文献阅读 250205-Global patterns and drivers of tropical aboveground carbon changes
Global patterns and drivers of tropical aboveground carbon changes
来自 <Global patterns and drivers of tropical aboveground carbon changes | Nature Climate Change>
热带地上碳变化的全球模式和驱动因素
## Abstract:
- Tropical terrestrial ecosystems play an important role in modulating the global carbon balance. However, the complex dynamics and factors controlling tropical aboveground live biomass carbon (AGC) are not fully understood.
- Fire emissions in non-forested African shrubland/savanna biomes, coupled with post-fire carbon recovery, substantially dominated the interannual variability of tropical AGC.
- Fire radiative power was identified as the primary determinant of the spatial variability in AGC gains, with soil moisture also playing a crucial role in shaping trends.
## Intro:
- Tropical terrestrial ecosystems encompass more than half of the global aboveground live biomass carbon1 (AGC) and are critical components of the global carbon cycle.
-- Even relatively minor changes in tropical AGC potentially have an important influence on global atmospheric CO2 concentration, subsequently modulating climate change.
- Contemporary estimates of tropical AGC changes often hinge on broad assumptions, sparse ground data and/or inaccurate estimation methods6, leading to uncertainties in identifying tropical land carbon sources/sinks, which remain the most uncertain component of the global carbon budget.
- Satellite observations have shown that deforestation and forest degradation cause tropical forest AGC to be net carbon sources, whereas others suggested that carbon sequestration by secondary forests resulted in tropical forests being net carbon sinks.
- All in all, a key research question for the tropical carbon budget is whether losses from current disturbances in some regions are offset by recovery from past disturbances in other regions.
- Another complicating issue is that studies usually focus on forests, ignoring tropical non-forested ecosystems that have a great influence on the trends and variability in the land carbon sink, with fire often playing a critical role in their AGC changes
## Results:
Patterns of AGC loss

Regionally in tropical America, losses resulting from non-fire–forest disturbances (−0.31 PgC yr−1) marginally surpassed those of total fire emissions (−0.20 PgC yr−1). Both types of losses were predominantly located in the Brazilian ‘arc of deforestation’. Notably, the AGC loss from non-fire disturbances penetrated further into the Amazonian biome, predominantly caused by increasing forest conversion for agriculture and infrastructure development. Trends in non-fire loss estimates are also similar to previous independent estimates of AGC losses due to large-scale deforestation11, as very large-scale clearing of trees is usually associated with non-fire.
- AGC net changes and gains
In tropical America, the most prominent AGC gains were detected in the ‘arc of deforestation’ and southern Brazil, where substantial AGC losses and secondary forest regrowth have been previously recorded. The AGC gains of tropical America constituted 27% (0.54 ± 0.02 PgC yr−1) of the AGC gains across the tropics. Tropical Africa emerged as the predominant contributor to tropical AGC gains, contributing to 58% or 1.17 ± 0.03 PgC yr−1. The regions that contributed to these gains include the Central African Republic, eastern parts of South Sudan, Angola, Zambia and Tanzania. These regions, typified by shrublands and dry forests (Supplementary Fig. 2) and moist forests in southern Central African Republic, only constitute 16% of tropical lands but totalled 35% of tropical AGC gains (0.71 ± 0.01 PgC yr−1). Tropical Asia only witnessed modest AGC gains, contributing merely 15% or 0.30 ± 0.01 PgC yr−1 to the tropical AGC gains. The predominant locations for these gains include Cambodia, central Sumatra and the coastal regions of Kalimantan.
Spatial and temporal patterns of AGC changes during 2010–2020 over the tropics.

- Factors influencing AGC dynamics

使用 BRT 模型来阐明塑造 AGC 增益的空间和时间模式的因素
相关文章:
文献阅读 250205-Global patterns and drivers of tropical aboveground carbon changes
Global patterns and drivers of tropical aboveground carbon changes 来自 <Global patterns and drivers of tropical aboveground carbon changes | Nature Climate Change> 热带地上碳变化的全球模式和驱动因素 ## Abstract: Tropical terrestrial ecosystems play …...
算法与数据结构(括号匹配问题)
思路 从题干可以看出,只要给出的括号对应关系正确,那么就可以返回true,否则返回false。这个题可以使用栈来解决 解题过程 首先从第一个字符开始遍历,如果是括号的左边(‘(‘,’[‘,’}‘&…...
订单状态监控实战:基于 SQL 的状态机分析与异常检测
目录 1. 背景与问题 2. 数据准备 2.1 表结构设计 3. 场景分析与实现 3.1 场景 1:检测非法状态转换...
C# 中记录(Record)详解
从C#9.0开始,我们有了一个有趣的语法糖:记录(record) 为什么提供记录? 开发过程中,我们往往会创建一些简单的实体,它们仅仅拥有一些简单的属性,可能还有几个简单的方法,比如DTO等等…...
YOLOv11-ultralytics-8.3.67部分代码阅读笔记-autobackend.py
autobackend.py ultralytics\nn\autobackend.py 目录 autobackend.py 1.所需的库和模块 2.def check_class_names(names): 3.def default_class_names(dataNone): 4.class AutoBackend(nn.Module): 1.所需的库和模块 # Ultralytics 🚀 AGPL-3.0 License …...
Docker使用指南(一)——镜像相关操作详解(实战案例教学,适合小白跟学)
目录 1.镜像名的组成 2.镜像操作相关命令 镜像常用命令总结: 1. docker images 2. docker rmi 3. docker pull 4. docker push 5. docker save 6. docker load 7. docker tag 8. docker build 9. docker history 10. docker inspect 11. docker prune…...
Rust 变量特性:不可变、和常量的区别、 Shadowing
Rust 变量特性:不可变、和常量的区别、 Shadowing Rust 是一门以安全性和性能著称的系统编程语言,其变量系统设计独特且强大。本文将从三个角度介绍 Rust 变量的核心特性:可变性(Mutability)、变量与常量的区别&#…...
NFT Insider #167:Champions Tactics 角色加入 The Sandbox;AI 助力 Ronin 游戏生态
引言:NFT Insider 由 NFT 收藏组织 WHALE Members、BeepCrypto 联合出品, 浓缩每周 NFT 新闻,为大家带来关于 NFT 最全面、最新鲜、最有价值的讯息。每期周报将从 NFT 市场数据,艺术新闻类,游戏新闻类,虚拟…...
鹧鸪云无人机光伏运维解决方案
在新能源产业蓬勃发展的当下,光伏电站作为清洁能源供应的关键一环,其稳定运行和高效运维至关重要。随着光伏电站规模持续扩大,数量不断增加,传统人工巡检方式的弊端日益显著。人工巡检不仅效率低、人力和时间成本高,而…...
NeuralCF 模型:神经网络协同过滤模型
实验和完整代码 完整代码实现和jupyter运行:https://github.com/Myolive-Lin/RecSys--deep-learning-recommendation-system/tree/main 引言 NeuralCF 模型由新加坡国立大学研究人员于 2017 年提出,其核心思想在于将传统协同过滤方法与深度学习技术相结…...
【前端】【Ts】【知识点总结】TypeScript知识总结
一、总体概述 TypeScript 是 JavaScript 的超集,主要通过静态类型检查和丰富的类型系统来提高代码的健壮性和可维护性。它涵盖了从基础数据类型到高级类型、从函数与对象的类型定义到类、接口、泛型、模块化及装饰器等众多知识点。掌握这些内容有助于编写更清晰、结…...
JAVA架构师进阶之路
JAVA架构师进阶之路 前言 苦于网络上充斥的各种java知识,多半是互相抄袭,导致很多后来者在学习java知识中味同嚼蜡,本人闲暇之余整理了进阶成为java架构师所必须掌握的核心知识点,后续会不断扩充。 废话少说,直接上正…...
掌握@PostConstruct与@PreDestroy,优化Spring Bean的初始化和销毁
在Spring中,PostConstruct和PreDestroy注解就像是对象的“入职”和“离职”仪式。 1. PostConstruct注解:这个注解标记的方法就像是员工入职后的“岗前培训”。当一个对象(比如一个Bean)被Spring容器创建并注入依赖后,…...
Java设计模式:行为型模式→状态模式
Java 状态模式详解 1. 定义 状态模式(State Pattern)是一种行为型设计模式,它允许对象在内部状态改变时改变其行为。状态模式通过将状态需要的行为封装在不同的状态类中,实现对象行为的动态改变。该模式的核心思想是分离不同状态…...
景联文科技:专业数据采集标注公司 ,助力企业提升算法精度!
随着人工智能技术加速落地,高质量数据已成为驱动AI模型训练与优化的核心资源。据统计,全球AI数据服务市场规模预计2025年突破200亿美元,其中智能家居、智慧交通、医疗健康等数据需求占比超60%。作为国内领先的AI数据服务商,景联文…...
ES面试题
1、Elasticsearch的基本构成: (1)index 索引: 索引类似于mysql 中的数据库,Elasticesearch 中的索引是存在数据的地方,包含了一堆有相似结构的文档数据。 (2)type 类型:…...
LabVIEW2025中文版软件安装包、工具包、安装教程下载
下载链接:LabVIEW及工具包大全-三易电子工作室http://blog.eeecontrol.com/labview6666 《LabVIEW2025安装图文教程》 1、解压后,双击install.exe安装 2、选中“我接受上述2条许可协议”,点击下一步 3、点击下一步,安装NI Packa…...
算法与数据结构(合并K个升序链表)
思路 有了合并两个链表的基础后,这个的一种方法就是可以进行顺序合并,我们可以先写一个函数用来合并两个链表,再在合并K个链表的的函数中循环调用它。 解题过程 解析这个函数 首先,可以先判断,如果a为空,…...
洛谷 P4552 [Poetize6] IncDec Sequence C语言
P4552 [Poetize6] IncDec Sequence - 洛谷 | 计算机科学教育新生态 题目描述 给定一个长度为 n 的数列 a1,a2,…,an,每次可以选择一个区间 [l,r],使这个区间内的数都加 1 或者都减 1。 请问至少需要多少次操作才能使数列中的所有数都一样&#…...
保姆级教程Docker部署Zookeeper官方镜像
目录 1、安装Docker及可视化工具 2、创建挂载目录 3、运行Zookeeper容器 4、Compose运行Zookeeper容器 5、查看Zookeeper运行状态 6、验证Zookeeper是否正常运行 1、安装Docker及可视化工具 Docker及可视化工具的安装可参考:Ubuntu上安装 Docker及可视化管理…...
synchronized 学习
学习源: https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖,也要考虑性能问题(场景) 2.常见面试问题: sync出…...
安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件
在选煤厂、化工厂、钢铁厂等过程生产型企业,其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进,需提前预防假检、错检、漏检,推动智慧生产运维系统数据的流动和现场赋能应用。同时,…...
UR 协作机器人「三剑客」:精密轻量担当(UR7e)、全能协作主力(UR12e)、重型任务专家(UR15)
UR协作机器人正以其卓越性能在现代制造业自动化中扮演重要角色。UR7e、UR12e和UR15通过创新技术和精准设计满足了不同行业的多样化需求。其中,UR15以其速度、精度及人工智能准备能力成为自动化领域的重要突破。UR7e和UR12e则在负载规格和市场定位上不断优化…...
Linux nano命令的基本使用
参考资料 GNU nanoを使いこなすnano基础 目录 一. 简介二. 文件打开2.1 普通方式打开文件2.2 只读方式打开文件 三. 文件查看3.1 打开文件时,显示行号3.2 翻页查看 四. 文件编辑4.1 Ctrl K 复制 和 Ctrl U 粘贴4.2 Alt/Esc U 撤回 五. 文件保存与退出5.1 Ctrl …...
C++ 设计模式 《小明的奶茶加料风波》
👨🎓 模式名称:装饰器模式(Decorator Pattern) 👦 小明最近上线了校园奶茶配送功能,业务火爆,大家都在加料: 有的同学要加波霸 🟤,有的要加椰果…...
给网站添加live2d看板娘
给网站添加live2d看板娘 参考文献: stevenjoezhang/live2d-widget: 把萌萌哒的看板娘抱回家 (ノ≧∇≦)ノ | Live2D widget for web platformEikanya/Live2d-model: Live2d model collectionzenghongtu/live2d-model-assets 前言 网站环境如下,文章也主…...
wpf在image控件上快速显示内存图像
wpf在image控件上快速显示内存图像https://www.cnblogs.com/haodafeng/p/10431387.html 如果你在寻找能够快速在image控件刷新大图像(比如分辨率3000*3000的图像)的办法,尤其是想把内存中的裸数据(只有图像的数据,不包…...
Unity中的transform.up
2025年6月8日,周日下午 在Unity中,transform.up是Transform组件的一个属性,表示游戏对象在世界空间中的“上”方向(Y轴正方向),且会随对象旋转动态变化。以下是关键点解析: 基本定义 transfor…...
恶补电源:1.电桥
一、元器件的选择 搜索并选择电桥,再multisim中选择FWB,就有各种型号的电桥: 电桥是用来干嘛的呢? 它是一个由四个二极管搭成的“桥梁”形状的电路,用来把交流电(AC)变成直流电(DC)。…...
leetcode_69.x的平方根
题目如下 : 看到题 ,我们最原始的想法就是暴力解决: for(long long i 0;i<INT_MAX;i){if(i*ix){return i;}else if((i*i>x)&&((i-1)*(i-1)<x)){return i-1;}}我们直接开始遍历,我们是整数的平方根,所以我们分两…...
