当前位置: 首页 > news >正文

TensorRT的Python接口解析

TensorRT的Python接口解析

在这里插入图片描述

文章目录

  • TensorRT的Python接口解析
    • 4.1. The Build Phase
      • 4.1.1. Creating a Network Definition in Python
      • 4.1.2. Importing a Model using the ONNX Parser
      • 4.1.3. Building an Engine
    • 4.2. Deserializing a Plan
    • 4.3. Performing Inference

点此链接加入NVIDIA开发者计划

本章说明 Python API 的基本用法,假设您从 ONNX 模型开始。 onnx_resnet50.py示例更详细地说明了这个用例。

Python API 可以通过tensorrt模块访问:

import tensorrt as trt

4.1. The Build Phase

要创建构建器,您需要首先创建一个记录器。 Python 绑定包括一个简单的记录器实现,它将高于特定严重性的所有消息记录到stdout

logger = trt.Logger(trt.Logger.WARNING)

或者,可以通过从ILogger类派生来定义您自己的记录器实现:

class MyLogger(trt.ILogger):def __init__(self):trt.ILogger.__init__(self)def log(self, severity, msg):pass # Your custom logging implementation herelogger = MyLogger()

然后,您可以创建一个构建器:

builder = trt.Builder(logger)

4.1.1. Creating a Network Definition in Python

创建构建器后,优化模型的第一步是创建网络定义:

network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))

为了使用 ONNX 解析器导入模型,需要EXPLICIT_BATCH标志。有关详细信息,请参阅显式与隐式批处理部分。

4.1.2. Importing a Model using the ONNX Parser

现在,需要从 ONNX 表示中填充网络定义。您可以创建一个 ONNX 解析器来填充网络,如下所示:

parser = trt.OnnxParser(network, logger)

然后,读取模型文件并处理任何错误:

success = parser.parse_from_file(model_path)
for idx in range(parser.num_errors):print(parser.get_error(idx))if not success:pass # Error handling code here

4.1.3. Building an Engine

下一步是创建一个构建配置,指定 TensorRT 应该如何优化模型:

config = builder.create_builder_config()

这个接口有很多属性,你可以设置这些属性来控制 TensorRT 如何优化网络。一个重要的属性是最大工作空间大小。层实现通常需要一个临时工作空间,并且此参数限制了网络中任何层可以使用的最大大小。如果提供的工作空间不足,TensorRT 可能无法找到层的实现:

config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, 1 << 20) # 1 MiB

指定配置后,可以使用以下命令构建和序列化引擎:

serialized_engine = builder.build_serialized_network(network, config)

将引擎保存到文件以供将来使用可能很有用。你可以这样做:

with open(“sample.engine”, “wb”) as f:f.write(serialized_engine)

4.2. Deserializing a Plan

要执行推理,您首先需要使用Runtime接口反序列化引擎。与构建器一样,运行时需要记录器的实例。

runtime = trt.Runtime(logger)

然后,您可以从内存缓冲区反序列化引擎:

engine = runtime.deserialize_cuda_engine(serialized_engine)

如果您需要首先从文件加载引擎,请运行:

with open(“sample.engine”, “rb”) as f:serialized_engine = f.read()

4.3. Performing Inference

引擎拥有优化的模型,但要执行推理需要额外的中间激活状态。这是通过IExecutionContext接口完成的:

context = engine.create_execution_context()

一个引擎可以有多个执行上下文,允许一组权重用于多个重叠的推理任务。 (当前的一个例外是使用动态形状时,每个优化配置文件只能有一个执行上下文。)

要执行推理,您必须为输入和输出传递 TensorRT 缓冲区,TensorRT 要求您在 GPU 指针列表中指定。您可以使用为输入和输出张量提供的名称查询引擎,以在数组中找到正确的位置:

input_idx = engine[input_name]
output_idx = engine[output_name]

使用这些索引,为每个输入和输出设置 GPU 缓冲区。多个 Python 包允许您在 GPU 上分配内存,包括但不限于 PyTorch、Polygraphy CUDA 包装器和 PyCUDA。

然后,创建一个 GPU 指针列表。例如,对于 PyTorch CUDA 张量,您可以使用data_ptr()方法访问 GPU 指针;对于 Polygraphy DeviceArray ,使用ptr属性:

buffers = [None] * 2 # Assuming 1 input and 1 output
buffers[input_idx] = input_ptr
buffers[output_idx] = output_ptr

填充输入缓冲区后,您可以调用 TensorRT 的execute_async方法以使用 CUDA 流异步启动推理。

首先,创建 CUDA 流。如果您已经有 CUDA 流,则可以使用指向现有流的指针。例如,对于 PyTorch CUDA 流,即torch.cuda.Stream() ,您可以使用cuda_stream属性访问指针;对于 Polygraphy CUDA 流,使用ptr属性。
接下来,开始推理:

context.execute_async_v2(buffers, stream_ptr)

通常在内核之前和之后将异步memcpy()排入队列以从 GPU 中移动数据(如果数据尚不存在)。

要确定内核(可能还有memcpy() )何时完成,请使用标准 CUDA 同步机制,例如事件或等待流。例如,对于 Polygraphy,使用:

stream.synchronize()

如果您更喜欢同步推理,请使用execute_v2方法而不是execute_async_v2

更多精彩内容:
https://www.nvidia.cn/gtc-global/?ncid=ref-dev-876561

相关文章:

TensorRT的Python接口解析

TensorRT的Python接口解析 文章目录TensorRT的Python接口解析4.1. The Build Phase4.1.1. Creating a Network Definition in Python4.1.2. Importing a Model using the ONNX Parser4.1.3. Building an Engine4.2. Deserializing a Plan4.3. Performing Inference点此链接加入…...

【信管11.5】合同、采购、招投标相关法规

合同、采购、招投标相关法规关于法律法规相关的内容&#xff0c;其实并没什么可以多说的&#xff0c;我也只是列出来&#xff0c;大家挑着背吧。当然&#xff0c;这里也不都是完完全全的法律条文&#xff0c;有一些也可能是一些归纳总结。更具体的内容大家可以参考教材以及查阅…...

使用 CSS 变量更改多个元素样式

使用 CSS 变量更改多个元素样式 var() 函数用于插入自定义的属性值&#xff0c;如果一个属性值在多处被使用&#xff0c;该方法就很有用。 custom-property-name 是必需的, 自定义属性的名称&#xff0c;必需以 – 开头。 value 可选。备用值&#xff0c;在属性不存在的时候使…...

面试题(二十五)设计模式

1. 设计模式 1.1 说一说设计模式的六大原则 参考答案 单一职责原则 一个类&#xff0c;应当只有一个引起它变化的原因&#xff1b;即一个类应该只有一个职责。 就一个类而言&#xff0c;应该只专注于做一件事和仅有一个引起变化的原因&#xff0c;这就是所谓的单一职责原则…...

使用红黑树模拟实现map和set

在STL的源代码中&#xff0c;map和set的底层原理都是红黑树。但这颗红黑树跟我们单独写的红黑树不一样&#xff0c;它需要改造一下&#xff1a; 改造红黑树 节点的定义 因为map和set的底层都是红黑树。而且map是拥有键值对pair<K,V>的&#xff0c;而set是没有键值对&a…...

【django项目开发】用户登录后缓存权限到redis中(十)

这里写目录标题一、权限的数据的特点二、首先settings.py文件中配置redis连接redis数据库一、权限的数据的特点 需要去数据库中频繁的读和写&#xff0c;为了项目提高运行效率&#xff0c;可以把用户的权限在每次登录的时候都缓存到redis中。这样的话&#xff0c;权限判断的中…...

算法总结c++

文章目录基本概念时间复杂度空间复杂度基本结构1. 数组前缀和差分数组快慢指针(索引)左右指针&#xff08;索引&#xff09;盛水容器三数之和最长回文子串2. 链表双指针删除链表的倒数第 n 个结点翻转链表递归将两个升序链表合并为一个新的 升序 链表链表翻转3. 散列表twoSum无…...

Python 之 NumPy 切片索引和广播机制

文章目录一、切片和索引1. 一维数组2. 二维数组二、索引的高级操作1. 整数数组索引2. 布尔数组索引三、广播机制1. 广播机制规则2. 对于广播规则另一种简单理解一、切片和索引 ndarray 对象的内容可以通过索引或切片来访问和修改&#xff08;&#xff09;&#xff0c;与 Pytho…...

Redis【包括Redis 的安装+本地远程连接】

Redis 一、为什么要用缓存&#xff1f; 缓存定义 缓存是一个高速数据交换的存储器&#xff0c;使用它可以快速的访问和操作数据。 程序中的缓存 在我们程序中&#xff0c;如果没有使用缓存&#xff0c;程序的调用流程是直接访问数据库的&#xff1b; 如果多个程序调用一个数…...

深度学习训练营_第P3周_天气识别

&#x1f368; 本文为&#x1f517;365天深度学习训练营 中的学习记录博客&#x1f366; 参考文章&#xff1a;Pytorch实战 | 第P3周&#xff1a;彩色图片识别&#xff1a;天气识别**&#x1f356; 原作者&#xff1a;K同学啊|接辅导、项目定制**␀ 本次实验有两个新增任务&…...

“华为杯”研究生数学建模竞赛2006年-【华为杯】C题:维修线性流量阀时的内筒设计问题(附获奖论文及matlab代码)

赛题描述 油田采油用的油井都是先用钻机钻几千米深的孔后,再利用固井机向四周的孔壁喷射水泥砂浆得到水泥井管后形成的。固井机上用来控制砂浆流量的阀是影响水泥井管质量的关键部件,但也会因磨损而损坏。目前我国还不能生产完整的阀体,固井机仍依赖进口。由于损坏的内筒已…...

数据结构:带环单链表基础OJ练习笔记(leetcode142. 环形链表 II)(leetcode三题大串烧)

目录 一.前言 二.leetcode160. 相交链表 1.问题描述 2.问题分析与求解 三.leetcode141. 环形链表 1.问题描述 2.代码思路 3.证明分析 下一题会用到的重要小结论&#xff1a; 四.leetcode142. 环形链表 II 1.问题描述 2.问题分析与求解 Judgecycle接口&#xf…...

数模美赛如何找数据 | 2023年美赛数学建模必备数据库

2023美赛资料分享/思路答疑群&#xff1a;322297051 欧美相关统计数据&#xff08;一般美赛这里比较多&#xff09; 1、http://www.census.gov/ 美国统计局&#xff08;统计调查局或普查局&#xff09;官方网站 The Census Bureau Web Site provides on-line access to our …...

SSTI漏洞原理及渗透测试

模板引擎&#xff08;Web开发中&#xff09; 是为了使 用户界面 和 业务数据&#xff08;内容&#xff09;分离而产生的&#xff0c;它可以生成特定格式的文档&#xff0c; 利用模板引擎来生成前端的HTML代码&#xff0c;模板引擎会提供一套生成HTML代码的程序&#xff0c;之后…...

【算法基础】高精度除法

&#x1f466;个人主页&#xff1a;Weraphael ✍&#x1f3fb;作者简介&#xff1a;目前是C语言 算法学习者 ✈️专栏&#xff1a;【C/C】算法 &#x1f40b; 希望大家多多支持&#xff0c;咱一起进步&#xff01;&#x1f601; 如果文章对你有帮助的话 欢迎 评论&#x1f4ac…...

optimizer.zero_grad(), loss.backward(), optimizer.step()的理解及使用

optimizer.zero_grad&#xff0c;loss.backward&#xff0c;optimizer.step用法介绍optimizer.zero_grad()&#xff1a;loss.backward()&#xff1a;optimizer.step()&#xff1a;用法介绍 这三个函数的作用是将梯度归零&#xff08;optimizer.zero_grad()&#xff09;&#x…...

融资、量产和一栈式布局,这家Tier 1如此备战高阶智驾决赛圈

作者 | Bruce 编辑 | 于婷从早期的ADAS&#xff0c;到高速/城市NOA&#xff0c;智能驾驶的竞争正逐渐升级&#xff0c;这对于车企和供应商的核心技术和产品布局都是一个重要的考验。 部分智驾供应商已经在囤积粮草&#xff0c;响应变化。 2023刚一开年&#xff0c;智能驾驶领域…...

centos7.8安装oralce11g

文章目录环境安装文件准备添加用户操作系统环境配置解压安装问题解决创建用户远程连接为了熟悉rman备份操作&#xff0c;参照大神的博客在centos中安装了一套oracle11g&#xff0c;将安装步骤记录如下环境安装文件准备 这里准备一台centos7.8 虚拟机 配置ip 192.168.18.100 主…...

【蓝桥杯集训·每日一题】AcWing 3956. 截断数组

文章目录一、题目1、原题链接2、题目描述二、解题报告1、思路分析2、时间复杂度3、代码详解三、知识风暴一维前缀和一、题目 1、原题链接 3956. 截断数组 2、题目描述 给定一个长度为 n 的数组 a1,a2,…,an。 现在&#xff0c;要将该数组从中间截断&#xff0c;得到三个非空子…...

万丈高楼平地起:Linux常用命令

目录 系统管理命令 man命令 ls命令 cd命令 useradd命令 passwd命令 free命令 whoami命令 ps命令 date命令 pwd命令 shutdown命令 文件目录管理命令 touch命令 cat命令 mkdir命令 rm命令 cp命令 mv命令 find命令 more指令 less指令 head指令 tail指令 …...

web vue 项目 Docker化部署

Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段&#xff1a; 构建阶段&#xff08;Build Stage&#xff09;&#xff1a…...

synchronized 学习

学习源&#xff1a; https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖&#xff0c;也要考虑性能问题&#xff08;场景&#xff09; 2.常见面试问题&#xff1a; sync出…...

【杂谈】-递归进化:人工智能的自我改进与监管挑战

递归进化&#xff1a;人工智能的自我改进与监管挑战 文章目录 递归进化&#xff1a;人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管&#xff1f;3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...

在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能

下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能&#xff0c;包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...

2025年能源电力系统与流体力学国际会议 (EPSFD 2025)

2025年能源电力系统与流体力学国际会议&#xff08;EPSFD 2025&#xff09;将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会&#xff0c;EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...

vscode(仍待补充)

写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh&#xff1f; debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...

质量体系的重要

质量体系是为确保产品、服务或过程质量满足规定要求&#xff0c;由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面&#xff1a; &#x1f3db;️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限&#xff0c;形成层级清晰的管理网络&#xf…...

(二)原型模式

原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...

Nginx server_name 配置说明

Nginx 是一个高性能的反向代理和负载均衡服务器&#xff0c;其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机&#xff08;Virtual Host&#xff09;。 1. 简介 Nginx 使用 server_name 指令来确定…...

Python爬虫(一):爬虫伪装

一、网站防爬机制概述 在当今互联网环境中&#xff0c;具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类&#xff1a; 身份验证机制&#xff1a;直接将未经授权的爬虫阻挡在外反爬技术体系&#xff1a;通过各种技术手段增加爬虫获取数据的难度…...