国内可以上的网站/关键词优化如何
文章目录
- 一、环境准备
- 二、安装Ollama
- 2.1 访问Ollama官方网站
- 2.2 下载适用于Windows的安装包
- 2.3 安装Ollama安装包
- 2.4 指定Ollama安装目录
- 2.5 指定Ollama的大模型的存储目录
- 三、选择DeepSeek R1模型
- 四、下载并运行DeepSeek R1模型
- 五、常见问题解答
- 六、使用Chatbox进行交互
- 6.1 下载Chatbox安装包
- 6.2 安装并启动 Chatbox
- 6.3 配置Chatbox
- 七、总结
- 7.1 Ollama介绍
- 7.2 Chatbox介绍
一、环境准备
电脑配置越高可以运行版本更高的DeepSeek R1模型。
DeepSeek R1模型版本越高,参数越多,模型越大,效果越好。
我的电脑配置如下
- CPU:R7 5800
- 显卡:RTX3060 12G独显
- 内存:32G
- 网络:需要稳定的互联网连接以下载模型文件。
二、安装Ollama
2.1 访问Ollama官方网站
- Ollama官方网站:https://ollama.com/
2.2 下载适用于Windows的安装包
- 单击右上角“Download”按钮
2.3 安装Ollama安装包
- 双击安装包,按照安装向导的提示完成安装。
- 安装完成后,可以在开始菜单中找到Ollama。
- 不过这种方式只能安装在C盘(C:\Users\weijian\AppData\Local\Programs\Ollama)
- 这个安装包还不够完善,没有选择安装路径的选项。
2.4 指定Ollama安装目录
- 通过
0llamaSetup.exe /dir="D:\Program Files\0llama”
命令可以指定Ollama安装目录
C:\Users\weijian>d:
D:\>cd “Program Files"
D:\Program Files>0llamaSetup.exe /dir="D:\Program Files\0llama”
2.5 指定Ollama的大模型的存储目录
- 打开 “开始” 菜单,搜索 “环境变量”,点击 “编辑系统环境变量”。
- 在 “系统属性” 窗口中,点击 “环境变量” 按钮。
- 在 “用户变量” 下,点击 “新建”,输入变量名 “ollama_models”,变量值为你想要存储模型的目录路径,如 “D:\ollama_models”,点击 “确定” 保存更改。
- 若 Ollama 已经在运行,需先关闭托盘应用程序,然后从开始菜单重新启动,或在保存环境变量后启动新的终端。
三、选择DeepSeek R1模型
- DeepSeek-R1有多种版本,适配不同的硬件配置(如下图)。
- 主要取决于GPU的显存大小。
- 注意:是GPU的显存,不是电脑的内存。
- 简单列举了几个高性能显卡的参数。
显卡 型号 | 性能评级 | 显存容量 | 显存类型 |
---|---|---|---|
RTX 4090 | S | 24GB | GDDR6X |
RX 7900 XTX | S | 24GB | GDDR6 |
RTX 4080 SUPER | A+ | 16GB | GDDR6X |
RX 7900 XT | A+ | 20GB | GDDR6 |
RTX 4070 Ti SUPER | A | 12GB | GDDR6X |
RX 7900 GRE | A | 16GB | GDDR6 |
RTX 3090 Ti | A | 24GB | GDDR6X |
RX 6950 XT | A | 16GB | GDDR6 |
RTX 4070 Ti | A | 12GB | GDDR6X |
RX 7800 XT | A- | 16GB | GDDR6 |
四、下载并运行DeepSeek R1模型
- 打开 Windows PowerShell(管理员)或终端管理员。
- 输入以下命令下载模型(以 8B 版本为例):
ollama run deepseek-r1:8b
- 下载完成后,模型会自动运行,您可以在终端与模型进行交互,输入问题或任务,模型将提供相应的响应。
- 如果需要重新进入模型交互界面,可以在 PowerShell 中输入以下命令:
ollama run deepseek-r1:8b
五、常见问题解答
- 模型加载时间过长:可能是由于硬件性能或网络速度限制。请确保系统满足模型的硬件要求,并检查网络连接。
- 内存不足错误:考虑使用较小的模型版本或升级硬件配置。
- 模型响应不准确:确保按照推荐的配置使用模型,例如将温度设置在 0.5-0.7 之间,并避免添加系统提示符。
- 启动Ollama报错:
Error: listen tcp 127.0.0.1:11434: bind: Only one usage of each socket address (protocol/network address/port) is normally permitted.
netstat -aon | findstr 11434
:查找占用端口的进程。tasklist | findstr "6892"
:查看该进程的详细信息。taskkill /PID 6872 /F
:杀死该进程。
六、使用Chatbox进行交互
6.1 下载Chatbox安装包
- 访问Chatbox官方网站(https://chatboxai.app/zh),下载适用于 Windows 的版本。
6.2 安装并启动 Chatbox
6.3 配置Chatbox
- API类型:选择 “OLLAMA API”。
- 接口地址:填写 http://localhost:11434。
- 模型名称:填写 deepseek-r1:8b,确保与之前下载的模型版本一致。
- 最后就可以在本地使用DeepSeek R1模型啦
七、总结
主要使用两个开源软件,才将DeepSeek R1大模型运行起来。
7.1 Ollama介绍
Ollama 是一个开源的框架,主要用于在本地机器上便捷地部署和运行大型语言模型(LLM)。以下是关于 Ollama 的详细介绍:
- 简化部署:Ollama的设计目标是简化在Docker容器中部署大型语言模型的过程,使得非专业用户也能方便地管理和运行这些复杂的模型。
- 轻量级与可扩展:作为一个轻量级框架,Ollama保持了较小的资源占用,同时具备良好的可扩展性,允许用户根据需要调整配置以适应不同规模的项目和硬件条件。
- API 支持:Ollama提供了一个简洁的API,使得开发者能够轻松创建、运行和管理大型语言模型实例,降低了与模型交互的技术门槛。
- 预构建模型库:Ollama包含一系列预先训练好的大型语言模型,用户可以直接选用这些模型应用于自己的应用程序,无需从头训练或自行寻找模型源。
- 模型导入与定制:Ollama支持从特定平台(如GGUF)或其他深度学习框架(如PyTorch或Safetensors)导入已有的大型语言模型,并允许用户为模型添加或修改提示(prompt engineering)
7.2 Chatbox介绍
Chatbox 是一款开源的聊天界面工具,专为与本地运行的大型语言模型(如 Ollama、Llama、Vicuna 等)进行交互而设计。
它提供了一个简单易用的图形用户界面(GUI),使用户能够更方便地与本地部署的语言模型进行对话,而无需编写复杂的代码或使用命令行工具。
若觉得文章对你有帮助,随手『点赞』、『收藏』、『关注』,也是对我的支持。
相关文章:

Windows电脑本地部署运行DeepSeek R1大模型(基于Ollama和Chatbox)
文章目录 一、环境准备二、安装Ollama2.1 访问Ollama官方网站2.2 下载适用于Windows的安装包2.3 安装Ollama安装包2.4 指定Ollama安装目录2.5 指定Ollama的大模型的存储目录 三、选择DeepSeek R1模型四、下载并运行DeepSeek R1模型五、常见问题解答六、使用Chatbox进行交互6.1 …...

区间覆盖问题
文章目录 1. 题面2. 简单分析3. 代码解答4. TLE的2点可能 1. 题面 给定 N N N个区间 [ a i , b i ] [a_i,b_i] [ai,bi] 以及一个区间 [ s , t ] [s,t] [s,t],请你选择尽量少的区间,将指定区间完全覆盖。 输出最少区间数,如果无法完全…...

【LLM-agent】(task2)用llama-index搭建AI Agent
note LlamaIndex 实现 Agent 需要导入 ReActAgent 和 Function Tool,循环执行:推理、行动、观察、优化推理、重复进行。可以在 arize_phoenix 中看到 agent 的具体提示词,工具被装换成了提示词ReActAgent 使得业务自动向代码转换成为可能&am…...

SpringAI 人工智能
随着 AI 技术的不断发展,越来越多的企业开始将 AI 模型集成到其业务系统中,从而提升系统的智能化水平、自动化程度和用户体验。在此背景下,Spring AI 作为一个企业级 AI 框架,提供了丰富的工具和机制,可以帮助开发者将…...

【axios二次封装】
axios二次封装 安装封装使用 安装 pnpm add axios封装 // 进行axios二次封装:使用请求与响应拦截器 import axios from axios import { ElMessage } from element-plus//创建axios实例 const request axios.create({baseURL: import.meta.env.VITE_APP_BASE_API,…...

P7497 四方喝彩 Solution
Description 给定序列 a ( a 1 , a 2 , ⋯ , a n ) a(a_1,a_2,\cdots,a_n) a(a1,a2,⋯,an),有 m m m 个操作,分四种: add ( l , r , v ) \operatorname{add}(l,r,v) add(l,r,v):对于所有 i ∈ [ l , r ] i \in [l,r…...

深入剖析 Bitmap 数据结构:原理、应用与优化策略
深入理解 Bitmap 数据结构 一、引言 在计算机科学领域,数据的高效存储和快速处理一直是核心问题。随着数据量的不断增长,如何用最少的空间和最快的速度来表示和操作数据变得至关重要。Bitmap(位图)作为一种简洁而强大的数据结构…...

bypass hcaptcha、hcaptcha逆向
可以过steam,已支持并发,欢迎询问! 有事危,ProfessorLuoMing...

WebForms DataList 深入解析
WebForms DataList 深入解析 引言 在Web开发领域,控件是构建用户界面(UI)的核心组件。ASP.NET WebForms框架提供了丰富的控件,其中DataList控件是一个灵活且强大的数据绑定控件。本文将深入探讨WebForms DataList控件的功能、用法以及在实际开发中的应用。 DataList控件…...

C# List 列表综合运用实例⁓Hypak原始数据处理编程小结
C# List 列表综合运用实例⁓Hypak原始数据处理编程小结 1、一个数组解决很麻烦引出的问题1.1、RAW 文件尾部数据如下:1.2、自定义标头 ADD 或 DEL 的数据结构如下: 2、程序 C# 源代码的编写和剖析2.1、使用 ref 关键字,通过引用将参数传递,以…...

【C++基础】字符串/字符读取函数解析
最近在学C以及STL,打个基础 参考: c中的char[] ,char* ,string三种字符串变量转化的兼容原则 c读取字符串和字符的6种函数 字符串结构 首先明确三种字符串结构的兼容关系:string>char*>char [] string最灵活,内置增删查改…...

大模型-CLIP 详细介绍
CLIP简介 CLIP(Contrastive Language–Image Pre-training)是由OpenAI在2021年提出的一种多模态机器学习模型。它旨在通过大量的文本-图像对进行训练,从而学会理解图像内容,并能将这些内容与相应的自然语言描述相匹配。CLIP的核心…...

1.4 Go 数组
一、数组 1、简介 数组是切片的基础 数组是一个固定长度、由相同类型元素组成的集合。在 Go 语言中,数组的长度是类型的一部分,因此 [5]int 和 [10]int 是两种不同的类型。数组的大小在声明时确定,且不可更改。 简单来说,数组…...

WebSocket——环境搭建与多环境配置
一、前言:为什么要使用多环境配置? 在开发过程中,我们通常会遇到多个不同的环境,比如开发环境(Dev)、测试环境(Test)、生产环境(Prod)等。每个环境的配置和需…...

三、递推关系与母函数,《组合数学(第4版)》卢开澄 卢华明
文章目录 一、似函数、非函数1.1 母函数1.2 母函数的简单应用1.3 整数拆分1.4 Ferrers 图像1.5 母函数能做什么1.6 递推关系1.6.1 Hanoi 问题1.6.2 偶数个5怎么算 1.7 Fibonacci 序列1.7.1 Fibonacci 的奇妙性质1.7.2 Fibonacci 恒等式1.7.3 Fibonacci 的直接表达式1.7.4 Fibon…...

线程互斥同步
前言: 简单回顾一下上文所学,上文我们最重要核心的工作就是介绍了我们线程自己的LWP和tid究竟是个什么,总结一句话,就是tid是用户视角下所认为的概念,因为在Linux系统中,从来没有线程这一说法,…...

DeepSeek R1 AI 论文翻译
摘要 原文地址: DeepSeek R1 AI 论文翻译 我们介绍了我们的第一代推理模型,DeepSeek-R1-Zero 和 DeepSeek-R1。 DeepSeek-R1-Zero 是一个通过大规模强化学习(RL)训练的模型,且在此过程中未使用监督微调(…...

如何计算态势感知率?
态势感知率(Situational Awareness Rate)的计算通常需要结合具体应用场景和定义目标,通常涉及对感知、理解、预测三个层次的量化分析。不同领域(如网络安全、军事、工业控制等)可能有不同的量化方式。通用思路和常见方…...

二、CSS笔记
(一)css概述 1、定义 CSS是Cascading Style Sheets的简称,中文称为层叠样式表,用来控制网页数据的表现,可以使网页的表现与数据内容分离。 2、要点 怎么找到标签怎么操作标签对象(element) 3、css的四种引入方式 3.1 行内式 在标签的style属性中设定CSS样式。这种方…...

Alibaba开发规范_异常日志之日志规约:最佳实践与常见陷阱
文章目录 引言1. 使用SLF4J日志门面规则解释代码示例正例反例 2. 日志文件的保存时间规则解释 3. 日志文件的命名规范规则解释代码示例正例反例 4. 使用占位符进行日志拼接规则解释代码示例正例反例 5. 日志级别的开关判断规则解释代码示例正例反例 6. 避免重复打印日志规则解释…...

使用istio实现权重路由
istio概述 **概述:**Istio 是一个开源的 服务网格(Service Mesh)解决方案,主要用于管理、保护和监控微服务架构中的服务通信。它为微服务提供了基础设施层的控制功能,不需要更改应用程序的代码,从而解决服…...

M. Triangle Construction
题目链接:Problem - 1906M - Codeforces 题目大意:给一个 n 边形, 每一个边上有a[ i ] 个点, 在此多边形上求可以连的三角形有多少个, 每个点只能用一次。 输入: 第一行是一个整数 N ( 3 ≤ N ≤ 200000…...

每天学点小知识之设计模式的艺术-策略模式
行为型模式的名称、定义、学习难度和使用频率如下表所示: 1.如何理解模板方法模式 模板方法模式是结构最简单的行为型设计模式,在其结构中只存在父类与子类之间的继承关系。通过使用模板方法模式,可以将一些复杂流程的实现步骤封装在一系列基…...

机试题——到邻国目标城市的最短距离
题目描述 A国与B国是相邻的两个国家,每个国家都有很多城市。国家内部有很多连接城市的公路,国家之间也有很多跨国公路,连接两个国家的边界城市。两个国家一共有N个城市,编号从1到N,一共有M条公路,包括国内…...

Python + Tkinter + pyttsx3实现的桌面版英语学习工具
Python Tkinter pyttsx3实现的桌面版英语学习工具 在多行文本框输入英文句子,双击其中的英文单词,给出英文读音和中文含义和音标。 本程序查询本地词典数据。通过菜单栏"文件"->"打开词典编辑器"进入编辑界面。 词典数据存储…...

【Vite + Vue + Ts 项目三个 tsconfig 文件】
Vite Vue Ts 项目三个 tsconfig 文件 为什么 Vite Vue Ts 项目会有三个 tsconfig 文件?首先我们先了解什么是 tsconfig.json ? 为什么 Vite Vue Ts 项目会有三个 tsconfig 文件? 在使用 Vite 创建 vue-ts 模板的项目时,会发现除了 ts…...

AI时代IT行业职业方向规划大纲
一、引言 AI时代的颠覆性影响 ChatGPT、Midjourney等生成式AI对传统工作模式的冲击 案例:AI编程助手(GitHub Copilot)改变开发者工作流程 核心问题:IT从业者如何避免被AI替代,并找到新机遇? 二、AI时代…...

Mac M1 Comfyui 使用MMAudio遇到的问题解决?
问题1: AssertionError: Torch not compiled with CUDA enabled? 解决办法:修改代码以 CPU 运行 第一步:找到 /ComfyUI/custom_nodes/ComfyUI-MMAudio/mmaudio/ext/autoencoder/vae.py文件中的下面这两行代码 self.data_mean nn.Buffer(t…...

大语言模型深度研究功能:人类认知与创新的新范式
在人工智能迅猛发展的今天,大语言模型(LLM)的深度研究功能正在成为重塑人类认知方式的关键力量。这一突破性技术不仅带来了工具层面的革新,更深刻地触及了人类认知能力的本质。本文将从认知科学的角度出发,探讨LLM如何…...

[SAP ABAP] 性能优化
1.数据库编程OPEN SQL方面优化 1.避免使用SELECT *,只查询需要的字段即可 尽量使用SELECT f1 f2 ... (具体字段) 来代替 SELECT * 写法 2. 如果确定只查询一条数据时,使用 SELECT SINGLE... 或者是 SELECT ...UP TO 1 ROWS ... 使用语法 UP TO n ROWS 来…...