当前位置: 首页 > news >正文

【Day31 LeetCode】动态规划DP Ⅳ

一、动态规划DP Ⅳ

1、最后一块石头的重量II 1049

这题有点像脑筋急转弯,尽量让石头分成重量相同的两堆(尽可能相同),相撞之后剩下的石头就是最小的。明白这一点,就与上一篇博客里的划分等和数组很相似。划分等和数组是给定背包容量,能不能恰好填满该背包;这题是给定背包容量,尽可能填满该背包。直接套用代码。

class Solution {
public:int lastStoneWeightII(vector<int>& stones) {int ss = accumulate(stones.begin(), stones.end(), 0);int s = ss / 2;vector<int> dp(s + 1);for(int stone : stones)for(int j=s; j>=stone; --j)dp[j] = max(dp[j], dp[j-stone] + stone);return ss - 2 * dp[s];}
};

2、目标和 49

这题需要变通一下,本质上是将原数组分成两个子集,记为left(表示+)和right(表示-),两个子集需要满足: left = (target + sum)/2 。 left组合 - right组合 = target,left + right = sum,而sum是固定的,left - (sum - left) = target 推导出 left = (target + sum)/2 。与上一篇博客里的划分等和数组很相似。此时问题变成了 从nums数组中选取元素填满容量为left的背包的方法。这时套用01背包一维数组的代码,需要修改dp方程。对于二维数组,dp[i][j]表示在0~i中选取元素构成和为j的组合的个数,当前值dp[i][j]有选与不选物品i两个选择,所以递推方程为 d p [ i ] [ j ] = d p [ i − 1 ] [ j ] + d p [ i − 1 ] [ j − n u m s [ i ] ] dp[i][j] = dp[i-1][j] + dp[i-1][j-nums[i]] dp[i][j]=dp[i1][j]+dp[i1][jnums[i]],相应的一维为 d p [ j ] + = d p [ j − n u m s [ i ] ] dp[j] += dp[j-nums[i]] dp[j]+=dp[jnums[i]]

class Solution {
public:int findTargetSumWays(vector<int>& nums, int target) {int s = accumulate(nums.begin(), nums.end(), 0);if(abs(target) > s || (target + s) % 2 == 1)return 0;s = (s + target) / 2;vector<int> dp(s + 1);dp[0] = 1;for(int i=0; i<nums.size(); ++i)for(int j=s; j>=nums[i]; --j)dp[j] += dp[j-nums[i]]; return dp[s];}
};

3、一和零 474

这题是给定背包容量,求装满背包最多有多少物品,并且该背包很特殊,有0和1的数量两个维度。套用优化掉物品维度的01背包代码,dp[i][j]表示最多有i个0和j个1的strs的最大子集的大小为dp[i][j],这里采用二维数组表示背包的维度,物品的维度呗优化掉了,所以在遍历背包时需要和之前一样采用逆序遍历

class Solution {
public:int findMaxForm(vector<string>& strs, int m, int n) {vector<vector<int>> dp(m+1, vector<int>(n+1));for(string str : strs){  // 遍历物品int one = 0, zero = 0;for(char ss : str){if(ss=='1')++one;else++zero;}// 遍历背包for(int i=m; i>=zero; --i)for(int j=n; j>=one; --j)dp[i][j] = max(dp[i-zero][j-one] + 1, dp[i][j]);}return dp[m][n];}
};

二、写在后面

难点在于将问题分析清楚,理清如何转换成背包问题。第一题是给定背包容量,尽可能装,最多能装多少;第二题是给定背包容量,求装满背包的方法;第三题是给定背包容量,求装满背包最多有多少物品,并且此背包比较特殊,有两个维度。

相关文章:

【Day31 LeetCode】动态规划DP Ⅳ

一、动态规划DP Ⅳ 1、最后一块石头的重量II 1049 这题有点像脑筋急转弯&#xff0c;尽量让石头分成重量相同的两堆&#xff08;尽可能相同&#xff09;&#xff0c;相撞之后剩下的石头就是最小的。明白这一点&#xff0c;就与上一篇博客里的划分等和数组很相似。划分等和数组…...

Unity 2D实战小游戏开发跳跳鸟 - 记录显示最高分

上一篇文章中我们实现了游戏的开始界面,在开始界面中有一个最高分数的UI,本文将接着实现记录最高分数以及在开始界面中显示最高分数的功能。 添加跳跳鸟死亡事件 要记录最高分,则需要在跳跳鸟死亡时去进行判断当前的分数是否是最高分,如果是最高分则进行记录,如果低于之前…...

Ollama AI 开发助手完全指南:从入门到实践

本文将详细介绍如何使用 Ollama AI 开发助手来提升开发效率,包括环境搭建、模型选择、最佳实践等全方位内容。 © ivwdcwso (ID: u012172506) 目录 基础环境配置模型选择与使用开发工具集成实践应用场景性能优化与注意事项最佳实践总结一、基础环境配置 1.1 系统要求 在…...

Racecar Gym

Racecar Gym 参考&#xff1a;https://github.com/axelbr/racecar_gym/blob/master/README.md 1. 项目介绍 Racecar Gym 是一个基于 PyBullet 物理引擎的 reinforcement learning (RL) 训练环境&#xff0c;模拟微型 F1Tenth 竞速赛车。它兼容 Gym API 和 PettingZoo API&am…...

代码随想录36 动态规划

leetcode 343.整数拆分 给定一个正整数 n &#xff0c;将其拆分为 k 个 正整数 的和&#xff08; k > 2 &#xff09;&#xff0c;并使这些整数的乘积最大化。 返回 你可以获得的最大乘积 。 示例 1: 输入: n 2 输出: 1 解释: 2 1 1, 1 1 1。 示例 2: 输入: n 1…...

离散时间傅里叶变换(DTFT)公式详解:周期性与连续性剖析

摘要 离散时间傅里叶变换&#xff08;DTFT&#xff09;是数字信号处理领域的重要工具&#xff0c;它能将离散时间信号从时域转换到频域&#xff0c;揭示信号的频率特性。本文将深入解读DTFT公式&#xff0c;详细阐述其具有周期性和连续性的原因&#xff0c;帮助读者全面理解DT…...

深度学习|表示学习|卷积神经网络|Batch Normalization在干什么?|19

如是我闻&#xff1a; Batch Normalization&#xff08;批归一化&#xff0c;简称 BN&#xff09; 是 2015 年由 Ioffe 和 Szegedy 提出 的一种加速深度神经网络训练并提高稳定性的技术。 它的核心思想是&#xff1a;在每一层的输入进行归一化&#xff0c;使其均值接近 0&…...

Go基础之环境搭建

文章目录 1 Go 1.1 简介 1.1.1 定义1.1.2 特点用途 1.2 环境配置 1.2.1 下载安装1.2.2 环境配置 1.2.2.1 添加环境变量1.2.2.2 各个环境变量理解 1.2.3 验证环境变量 1.3 包管理工具 Go Modules 1.3.1 开启使用1.3.2 添加依赖包1.3.3 配置国内包源 1.3.3.1 通过 go env 配置1.…...

echarts、canvas这种渲染耗时的工作能不能放在webworker中做?

可以将 ECharts、Canvas 等渲染耗时的工作放在 Web Worker 中进行处理。Web Worker 允许在后台线程中运行 JavaScript&#xff0c;从而将计算密集型任务从主线程中分离出来&#xff0c;避免阻塞用户界面。以下是一些关键点&#xff1a; 优势 性能提升&#xff1a;将耗时的渲染…...

Android学习21 -- launcher

1 前言 之前在工作中&#xff0c;第一次听到launcher有点蒙圈&#xff0c;不知道是啥&#xff0c;当时还赶鸭子上架去和客户PK launcher的事。后来才知道其实就是安卓的桌面。本来还以为很复杂&#xff0c;毕竟之前接触过windows的桌面&#xff0c;那叫一个复杂。。。 后面查了…...

antd pro框架,使用antd组件修改组件样式

首先用控制台的指针找到组件的类名 然后找到项目的src/global.less文件 在里面进行修改&#xff0c;切记:where(.css-dev-only-do-not-override-5fybr3).ant-input:placeholder-shown这种格式&#xff0c;把where(.css-dev-only-do-not-override-5fybr3)删掉&#xff0c;使用…...

响应式编程_05 Project Reactor 框架

文章目录 概述响应式流的主流实现框架RxJavaReactor Project Reactor 框架Reactor 异步数据序列Flux 和 Mono 组件FluxMono 操作符背压处理 小结 概述 响应式编程_02基本概念&#xff1a;背压机制 Backpressure介绍了响应式流规范以及 Spring 框架中的响应式编程技术&#xff…...

RabbitMQ 从入门到精通:从工作模式到集群部署实战(一)

#作者&#xff1a;闫乾苓 文章目录 RabbitMQ简介RabbitMQ与VMware的关系架构工作流程RabbitMQ 队列工作模式及适用场景简单队列模式&#xff08;Simple Queue&#xff09;工作队列模式&#xff08;Work Queue&#xff09;发布/订阅模式&#xff08;Publish/Subscribe&#xff…...

导出依赖的几种方法

在 Python 中&#xff0c;你可以使用以下方法导出项目的依赖&#xff1a; 1. 使用 pip freeze pip freeze 可以列出当前环境中安装的所有包及其版本&#xff0c;并将结果保存到 requirements.txt 文件中。 pip freeze > requirements.txt2. 使用 pipreqs pipreqs 可以根…...

CS 与 BS 架构的差异

在数字化的今天&#xff0c;选择软件架构模式对系统的性能、维护、安全和成本都有很大影响。BS架构和CS架构是最常见的两种模式&#xff0c;了解它们的区别和特点对开发人员和企业决策者都很重要。 CS架构最早出现&#xff0c;当时用户直接从主机获取数据。随着客户端和服务端…...

OpenCV YOLOv11实时视频车辆计数线:让车辆进出有条理!

前言 大家好!今天我们聊个超级有趣的课题——如何用OpenCV结合YOLOv11进行实时视频车辆计数。是不是很炫酷?车辆进出全都清晰可见,连“跑车”都能精确统计!不过,别急,这可不仅仅是数车那么简单,背后还有许多实际问题等着你去搞定,比如计数线、车速、误检这些麻烦的小问…...

配置@别名路径,把@/ 解析为 src/

路径解析配置 webpack 安装 craco npm i -D craco/craco 项目根目录下创建文件 craco.config.js &#xff0c;内容如下 const path require(path) module.exports {webpack: {// 配置别名alias: {// 约定&#xff1a; 使用 表示src文件所在路径: path.resolve(__dirname,src)…...

java 进阶教程_Java进阶教程 第2版

第2版前言 第1版前言 语言基础篇 第1章 Java语言概述 1.1 Java语言简介 1.1.1 Java语言的发展历程 1.1.2 Java的版本历史 1.1.3 Java语言与C&#xff0f;C 1.1.4 Java的特点 1.2 JDK和Java开发环境及工作原理 1.2.1 JDK 1.2.2 Java开发环境 1.2.3 Java工作原理 1.…...

Windows Docker笔记-安装docker

安装环境 操作系统&#xff1a;Windows 11 家庭中文版 docker版本&#xff1a;Docker Desktop version: 4.36.0 (175267) 注意&#xff1a; Docker Desktop 支持以下Windows操作系统&#xff1a; 支持的版本&#xff1a;Windows 10&#xff08;家庭版、专业版、企业版、教育…...

hot100(7)

61.31. 下一个排列 - 力扣&#xff08;LeetCode&#xff09; 数组问题&#xff0c;下一个更大的排列 题解&#xff1a;31. 下一个排列题解 - 力扣&#xff08;LeetCode&#xff09; &#xff08;1&#xff09;从后向前找到一个相邻的升序对&#xff08;i,j)&#xff0c;此时…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?

编辑&#xff1a;陈萍萍的公主一点人工一点智能 未来机器人的大脑&#xff1a;如何用神经网络模拟器实现更智能的决策&#xff1f;RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战&#xff0c;在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

(十)学生端搭建

本次旨在将之前的已完成的部分功能进行拼装到学生端&#xff0c;同时完善学生端的构建。本次工作主要包括&#xff1a; 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...

【力扣数据库知识手册笔记】索引

索引 索引的优缺点 优点1. 通过创建唯一性索引&#xff0c;可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度&#xff08;创建索引的主要原因&#xff09;。3. 可以加速表和表之间的连接&#xff0c;实现数据的参考完整性。4. 可以在查询过程中&#xff0c;…...

C# SqlSugar:依赖注入与仓储模式实践

C# SqlSugar&#xff1a;依赖注入与仓储模式实践 在 C# 的应用开发中&#xff0c;数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护&#xff0c;许多开发者会选择成熟的 ORM&#xff08;对象关系映射&#xff09;框架&#xff0c;SqlSugar 就是其中备受…...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)

目录 一、&#x1f44b;&#x1f3fb;前言 二、&#x1f608;sinx波动的基本原理 三、&#x1f608;波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、&#x1f30a;波动优化…...

Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)

Aspose.PDF 限制绕过方案&#xff1a;Java 字节码技术实战分享&#xff08;仅供学习&#xff09; 一、Aspose.PDF 简介二、说明&#xff08;⚠️仅供学习与研究使用&#xff09;三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...

【JVM面试篇】高频八股汇总——类加载和类加载器

目录 1. 讲一下类加载过程&#xff1f; 2. Java创建对象的过程&#xff1f; 3. 对象的生命周期&#xff1f; 4. 类加载器有哪些&#xff1f; 5. 双亲委派模型的作用&#xff08;好处&#xff09;&#xff1f; 6. 讲一下类的加载和双亲委派原则&#xff1f; 7. 双亲委派模…...

Kafka主题运维全指南:从基础配置到故障处理

#作者&#xff1a;张桐瑞 文章目录 主题日常管理1. 修改主题分区。2. 修改主题级别参数。3. 变更副本数。4. 修改主题限速。5.主题分区迁移。6. 常见主题错误处理常见错误1&#xff1a;主题删除失败。常见错误2&#xff1a;__consumer_offsets占用太多的磁盘。 主题日常管理 …...

Java 与 MySQL 性能优化:MySQL 慢 SQL 诊断与分析方法详解

文章目录 一、开启慢查询日志&#xff0c;定位耗时SQL1.1 查看慢查询日志是否开启1.2 临时开启慢查询日志1.3 永久开启慢查询日志1.4 分析慢查询日志 二、使用EXPLAIN分析SQL执行计划2.1 EXPLAIN的基本使用2.2 EXPLAIN分析案例2.3 根据EXPLAIN结果优化SQL 三、使用SHOW PROFILE…...

Java后端检查空条件查询

通过抛出运行异常&#xff1a;throw new RuntimeException("请输入查询条件&#xff01;");BranchWarehouseServiceImpl.java // 查询试剂交易&#xff08;入库/出库&#xff09;记录Overridepublic List<BranchWarehouseTransactions> queryForReagent(Branch…...