LeetCode --- 436周赛
题目列表
3446. 按对角线进行矩阵排序
3447. 将元素分配给有约束条件的组
3448. 统计可以被最后一个数位整除的子字符串数目
3449. 最大化游戏分数的最小值
一、按对角线进行矩阵排序

直接模拟,遍历每一个斜对角线,获取斜对角线上的数字,排序后重新赋值即可。
这里教大家一个从右上角往左下角依次遍历斜对角线的方法,对于每一条对角线上的任意元素 g r i d [ i ] [ j ] grid[i][j] grid[i][j],我们会发现 i − j i-j i−j 为一个定值,以 3 × 3 3\times 3 3×3 的矩阵为例,从右上角往左下角 i − j i-j i−j 分别为 − 2 , − 1 , 0 , 1 , 2 -2,-1,0,1,2 −2,−1,0,1,2,只要加上一个偏移量 3 3 3,就会变成 1 , 2 , 3 , 4 , 5 1,2,3,4,5 1,2,3,4,5
由此可以推导出一个公式,对于一个 n × m n\times m n×m 的矩阵,令 k = m + i − j k=m+i-j k=m+i−j,让 k = 1 , 2 , . . . , n + m − 1 k=1,2,...,n+m-1 k=1,2,...,n+m−1,可以依次遍历每一条斜对角线,其中 i ∈ [ 0 , n − 1 ] , j = m + i − k i\in [0,n-1],j=m+i-k i∈[0,n−1],j=m+i−k
代码如下
// C++
class Solution {
public:vector<vector<int>> sortMatrix(vector<vector<int>>& grid) {int n = grid.size(), m = grid[0].size();// 令 k = m - j + i => j = m - k + i , i = k - m + j// 当 i = 0 时,j = m - k// 当 i = n - 1 时,j = m - k + n - 1for(int k = 1; k < n + m; k++){int min_j = max(m - k, 0); // 注意越界int max_j = min(m - k + n - 1, m - 1); // 注意越界vector<int> res;for(int j = min_j; j <= max_j; j++){res.push_back(grid[k - m + j][j]);}if(min_j > 0) ranges::sort(res);else ranges::sort(res, greater<>());for(int j = min_j; j <= max_j; j++){grid[k - m + j][j] = res[j - min_j];}}return grid;}
};
# Python
class Solution:# k = m + i - j# i = 0, j = m - k# i = n - 1, j = m - k + n - 1def sortMatrix(self, grid: List[List[int]]) -> List[List[int]]:n, m = len(grid), len(grid[0])for k in range(1, n+m):min_j = max(m - k, 0)max_j = min(m - k + n - 1, m - 1)res = [grid[k - m + j][j] for j in range(min_j, max_j + 1)]res.sort(reverse=min_j==0)for j, val in zip(range(min_j, max_j + 1), res):grid[k - m + j][j] = valreturn grid
二、将元素分配给有约束条件的组

我们可以优先计算出 e l e m e n t s elements elements 中数字的倍数情况,存放在 f [ x ] f[x] f[x] 中, f [ x ] = i f[x]=i f[x]=i 表示 x x x 能被 e l e m e n t s [ i ] elements[i] elements[i] 整除,如果有多个 i i i 符合条件,取最左边的那个,然后根据 f [ x ] f[x] f[x] 中的结果给 g r o u p s groups groups 中的数进行赋值即可,具体操作见代码,如下
// C++
class Solution {
public:vector<int> assignElements(vector<int>& groups, vector<int>& elements) {int n = groups.size(), m = elements.size();int mx = ranges::max(groups);vector<int> f(mx + 1, -1);// 时间复杂度分析// 当elements=[1,2,3,...,x]时,达到最坏时间复杂度// mx/1+mx/2+...+mx/x//= mx(1+1/2+1/3+...+1/x)//= mx*log(x)for(int i = 0; i < m; i++){int x = elements[i];if(x > mx || f[x] != -1) continue;for(int j = 1; j < mx/x + 1; j++){if(f[x*j] == -1){f[x*j] = i;}}}vector<int> ans(n);for(int i = 0; i < n; i++){ans[i] = f[groups[i]];}return ans;}
};
# Python
class Solution:def assignElements(self, groups: List[int], elements: List[int]) -> List[int]:mx = max(groups)f = [-1] * (mx + 1)for i, x in enumerate(elements):if x > mx or f[x] != -1:continuefor j in range(x, mx+1, x):if f[j] < 0:f[j] = ireturn [f[x] for x in groups]
三、统计可以被最后一个数位整除的子字符串数目

题目思路:
-
由于最后一位数的取值为 1 1 1~ 9 9 9,我们可以分别统计以这些数为结尾的数字对答案的贡献
-
假设我们计算以 x x x 为结尾的数字对答案的贡献
- 对于前 i i i 个字符组成的数字 S i − 1 S_{i-1} Si−1,加上当前数字 s i s_i si,它的取模结果为 ( S i − 1 × 10 + s i ) % x = ( ( S i − 1 × 10 ) % x + s i ) % x = ( ( S i − 1 % x ) × 10 + s i ) % x (S_{i-1} \times 10 + s_i)\%x=((S_{i-1} \times 10)\%x+s_i)\%x=((S_{i-1}\%x) \times 10+s_i)\%x (Si−1×10+si)%x=((Si−1×10)%x+si)%x=((Si−1%x)×10+si)%x
- 从式子中我们可以看出,我们其实并不需要关心数字 S i − 1 S_{i-1} Si−1 具体是多少,我们只要知道 S i − 1 % x S_{i-1}\%x Si−1%x 的结果即可
- 设 f [ i ] [ j ] f[i][j] f[i][j] 表示数字 S i S_i Si 模 x x x 后结果为 j j j 的所有数字个数
- f [ i ] [ ( j × 10 + s i ) % x ] + f[i][(j\times10+s_i)\%x]\ + f[i][(j×10+si)%x] + = f [ i − 1 ] [ j ] =f[i-1][j] =f[i−1][j], j ∈ [ 0 , x ) j\in[0,x) j∈[0,x), s i s_i si 和前面的 S i − 1 S_{i-1} Si−1 合起来作为一个数
- f [ i ] [ s i % x ] + f[i][s_i\%x]\ + f[i][si%x] + = 1 =1 =1, s i s_i si 单独作为一个数
- 当 s i = x s_i=x si=x 时,将 f [ i ] [ 0 ] f[i][0] f[i][0] 加入答案
代码如下
// C++
class Solution {
using LL = long long;
public:long long countSubstrings(string s) {int n = s.size();LL ans = 0;for(int x = 1; x < 10; x++){vector f(n + 1, vector<LL>(x));for(int i = 0; i < n; i++){int y = s[i] - '0';for(int j = 0; j < x; j++){f[i+1][(j*10+y)%x] += f[i][j];}f[i+1][y%x]++;if(y == x) ans += f[i+1][0];}}return ans;}
};
// 空间优化
class Solution {
using LL = long long;
public:long long countSubstrings(string s) {int n = s.size();LL ans = 0;for(int x = 1; x < 10; x++){vector<LL> f(x);for(int i = 0; i < n; i++){vector<LL> t(x);int y = s[i] - '0';for(int j = 0; j < x; j++){t[(j*10+y)%x] += f[j];}t[y%x]++;f = t;if(y == x) ans += f[0];}}return ans;}
};
# Python
class Solution:def countSubstrings(self, s: str) -> int:n = len(s)ans = 0for x in range(1, 10):f = [0] * xfor y in map(int, s):t = [0] * xfor j in range(x):t[(j*10+y)%x] += f[j]t[y%x] += 1f = tif x == y: ans += f[0]return ans
四、最大化游戏分数的最小值

最大化最小值,显然用二分来做。
- 是否具有单调性?显然具备,因为 g a m e S c o r e m i n gameScore_{min} gameScoremin 越大,则每个下标位 + + + = p o i n t s [ i ] =points[i] =points[i] 的操作次数就会变多,则总操作数就会更容易超过 m m m,故可以用二分
- c h e c k check check 函数如何写?这里有个结论:对于任意一种下标移动顺序,都能变成若干组左右来回横跳的形式。所以我们可以贪心的让左边的下标先满足条件,然后再考虑后面的位置,即我们先考虑通过 0 → 1 、 1 → 0 0 \rightarrow 1、1 \rightarrow 0 0→1、1→0 让 0 0 0 先满足条件,在用 1 → 2 、 2 → 1 1 \rightarrow 2、2 \rightarrow 1 1→2、2→1 让 1 1 1 满足条件,同样的方式让 2 、 3 、 . . . 、 n − 1 2、3、...、n-1 2、3、...、n−1 依次满足条件,看总操作次数是否 > m >m >m
代码如下
// C++
class Solution {
using LL = long long;
public:long long maxScore(vector<int>& points, int m) {int n = points.size();auto check = [&](LL k)->bool{if(k == 0) return true;int s = m, pre = 0; // pre 表示为了解决 i - 1 位置,进行反复横跳之后,对 i 位置已经进行的 += points[i] 操作次数for(int i = 0; i < n; i++){int ops = (k - 1) / points[i] + 1 - pre; // 需要走 ops 次if(i == n - 1 && ops <= 0)break;ops = max(1, ops); // 从 i-1 移动到 i,需要至少 1 次操作s -= 2 * (ops - 1) + 1;if(s < 0) return false;pre = ops - 1;}return true;};// (m + 1)/2 表示只有两个数时,第一个数进行的操作次数,这里我们默认将最小值放在这一位,得到一个上限LL l = 0, r = 1LL * (m + 1) / 2 * ranges::min(points);while(l <= r){LL mid = l + (r - l)/2;if(check(mid)) l = mid + 1;else r = mid - 1;}return r;}
};
# Python
class Solution:def maxScore(self, points: List[int], m: int) -> int:n = len(points)def check(k:int)->int:if k == 0: return Trues = mpre = 0for i, x in enumerate(points):ops = (k - 1) // x + 1 - preif i == n - 1 and ops <= 0:return Trueops = max(ops, 1)s -= 2 * ops - 1if s < 0: return Falsepre = ops - 1return Truel , r = 0, (m + 1) // 2 * min(points)while l <= r:mid = l + (r - l) // 2if check(mid):l = mid + 1else:r = mid - 1return r
相关文章:
LeetCode --- 436周赛
题目列表 3446. 按对角线进行矩阵排序 3447. 将元素分配给有约束条件的组 3448. 统计可以被最后一个数位整除的子字符串数目 3449. 最大化游戏分数的最小值 一、按对角线进行矩阵排序 直接模拟,遍历每一个斜对角线,获取斜对角线上的数字,排…...
用easyExcel如何实现?
要使提供的 ExcelModelListener 类来解析 Excel 文件并实现批量存储数据库的功能,需要结合 EasyExcel 库来读取 Excel 数据。具体来说,可以使用 EasyExcel.read() 方法来读取 Excel 文件,并指定 ExcelModelListener 作为事件监听器。 下面是…...
从 X86 到 ARM :工控机迁移中的核心问题剖析
在工业控制领域,技术的不断演进促使着工控机从 X86 架构向 ARM 架构迁移。然而,这一过程并非一帆风顺,面临着诸多关键挑战。 首先,软件兼容性是一个重要问题。许多基于 X86 架构开发的工业控制软件可能无法直接在 ARM 架构上运行…...
大模型DeepSeek-R1学习
学习路线 机器学习-> 深度学习-> 强化学习-> 深度强化学习 大模型演进分支 微调: SFT 监督学习蒸馏:把大模型作为导师训练小模型RLHF:基于人类反馈的强化学习 PPO 近端策略优化 油门 - 重要性采样 权重 * 打分刹车 - clip 修剪…...
【STM32】H743的以太网MAC控制器的一个特殊功能
调试743的MAC,翻阅手册的时候,发现了一个有意思的功能 混杂模式 H743的MAC控制器,可以设置为混杂模式,这就意味着它可以做一些网络监控的应用,譬如连接具备端口镜像功能的交换机,然后直接代替PC实现网络数据…...
关于“i18n“在vue中的使用
关于"i18n"在vue中的使用 <!-- vue2中 --> <template><div>{{ $t("This campaign has expired.") }}}}</div> </template> <script> export default {created() {this.onLoading();},methods: {onLoading () {this.$…...
前缀树算法篇:前缀信息的巧妙获取
前缀树算法篇:前缀信息的巧妙获取 那么前缀树算法是一个非常常用的算法,那么在介绍我们前缀树具体的原理以及实现上,我们先来说一下我们前缀树所应用的一个场景,那么在一个字符串的数据集合当中,那么我们查询我们某个字…...
DVSI使用SenseGlove为开发虚拟现实场景技能培训
虚拟现实场景技能培训能够有效提升被培训者的技能熟练度,使其在现实世界中经历类似事件时第一时间做出正确反映,从而大大降低因缺乏相关技能经验所造成的财产、人员、时间损失。 DVSI(Digital Voice Systems Inc)是一家美国数字化…...
VSCode + Continue 实现AI编程助理
安装VS Code 直接官网下载安装,反正是免费的。 安装VS插件Continue 直接在插件市场中搜索, Continue,第一个就是了。 配置Chat Model 点击Add Chat model后进行选择: 选择Ollama后,需要点击下面的config file : 由于…...
【PHP的static】
关于静态属性 最简单直接:静态方法也是一样 看了很多关于静态和动态的说法,无非是从 调用方式, 类访问实例变量, 访问静态变量, 需不要实例化这几个方向,太空了。问使用场景,好一点的 能说个…...
考研操作系统----操作系统的概念定义功能和目标(仅仅作为王道哔站课程讲义作用)
目录 操作系统的概念定义功能和目标 操作系统的四个特征 操作系统的分类 编辑 操作系统的运行机制 系统调用 操作系统体系结构 操作系统引导 虚拟机 操作系统的概念定义功能和目标 什么是操作系统: 操作系统是指控制和管理整个计算机系统的软硬件资源&…...
从360度全景照片到高质量3D场景:介绍SC-Omnigs 3D重建系统
在当今的数字化时代,3D重建技术正在迅速发展,并广泛应用于文旅、空间智能和3D重建等领域。为了简化360度全景相机拍摄数据的处理流程,提高3D场景重建的质量和效率,我们开发了一款专门处理360度全景相机数据的3D重建系统——SC-Omnigs。本文将详细介绍这一系统的功能、特点及…...
前沿技术新趋势:值得关注的创新发展
量子通信是一种新兴的通信技术。它基于量子力学的原理,特别是量子叠加和量子纠缠。量子通信的核心在于量子比特qubits),与传统的比特不同,量子比特可以同时处于多种状态。这种特性使得信息的传输更为安全。 量子通信技术的最大优…...
算法跟练第十一弹——二叉树
文章目录 part01 递归遍历1.1 二叉树的前序遍历1.2 二叉树的中序遍历1.3 二叉树的后序遍历 part02 迭代遍历2.1 二叉树的前序遍历2.2 二叉树的中序遍历2.3 二叉树的后序遍历 part03 层序遍历3.1 二叉树的层序遍历3.2 二叉树的层序遍历II3.3 二叉树的右视图 归纳获取双重链表的第…...
机器学习(李宏毅)——BERT
一、前言 本文章作为学习2023年《李宏毅机器学习课程》的笔记,感谢台湾大学李宏毅教授的课程,respect!!! 读这篇文章必须先了解self-attention、Transformer,可参阅我其他文章。 二、大纲 BERT简介self-…...
新数据结构(7)——Object
Object类是所有类的父类,在 Java 中,每个类都直接或间接地继承自Object类,也就是说所有类都是object类的子类可以使用Object里的方法。 equals()和hashCode()是Java中Object类所包含的两个关键方法,下面将介绍两个方法。 和equa…...
云计算基础
环境准备 配置虚拟机安装docker 前提安装 步骤命令效果图 安装docker-compose 前提安装 步骤效果图 安装gitea 步骤命令效果图 执行docker-compose命令浏览器初始gitea配置浏览器登录gitea创建组织创建仓库 Drone安装 步骤效果图 非自动化部署 nginx安装redis安装jdk安装…...
利用kali linux 进行自动化渗透测试
本方案旨在自动化创建渗透测试全流程 一、架构 1.智能信息收集体系 class IntelligentOSINT:def __init__(self, target):self.target targetself.intelligence_sources [OSINT_Platforms,DeepWeb_Crawlers, SocialMedia_Trackers,ML_Correlation_Engine]def advanced_col…...
【Vue中BUG解决】npm error path git
报错内容如下: 从错误信息可知,这是一个 ENOENT(No Entry,即找不到文件或目录)错误,并且与 git 相关。具体来说,npm 在尝试调用 git 时,无法找到 git 可执行文件,下面为…...
GPT-4o微调SFT及强化学习DPO数据集构建
假设,已经标注的训练数据集df包含了提示词、输入和输出三列。 构建微调SFT的数据集代码如下: data [] for x in df.values:prompt x[1]user_content x[2]assistant_content x[3]data.append({"messages": [{"role": "sys…...
Prompt Tuning、P-Tuning、Prefix Tuning的区别
一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...
376. Wiggle Subsequence
376. Wiggle Subsequence 代码 class Solution { public:int wiggleMaxLength(vector<int>& nums) {int n nums.size();int res 1;int prediff 0;int curdiff 0;for(int i 0;i < n-1;i){curdiff nums[i1] - nums[i];if( (prediff > 0 && curdif…...
Nginx server_name 配置说明
Nginx 是一个高性能的反向代理和负载均衡服务器,其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机(Virtual Host)。 1. 简介 Nginx 使用 server_name 指令来确定…...
第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明
AI 领域的快速发展正在催生一个新时代,智能代理(agents)不再是孤立的个体,而是能够像一个数字团队一样协作。然而,当前 AI 生态系统的碎片化阻碍了这一愿景的实现,导致了“AI 巴别塔问题”——不同代理之间…...
现代密码学 | 椭圆曲线密码学—附py代码
Elliptic Curve Cryptography 椭圆曲线密码学(ECC)是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础,例如椭圆曲线数字签…...
04-初识css
一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...
OPENCV形态学基础之二腐蚀
一.腐蚀的原理 (图1) 数学表达式:dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一,腐蚀跟膨胀属于反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...
LINUX 69 FTP 客服管理系统 man 5 /etc/vsftpd/vsftpd.conf
FTP 客服管理系统 实现kefu123登录,不允许匿名访问,kefu只能访问/data/kefu目录,不能查看其他目录 创建账号密码 useradd kefu echo 123|passwd -stdin kefu [rootcode caozx26420]# echo 123|passwd --stdin kefu 更改用户 kefu 的密码…...
Chromium 136 编译指南 Windows篇:depot_tools 配置与源码获取(二)
引言 工欲善其事,必先利其器。在完成了 Visual Studio 2022 和 Windows SDK 的安装后,我们即将接触到 Chromium 开发生态中最核心的工具——depot_tools。这个由 Google 精心打造的工具集,就像是连接开发者与 Chromium 庞大代码库的智能桥梁…...
ArcGIS Pro+ArcGIS给你的地图加上北回归线!
今天来看ArcGIS Pro和ArcGIS中如何给制作的中国地图或者其他大范围地图加上北回归线。 我们将在ArcGIS Pro和ArcGIS中一同介绍。 1 ArcGIS Pro中设置北回归线 1、在ArcGIS Pro中初步设置好经纬格网等,设置经线、纬线都以10间隔显示。 2、需要插入背会归线…...
