理服务熔断解决雪崩问题的常见方案有哪些? Sentineldocker 安装账号/ 密码项目导入簇点链路请求限流线程隔离Fallback服务掉线时的处理流程 服务熔断 Sentinel 介绍 随着微…...

[内网安全] 内网渗透 - 学习手册
这是一篇专栏的目录文档,方便读者系统性的学习,笔者后续会持续更新文档内容。 如果没有特殊情况的话,大概是一天两篇的速度。(实验多或者节假日,可能会放缓) 笔者也是一边学习一边记录笔记,如果…...

算法总结-二分查找
文章目录 1.搜索插入位置1.答案2.思路 2.搜索二维矩阵1.答案2.思路 3.寻找峰值1.答案2.思路 4.搜索旋转排序数组1.答案2.思路 5.在排序数组中查找元素的第一个和最后一个位置1.答案2.思路 6.寻找旋转排序数组中的最小值1.答案2.思路 1.搜索插入位置 1.答案 package com.sunxi…...

基于python的Kimi AI 聊天应用
因为这几天deepseek有点状况,导致apikey一直生成不了,用kimi练练手。这是一个基于 Moonshot AI 的 Kimi 接口开发的聊天应用程序,使用 Python Tkinter 构建图形界面。 项目结构 项目由三个主要Python文件组成: 1. main_kimi.py…...

动手学深度学习-3.2 线性回归的从0开始
以下是代码的逐段解析及其实际作用: 1. 环境设置与库导入 %matplotlib inline import random import torch from d2l import torch as d2l作用: %matplotlib inline:在 Jupyter Notebook 中内嵌显示 matplotlib 图形。random:生成…...

Spring 面试题【每日20道】【其二】
1、Spring MVC 具体的工作原理? 中等 Spring MVC 是 Spring 框架的一部分,专门用于构建基于Java的Web应用程序。它采用模型-视图-控制器(MVC)架构模式,有助于分离应用程序的不同方面,如输入逻辑、业务逻辑…...

嵌入式八股文面试题(一)C语言部分
1. 变量/函数的声明和定义的区别? (1)变量 定义不仅告知编译器变量的类型和名字,还会分配内存空间。 int x 10; // 定义并初始化x int x; //同样是定义 声明只是告诉编译器变量的名字和类型,但并不为它分配内存空间…...

Vue06
目录 一、声明式导航-导航链接 1.需求 2.解决方案 3.通过router-link自带的两个样式进行高亮 二、声明式导航的两个类名 1.router-link-active 2.router-link-exact-active 三、声明式导航-自定义类名(了解) 1.问题 2.解决方案 3.代码演示 四…...

deepseek-r1模型本地win10部署
转载自大佬:高效快速教你deepseek如何进行本地部署并且可视化对话 deepseek 如果安装遇到这个问题 Error: Post “http://127.0.0.1:11434/api/show”: read tcp 127. 用管理员cmd打开 接着再去切换盘符d: cd 文件夹 重新下载模型:ollama run deepseek…...

自定义数据集 使用scikit-learn中SVM的包实现SVM分类
生成自定义数据集 生成一个简单的二维数据集,包含两类数据点,分别用不同的标签表示。 import numpy as np import matplotlib.pyplot as plt# 生成数据 np.random.seed(42) X np.r_[np.random.randn(100, 2) - [2, 2], np.random.randn(100, 2) [2, …...

pandas的melt方法使用
Pandas 的 melt 方法用于将宽格式(wide format)的 DataFrame 转换为长格式(long format)的 DataFrame。这种转换在数据处理和可视化中非常有用,尤其是在处理多列数据时。 宽格式 vs 长格式 宽格式(Wide F…...

一文讲解Spring中应用的设计模式
我们都知道Spring 框架中用了蛮多设计模式的: 工厂模式呢,就是用来创建对象的,把对象的创建和使用分开,这样代码更灵活。代理模式呢,是用一个代理对象来控制对真实对象的访问,可以在访问前后做一些处理。单…...

Linux的基本指令(下)
1.find指令 Linux下find命令在⽬录结构中搜索⽂件,并执⾏指定的操作。 Linux下find命令提供了相当多的查找条件,功能很强⼤。由于find具有强⼤的功能,所以它的选项也很多,其中⼤部分选项都值得我们花时间来了解⼀下。 即使系统中含…...

HAO的Graham学习笔记
前置知识:凸包 摘录oiwiki 在平面上能包含所有给定点的最小凸多边形叫做凸包。 其定义为:对于给定集合 X,所有包含 X 的凸集的交集 S 被称为 X 的 凸包。 说人话就是用一个橡皮筋包含住所有给定点的形态 如图: 正题:…...

Elasticsearch Queries
Elasticsearch Compound Queries Elasticsearch 的 Compound Queries 是一种强大的工具,用于组合多个查询子句,以实现更复杂的搜索逻辑。这些查询子句可以是叶查询(Leaf Queries)或复合查询(Compound Queries…...

利用matlab寻找矩阵中最大值及其位置
目录 一、问题描述1.1 max函数用法1.2 MATLAB中 : : :的作用1.3 ind2sub函数用法 二、实现方法2.1 方法一:max和find2.2 方法二:max和ind2sub2.3 方法对比 三、参考文献 一、问题描述 matlab中求最大值可使用函数max,对于一维向量࿰…...

SQL入门到精通 理论+实战 -- 在 MySQL 中学习SQL语言
目录 一、环境准备 1、MySQL 8.0 和 Navicat 下载安装 2、准备好的表和数据文件: 二、SQL语言简述 1、数据库基础概念 2、什么是SQL 3、SQL的分类 4、SQL通用语法 三、DDL(Data Definition Language):数据定义语言 1、操…...