当前位置: 首页 > news >正文

动态规划专题——背包问题

🧑‍💻 文章作者:Iareges
🔗 博客主页:https://blog.csdn.net/raelum
⚠️ 转载请注明出处

目录

  • 前言
  • 一、01背包
    • 1.1 使用滚动数组优化
  • 二、完全背包
    • 2.1 使用滚动数组优化
  • 三、多重背包
    • 3.1 使用二进制优化
  • 四、分组背包
  • 总结

前言

本文主要介绍常见的四种背包问题,思维导图如下:

一、01背包

💡 现有 NNN 件物品和一个最多能承重 MMM 的背包,第 iii 件物品的重量是 wiw_iwi,价值是 viv_ivi。在背包能承受的范围内,试问将哪些物品装入背包后可使总价值最大,求这个最大价值。

因为每件物品只有选与不选两种状态,所以该问题又称01背包问题。

dp[i][j]dp[i][j]dp[i][j] 的含义是:在背包承重为 jjj 的前提下,从前 iii 个物品中选能够得到的最大价值。不难发现 dp[N][M]dp[N][M]dp[N][M] 就是本题的答案。

如何计算 dp[i][j]dp[i][j]dp[i][j] 呢?我们可以将它划分为以下两部分:

  • 选第 iii 个物品:由于第 iii 个物品一定会被选择,那么相当于从前 i−1i-1i1 个物品中选且总重量不超过 j−w[i]j-w[i]jw[i],对应 dp[i−1][j−w[i]]+v[i]dp[i-1][j-w[i]]+v[i]dp[i1][jw[i]]+v[i]
  • 不选第 iii 个物品:意味着从前 i−1i-1i1 个物品中选且总重量不超过 jjj,对应 dp[i−1][j]dp[i-1][j]dp[i1][j]

结合以上两点可得递推公式:

dp[i][j]=max⁡(dp[i−1][j],dp[i−1][j−w[i]]+v[i])dp[i][j] = \max(dp[i-1][j],\;dp[i-1][j-w[i]]+v[i]) dp[i][j]=max(dp[i1][j],dp[i1][jw[i]]+v[i])

由于下标不能是负数,所以上述递推公式要求 j≥w[i]j\geq w[i]jw[i]。当 j<w[i]j<w[i]j<w[i] 时,意味着第 iii 个物品无法装进背包,此时 dp[i][j]=dp[i−1][j]dp[i][j]=dp[i-1][j]dp[i][j]=dp[i1][j]。综合以上可得出:

dp[i][j]={dp[i−1][j],j<w[i]max⁡(dp[i−1][j],dp[i−1][j−w[i]]+v[i]),j≥w[i]dp[i][j]= \begin{cases} dp[i-1][j],&j<w[i] \\ \max(dp[i-1][j],\;dp[i-1][j-w[i]]+v[i]),&j\geq w[i] \end{cases} dp[i][j]={dp[i1][j],max(dp[i1][j],dp[i1][jw[i]]+v[i]),j<w[i]jw[i]

dpdpdp 数组应当如何初始化呢?当背包承重为 000 时,显然装不下任何物品,所以 dp[i][0]=0(1≤i≤N)dp[i][0]=0\;(1\leq i\leq N)dp[i][0]=0(1iN)。若一个物品也不选(即从前 000 个物品中选),此时最大价值也是 000,所以 dp[0][j]=0(0≤j≤M)dp[0][j]=0\;(0\leq j\leq M)dp[0][j]=0(0jM)。由此可知,dpdpdp 数组应当全0初始化,即声明为全局变量。

题目链接:AcWing 2. 01背包问题

#include <bits/stdc++.h>using namespace std;const int N = 1010;int w[N], v[N];
int dp[N][N];int main() {ios::sync_with_stdio(false);cin.tie(nullptr);int n, m;cin >> n >> m;for (int i = 1; i <= n; i++) cin >> w[i] >> v[i];for (int i = 1; i <= n; i++) {for (int j = 1; j <= m; j++) {if (j < w[i]) dp[i][j] = dp[i - 1][j];else dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - w[i]] + v[i]);}}cout << dp[n][m] << "\n";return 0;
}

时间复杂度为 O(nm)O(nm)O(nm)

1.1 使用滚动数组优化

之前我们用到的 dpdpdp 数组是二维数组,它可以进一步优化成一维数组。

观察递推公式不难发现,dpdpdp 数组中第 iii 行的元素仅由第 i−1i-1i1 行的元素得来,即第 000 行元素的更新值放到第 111 行,第 111 行元素的更新值放到第 222 行,以此类推。与其把一行的更新值放到新的一行,不如直接就地更新,因此我们的 dpdpdp 数组只需要一行来存储,即一维数组。

去掉 dpdpdp 数组的第一维后,递推公式变成:

dp[j]={dp[j],j<w[i]max⁡(dp[j],dp[j−w[i]]+v[i]),j≥w[i]dp[j]= \begin{cases} dp[j],&j<w[i] \\ \max(dp[j],\;dp[j-w[i]]+v[i]),&j\geq w[i] \end{cases} dp[j]={dp[j],max(dp[j],dp[jw[i]]+v[i]),j<w[i]jw[i]

dp[j]=max⁡(dp[j],dp[j−w[i]]+v[i]),j≥w[i]dp[j]= \max(dp[j],\;dp[j-w[i]]+v[i]),\quad j\geq w[i] dp[j]=max(dp[j],dp[jw[i]]+v[i]),jw[i]

原先 jjj 是从 111 遍历至 mmm 的,现在只需从 w[i]w[i]w[i] 遍历至 mmm。但,这个遍历顺序真的对吗?

请看下图:

红色箭头表示,在二维数组中,dp[i][j]dp[i][j]dp[i][j]dp[i−1][j−w[i]]dp[i-1][j-w[i]]dp[i1][jw[i]]dp[i−1][j]dp[i-1][j]dp[i1][j] 得来,dp[i][j+w[i]]dp[i][j+w[i]]dp[i][j+w[i]]dp[i−1][j]dp[i-1][j]dp[i1][j]dp[i−1][j+w[i]]dp[i-1][j+w[i]]dp[i1][j+w[i]] 得来。用一维数组的话来讲就是,第 iii 行的 dp[j]dp[j]dp[j] 由第 i−1i-1i1 行的 dp[j−w[i]]dp[j-w[i]]dp[jw[i]]dp[j]dp[j]dp[j] 得来,第 iii 行的 dp[j+w[i]]dp[j+w[i]]dp[j+w[i]] 由第 i−1i-1i1 行的 dp[j]dp[j]dp[j]dp[j+w[i]]dp[j+w[i]]dp[j+w[i]] 得来。

如果 jjj 从小到大遍历,那么会先更新 dp[j]dp[j]dp[j] 再更新 dp[j+w[i]]dp[j+w[i]]dp[j+w[i]],这就导致在更新 dp[j+w[i]]dp[j+w[i]]dp[j+w[i]] 时使用的是第 iii 行的 dp[j]dp[j]dp[j] 而非第 i−1i-1i1 行的 dp[j]dp[j]dp[j],即当 jjj 从小到大遍历时,二维数组的递推式变成了:

dp[i][j]={dp[i−1][j],j<w[i]max⁡(dp[i−1][j],dp[i][j−w[i]]+v[i]),j≥w[i]dp[i][j]= \begin{cases} dp[i-1][j],&j<w[i] \\ \max(dp[i-1][j],\;dp[i][j-w[i]]+v[i]),&j\geq w[i] \end{cases} dp[i][j]={dp[i1][j],max(dp[i1][j],dp[i][jw[i]]+v[i]),j<w[i]jw[i]

⚠️ 请牢记该式,后续讲解完全背包时会提到它。

这显然是错误的。事实上,让 jjj 从大到小遍历就不会出现这个问题。

#include <bits/stdc++.h>using namespace std;const int N = 1010;int w[N], v[N];
int dp[N];int main() {ios::sync_with_stdio(false);cin.tie(nullptr);int n, m;cin >> n >> m;for (int i = 1; i <= n; i++) cin >> w[i] >> v[i];for (int i = 1; i <= n; i++)for (int j = m; j >= w[i]; j--)dp[j] = max(dp[j], dp[j - w[i]] + v[i]);cout << dp[m] << "\n";return 0;
}

当然,www 数组和 vvv 数组也是不必要的,我们可以边输入边处理,因此可以得到01背包问题的最终版代码:

#include <bits/stdc++.h>using namespace std;const int N = 1010;int dp[N];int main() {ios::sync_with_stdio(false);cin.tie(nullptr);int n, m;cin >> n >> m;for (int i = 1; i <= n; i++) {int w, v;cin >> w >> v;for (int j = m; j >= w; j--)dp[j] = max(dp[j], dp[j - w] + v);}cout << dp[m] << "\n";return 0;
}

到此为止,可以总结出,当 dpdpdp 数组是二维数组时,jjj 既可以从小到大遍历也可以从大到小遍历,但当 dpdpdp 数组是一维数组时,jjj 只能从大到小遍历

二、完全背包

💡 现有 NNN 种物品和一个最多能承重 MMM 的背包,每种物品都有无限个,第 iii 种物品的重量是 wiw_iwi,价值是 viv_ivi。在背包能承受的范围内,试问将哪些物品装入背包后可使总价值最大,求这个最大价值。

dp[i][j]dp[i][j]dp[i][j] 的含义是:在背包承重为 jjj 的前提下,从前 iii 物品中选能够得到的最大价值。

如何计算 dp[i][j]dp[i][j]dp[i][j] 呢?我们可以将它划分为以下若干部分:

  • 000 个第 iii 种物品:相当于不选第 iii 种物品,对应 dp[i−1][j]dp[i-1][j]dp[i1][j]
  • 111 个第 iii 种物品:对应 dp[i−1][j−w[i]]+v[i]dp[i-1][j-w[i]]+v[i]dp[i1][jw[i]]+v[i]
  • 222 个第 iii 种物品:对应 dp[i−1][j−2⋅w[i]]+2⋅v[i]dp[i-1][j-2\cdot w[i]]+2\cdot v[i]dp[i1][j2w[i]]+2v[i]
  • ⋯\cdots

上述过程并不会无限进行下去,因为背包承重是有限的。设第 iii 种物品最多能选 ttt 个,于是可知 t=⌊jw[i]⌋t=\lfloor \frac{j}{w[i]}\rfloort=w[i]j,从而得到递推式:

dp[i][j]=max⁡0≤k≤tdp[i−1][j−k⋅w[i]]+k⋅v[i]dp[i][j]=\max_{0\leq k\leq t} dp[i-1][j-k\cdot w[i]]+k\cdot v[i] dp[i][j]=0ktmaxdp[i1][jkw[i]]+kv[i]

题目链接:AcWing 3. 完全背包问题

#include <bits/stdc++.h>using namespace std;const int N = 1010;int w[N], v[N];
int dp[N][N];int main() {ios::sync_with_stdio(false);cin.tie(nullptr);int n, m;cin >> n >> m;for (int i = 1; i <= n; i++) cin >> w[i] >> v[i];for (int i = 1; i <= n; i++)for (int j = 1; j <= m; j++) {int t = j / w[i];for (int k = 0; k <= t; k++)dp[i][j] = max(dp[i][j], dp[i - 1][j - k * w[i]] + k * v[i]);}cout << dp[n][m] << "\n";return 0;
}

若将 ttt 的值改为 min⁡(1,j/w[i])\min(1,\,j/w[i])min(1,j/w[i]),则完全背包将退化为01背包。

上述代码的时间复杂度为 O(m2∑iwi−1)≈O(m2n)O(m^2\sum_iw_i^{-1})\approx O(m^2n)O(m2iwi1)O(m2n),TLE是必然的。

2.1 使用滚动数组优化

考虑 dp[i][j]dp[i][j]dp[i][j],此时第 iii 种物品最多能选 t1=⌊jw[i]⌋t_1=\lfloor \frac{j}{w[i]} \rfloort1=w[i]j 个,将递推式展开:

dp[i][j]=max⁡(dp[i−1][j],dp[i−1][j−w[i]]+v[i],dp[i−1][j−2⋅w[i]]+2⋅v[i],⋮dp[i−1][j−t1⋅w[i]]+t1⋅v[i])\begin{aligned} dp[i][j] = \max(dp[i-1][j],\; &dp[i-1][j-w[i]]+v[i], \\ &dp[i-1][j-2\cdot w[i]]+2\cdot v[i], \\ &\vdots \\ &dp[i-1][j-t_1\cdot w[i]]+t_1\cdot v[i]) \end{aligned} dp[i][j]=max(dp[i1][j],dp[i1][jw[i]]+v[i],dp[i1][j2w[i]]+2v[i],dp[i1][jt1w[i]]+t1v[i])

下面考虑 dp[i][j−w[i]]dp[i][j-w[i]]dp[i][jw[i]],此时第 iii 种物品最多能选 t2=⌊j−w[i]w[i]⌋=⌊jw[i]−1⌋=t1−1t_2=\lfloor \frac{j-w[i]}{w[i]} \rfloor=\lfloor \frac{j}{w[i]}-1\rfloor=t_1-1t2=w[i]jw[i]=w[i]j1=t11 个,相应的递推式为

dp[i][j−w[i]]=max⁡(dp[i−1][j−w[i]],dp[i−1][j−w[i]−w[i]]+v[i],dp[i−1][j−w[i]−2⋅w[i]]+2⋅v[i],⋮dp[i−1][j−w[i]−t2⋅w[i]]+t2⋅v[i])\begin{aligned} dp[i][j-w[i]] = \max(dp[i-1][j-w[i]],\; &dp[i-1][j-w[i]-w[i]]+v[i], \\ &dp[i-1][j-w[i]-2\cdot w[i]]+2\cdot v[i], \\ &\vdots \\ &dp[i-1][j-w[i]-t_2\cdot w[i]]+t_2\cdot v[i]) \end{aligned} dp[i][jw[i]]=max(dp[i1][jw[i]],dp[i1][jw[i]w[i]]+v[i],dp[i1][jw[i]2w[i]]+2v[i],dp[i1][jw[i]t2w[i]]+t2v[i])

又注意到 t1=t2+1t_1=t_2+1t1=t2+1,上式可化简为

dp[i][j−w[i]]=max⁡(dp[i−1][j−w[i]],dp[i−1][j−2⋅w[i]]+v[i],dp[i−1][j−3⋅w[i]]+2⋅v[i],⋮dp[i−1][j−t1⋅w[i]]+(t1−1)⋅v[i])\begin{aligned} dp[i][j-w[i]] = \max(dp[i-1][j-w[i]],\; &dp[i-1][j-2\cdot w[i]]+v[i], \\ &dp[i-1][j-3\cdot w[i]]+2\cdot v[i], \\ &\vdots \\ &dp[i-1][j-t_1\cdot w[i]]+(t_1-1)\cdot v[i]) \end{aligned} dp[i][jw[i]]=max(dp[i1][jw[i]],dp[i1][j2w[i]]+v[i],dp[i1][j3w[i]]+2v[i],dp[i1][jt1w[i]]+(t11)v[i])

将该式与 dp[i][j]dp[i][j]dp[i][j] 的递推式比较不难发现

dp[i][j]=max⁡(dp[i−1][j],dp[i][j−w[i]]+v[i])dp[i][j]=\max(dp[i-1][j],\;dp[i][j-w[i]]+v[i]) dp[i][j]=max(dp[i1][j],dp[i][jw[i]]+v[i])

根据1.1节中的结论,该式对应的是 jjj 从小到大遍历,于是我们只需把01背包问题的代码中的 jjj 改为从小到大遍历即可

#include <bits/stdc++.h>using namespace std;const int N = 1010;int dp[N];int main() {ios::sync_with_stdio(false);cin.tie(nullptr);int n, m;cin >> n >> m;for (int i = 1; i <= n; i++) {int w, v;cin >> w >> v;for (int j = w; j <= m; j++)  // 只需修改这一行dp[j] = max(dp[j], dp[j - w] + v);}cout << dp[m] << "\n";return 0;
}

优化后的时间复杂度为 O(nm)O(nm)O(nm)

三、多重背包

💡 现有 NNN 种物品和一个最多能承重 MMM 的背包,第 iii 种物品的数量是 sis_isi,重量是 wiw_iwi,价值是 viv_ivi。在背包能承受的范围内,试问将哪些物品装入背包后可使总价值最大,求这个最大价值。

回顾完全背包问题的暴力解法,在背包承重为 jjj 的前提下,第 iii 种物品最多能放 t=j/w[i]t=j/w[i]t=j/w[i] 个(这里是整除)。而在01背包问题中,第 iii 种物品只有一个,所以应当取 t=min⁡(1,j/w[i])t=\min(1,\,j/w[i])t=min(1,j/w[i])。由此可见,对于多重背包问题,只需取 t=min⁡(s[i],j/w[i])t=\min(s[i],\,j/w[i])t=min(s[i],j/w[i])

对完全背包问题的暴力解法做一点简单修改即可求解多重背包问题。

题目链接:AcWing 4. 多重背包问题

#include <bits/stdc++.h>using namespace std;const int N = 110;int dp[N][N];int main() {ios::sync_with_stdio(false);cin.tie(nullptr);int n, m;cin >> n >> m;for (int i = 1; i <= n; i++) {int w, v, s;cin >> w >> v >> s;for (int j = 1; j <= m; j++) {int t = min(s, j / w);  // 只有这里需要修改for (int k = 0; k <= t; k++)dp[i][j] = max(dp[i][j], dp[i - 1][j - k * w] + k * v);}}cout << dp[n][m] << "\n";return 0;
}

时间复杂度为 O(m∑isi)O(m\sum_i s_i)O(misi),但还可以进一步优化。

3.1 使用二进制优化

从时间复杂度的表达式可以看出,O(m)O(m)O(m) 的部分已经无法再优化了,我们只能从 O(∑isi)O(\sum_i s_i)O(isi) 入手。

先来看一个例子。水果店里有 404040 个苹果,小明计划购买 n(1≤n≤40)n\,(1\leq n\leq 40)n(1n40) 个苹果,试问如何让小明尽可能快速地完成购买?一个显而易见的暴力做法是,让小明一个个拿(单位是个),但效率过于低下。事实上,店员可事先准备好 666 个箱子,每个箱子中的苹果数量分别为 [1,2,4,8,16,9][1,2,4,8,16,9][1,2,4,8,16,9],再让小明按箱子拿(单位是箱子),无论小明计划购买多少个,他最多只需要拿 666 次,而在暴力做法中,小明最多需要拿 404040 次。

下面用数学语言来描述上面的例子。对于任意的正整数 sss,我们都可以找到 ⌊log⁡2s⌋+1≜k\lfloor \log_2 s\rfloor+1\triangleq klog2s+1k 个正整数 a1,⋯,aka_1,\cdots,a_ka1,,ak,使得 ∀n∈[0,s]\forall\, n\in[0,s]n[0,s],都有

n=vTa,a=(a1,⋯,ak)T,ai={2i−1,1≤i≤k−1r(∈[1,2k−1]),i=kn=v^\mathrm{T}a,\quad a=(a_1,\cdots,a_k)^\mathrm{T},\quad a_i= \begin{cases} 2^{i-1},&1\leq i\leq k -1\\ r\,(\in [1,\,2^{k-1}]),&i=k\\ \end{cases} n=vTa,a=(a1,,ak)T,ai={2i1,r([1,2k1]),1ik1i=k

其中 v=(v1,⋯,vk)Tv=(v_1,\cdots,v_k)^\mathrm{T}v=(v1,,vk)T,且其分量非 000111

感兴趣的读者可自行证明,这里不再赘述。回到本题,先不考虑背包的承重,我们在暴力求解多重背包的时候,对于每种物品 iii,都要从 000 逐个枚举至 s[i]s[i]s[i],效率无疑是低下的。现在,对于每种物品 iii,我们将这 s[i]s[i]s[i] 个物品分散至 ⌊log⁡2s[i]⌋+1\lfloor \log_2 s[i]\rfloor+1log2s[i]⌋+1 个「箱子」中,于是多重背包便化成了01背包。

题目链接:AcWing 5. 多重背包问题 II

多重背包问题中的一个「箱子」相当于01背包问题中的一件「物品」,因此我们需要估计出多重背包问题中到底有多少个箱子。显然箱子总数为

N=∑i=1n(⌊log⁡2s[i]⌋+1)≤∑i=1n⌊log⁡22000⌋+n=11n≤11000N=\sum_{i=1}^n(\lfloor \log_2 s[i]\rfloor+1)\leq \sum_{i=1}^n \lfloor \log_2 2000\rfloor+n=11n\leq 11000 N=i=1n(⌊log2s[i]⌋+1)i=1nlog22000+n=11n11000

#include <bits/stdc++.h>using namespace std;const int N = 11010, M = 2010;int w[N], v[N];
int dp[M];int main() {ios::sync_with_stdio(false);cin.tie(nullptr);int n, m;cin >> n >> m;int cnt = 0;while (n--) {int a, b, s;  // a是重量, b是价值, c是数量cin >> a >> b >> s;for (int k = 1; k <= s; k *= 2) {cnt++;w[cnt] = a * k, v[cnt] = b * k;s -= k;}if (s > 0) {cnt++;w[cnt] = a * s, v[cnt] = b * s;}}n = cnt;for (int i = 1; i <= n; i++)for (int j = m; j >= w[i]; j--)dp[j] = max(dp[j], dp[j - w[i]] + v[i]);cout << dp[m] << "\n";return 0;
}

优化后的时间复杂度为 O(m∑ilog⁡si)O(m\sum_i \log s_i)O(milogsi)

四、分组背包

💡 现有 NNN 组物品和一个最多能承重 MMM 的背包,每组物品有若干个,同一组内的物品最多只能选一个。每件物品的重量是 wijw_{ij}wij,价值是 vijv_{ij}vij,其中 iii 是组号,jjj 是组内编号。在背包能承受的范围内,试问将哪些物品装入背包后可使总价值最大,求这个最大价值。

dp[i][j]dp[i][j]dp[i][j] 的含义是:在背包承重为 jjj 的前提下,从前 iii 物品中选能够得到的最大价值。

如何计算 dp[i][j]dp[i][j]dp[i][j] 呢?我们可以将它划分为以下若干部分:

  • 不选第 iii 组的物品:对应 dp[i−1][j]dp[i-1][j]dp[i1][j]
  • 选第 iii 组的第 111 个物品:对应 dp[i−1][j−w[i][1]]+v[i][1]dp[i-1][j-w[i][1]]+v[i][1]dp[i1][jw[i][1]]+v[i][1]
  • 选第 iii 组的第 222 个物品:对应 dp[i−1][j−w[i][2]]+v[i][2]dp[i-1][j-w[i][2]]+v[i][2]dp[i1][jw[i][2]]+v[i][2]
  • ⋯\cdots
  • 选第 iii 组的第 s[i]s[i]s[i] 个物品:对应 dp[i−1][j−w[i][s[i]]]+v[i][s[i]]dp[i-1][j-w[i][s[i]]]+v[i][s[i]]dp[i1][jw[i][s[i]]]+v[i][s[i]]

直接将 dpdpdp 数组优化到一维可得递推式:

dp[j]=max⁡(dp[j],max⁡1≤k≤s[i]dp[j−w[i][k]]+v[i][k])dp[j]=\max(dp[j],\;\max_{1\leq k\le s[i]} dp[j-w[i][k]]+v[i][k]) dp[j]=max(dp[j],1ks[i]maxdp[jw[i][k]]+v[i][k])

题目链接:AcWing 9. 分组背包问题

#include <bits/stdc++.h>using namespace std;const int N = 110;int w[N][N], v[N][N], s[N];
int dp[N];int main() {ios::sync_with_stdio(false);cin.tie(nullptr);int n, m;cin >> n >> m;for (int i = 1; i <= n; i++) {cin >> s[i];for (int j = 1; j <= s[i]; j++)cin >> w[i][j] >> v[i][j];}for (int i = 1; i <= n; i++)for (int j = m; j >= 1; j--)for (int k = 1; k <= s[i]; k++)if (j >= w[i][k])dp[j] = max(dp[j], dp[j - w[i][k]] + v[i][k]);cout << dp[m] << "\n";return 0;
}

总结

我们可以用一个公式来表示01背包、完全背包和多重背包:

dp[i][j]=max⁡0≤k≤tdp[i−1][j−k⋅w[i]]+k⋅v[i],t={min⁡(1,j/w[i]),01背包min⁡(+∞,j/w[i])=j/w[i],完全背包min⁡(s[i],j/w[i]),多重背包dp[i][j]=\max_{0\leq k\leq t} dp[i-1][j-k\cdot w[i]]+k\cdot v[i],\quad t=\begin{cases} \min(1,\;j/w[i]),&01背包\\ \min(+\infty,\;j/w[i])=j/w[i],&完全背包 \\ \min(s[i],\;j/w[i]),&多重背包 \end{cases} dp[i][j]=0ktmaxdp[i1][jkw[i]]+kv[i],t=min(1,j/w[i]),min(+,j/w[i])=j/w[i],min(s[i],j/w[i]),01背包完全背包多重背包

相关文章:

动态规划专题——背包问题

&#x1f9d1;‍&#x1f4bb; 文章作者&#xff1a;Iareges &#x1f517; 博客主页&#xff1a;https://blog.csdn.net/raelum ⚠️ 转载请注明出处 目录前言一、01背包1.1 使用滚动数组优化二、完全背包2.1 使用滚动数组优化三、多重背包3.1 使用二进制优化四、分组背包总结…...

数据的分组聚合

1&#xff1a;分组 t.groupby #coding:utf-8 import pandas as pd import numpy as np file_path./starbucks_store_worldwide.csv dfpd.read_csv(file_path) #print(df.head(1)) #print(df.info()) groupeddf.groupby(byCountry) print(grouped) #DataFrameGroupBy #可以遍历…...

【Airplay_BCT】Bonjour conformance tests苹果IOT

从Airplay开始&#xff0c;接触到BCT&#xff0c;这是什么&#xff1f;被迫从安卓变成ios用户和开发。。。开始我的学习之旅&#xff0c;记录成长过程&#xff0c;不定时更新 Bonjour 下面是苹果官网关于bonjour的解释 Bonjour, also known as zero-configuration networking, …...

开发微服务电商项目演示(五)

登录方式调整第1步&#xff1a;从zmall-common的pom.xml中移除spring-session-data-redis依赖注意&#xff1a;本章节中不采用spring-session方式&#xff0c;改用redis直接存储用户登录信息&#xff0c;主要是为了方便之后的jmeter压测&#xff1b;2&#xff09;这里只注释调用…...

Git删除大文件历史记录

Git删除大文件历史记录 git clone 仓库地址 查看大文件并排序 git rev-list --objects --all |grep $(git verify-pack -v .git/objects/pack/pack-*.idx | sort -k 3 -g | tail -1|awk {print $1})删除大文件 git filter-branch --force --index-filter git rm --cached --ig…...

Seata-Server分布式事务原理加源码(一) - 微服务之分布式事务原理

概念 基础概念&#xff1a;事务ACID • A&#xff08;Atomic&#xff09;&#xff1a;原子性&#xff0c;构成事务的所有操作&#xff0c;要么都执行完成&#xff0c;要么全部不执行&#xff0c;不可能出现部分成功部分失 败的情况。 • C&#xff08;Consistency&#xff09;…...

【ZooKeeper】zookeeper源码9-ZooKeeper读写流程源码分析

源码项目zookeeper-3.6.3&#xff1a;核心工作流程ZooKeeper选举和状态同步结束之后的服务启动ZooKeeper SessionTracker启动和工作机制ZooKeeper选举和状态同步结束之后的服务启动 在Leader的lead()方法的最后&#xff0c;即Leader完成了和集群过半Follower的同步之后&#x…...

Python实现批量导入xlsx数据1000条

遇到的问题&#xff1a;用户批量导入数据1000条&#xff0c;导入不成功的问题&#xff0c;提示查询不到商品资料。这个场景需要依靠批量的数据&#xff0c;每次测试的时候需要手动生成批量的数据&#xff0c;然后再导入操作&#xff0c;费时费劲。所以写了个脚本来实现。在前面…...

Ubuntu20.04安装redis与远程连接

一、安装Redis5.7 1、安装Redis apt-get install redis-server2、安装完成后&#xff0c;Redis服务器会自动启动。查看redis是否启动成功 service redis-server status #查看状态如下显示Active:active(running)状态&#xff1a;表示redis已在运行&#xff0c;启动成功。 …...

SAS应用入门学习笔记5

input 操作符&#xff1a; 代码说明&#xff1a; 1&#xff09;1 表示第1列字符&#xff1b;7表示第7列字符&#xff1b; 2&#xff09;col1 表示第一列数据&#xff1b;col2 表示第二列数据&#xff1b; 3&#xff09;4.2 表示的是4个字符&#xff0c;2表示小数点后两位&a…...

PHP新特性集合

php8新特性命名参数function foo(string $a, string $b, ?string $c null, ?string $d null) { /* … */ }你可以通过下面的方式传入参数进行调用foo(b: value b, a: value a, d: value d, );联合类型php7class Number {/** var int|float */private $number;/*** param f…...

【开发环境配置】--Python3的安装

1-开发环境配置 工欲善其事&#xff0c;必先利其器&#xff01; 编写和运行程序之前&#xff0c;我们必须先把开发环境配置好。只有配置好了环境并且有了更方便的开发工具&#xff0c;我们才能更加高效地用程序实现相应的功能。然而很多情况下&#xff0c;我们可能在最开始就…...

postman实现接口测试详细教程

各位小伙伴大家好, 今天为大家带来postman实战接口测试详细教程 一、通过接口文档集合抓包分析接口 通过fiddler抓包获取到注册接口URL地址及相关参数数据,并通过接口文档分析接口参数内容及参数说明, 如有必要的依赖条件必须进行梳理, 如token等 Fiddler抓包注册接口请求与…...

使用crontab执行定时任务

本来这个东西是挺简单的&#xff0c;是我脑子一直没转过来弯&#xff0c;我就想看看有多少人跟我一样&#x1f60f; crontab语法自己去菜鸟教程看看就知道了&#xff0c;没什么难度 需求&#xff1a;每分钟定时执行一个PHP文件或者一个PHP命令 这是需要执行的文件&#xff0…...

剑指 Offer 56 - II. 数组中数字出现的次数 II

题目 在一个数组 nums 中除一个数字只出现一次之外&#xff0c;其他数字都出现了三次。请找出那个只出现一次的数字。 思路 这题是剑指 Offer 56 - I. 数组中数字出现的次数的变体&#xff0c;本题只有一个数num出现一次&#xff0c;其余的均出现三次 三次的话使用异或消无法…...

C语言学习笔记(八): 自定义数据类型

结构体变量 什么是结构体 C语言允许用户自己建立由不同类型数据组成的组合型的数据结构&#xff0c;它称为结构体 结构体的成员可以是任何类型的变量&#xff0c;如整数&#xff0c;字符串&#xff0c;浮点数&#xff0c;其他结构体&#xff0c;指针等 struct Student //s…...

Video Speed Controller谷歌视频加速插件——16倍速

文章目录前言最简单的版本一、如果是简单的话 可以Microsoft Edge使用二、简单的版本 火狐的话使用Global Speed插件三、由于视频受限以上的方法行不通 还是谷歌好用前言 主要是网课刷的时候 太慢所以找到了刷视频的方法 由于前几个的权限受限制 所以还是选用了谷歌浏览器的 V…...

VSCode 的下载安装及基本使用

目录 一、VSCode 是什么&#xff1f; 二、VSCode 的下载和安装 2.1 - 下载 2.2 - 安装 2.3 - 安装汉化插件 三、MinGW-w64 的下载安装及配置 3.1 - 介绍 3.2 - 下载 3.3 - 解压安装 3.4 - 环境变量配置 3.5 - 验证配置是否成功 3.6 - 安装 C/C 插件 四、在 VSCode …...

【操作系统】磁盘IO常见性能指标和分析工具实战

1.磁盘读写常见的指标 &#xff08;1&#xff09;IOPS&#xff08;Input/Output Operations per Second&#xff09; 指每秒能处理的I/O个数&#xff0c;表示块存储处理读写&#xff08;输出/输入&#xff09;的能力&#xff0c;单位为次&#xff0c;有顺序IOPS和随机IOPS比如…...

SpringMVC基础

简介 Spring MVC 属于 SpringFrameWork 的后续产品&#xff0c;已经融合在 Spring Web Flow 里面&#xff1b;Spring 框架提供了构建 Web 应用程序的全功能 MVC 模块&#xff1b;使用 Spring 可插入的 MVC 架构&#xff0c;从而在使用Spring进行WEB开发时&#xff0c;可以选择…...

第19节 Node.js Express 框架

Express 是一个为Node.js设计的web开发框架&#xff0c;它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用&#xff0c;和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...

【kafka】Golang实现分布式Masscan任务调度系统

要求&#xff1a; 输出两个程序&#xff0c;一个命令行程序&#xff08;命令行参数用flag&#xff09;和一个服务端程序。 命令行程序支持通过命令行参数配置下发IP或IP段、端口、扫描带宽&#xff0c;然后将消息推送到kafka里面。 服务端程序&#xff1a; 从kafka消费者接收…...

51c自动驾驶~合集58

我自己的原文哦~ https://blog.51cto.com/whaosoft/13967107 #CCA-Attention 全局池化局部保留&#xff0c;CCA-Attention为LLM长文本建模带来突破性进展 琶洲实验室、华南理工大学联合推出关键上下文感知注意力机制&#xff08;CCA-Attention&#xff09;&#xff0c;…...

Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?

Golang 面试经典题&#xff1a;map 的 key 可以是什么类型&#xff1f;哪些不可以&#xff1f; 在 Golang 的面试中&#xff0c;map 类型的使用是一个常见的考点&#xff0c;其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

黑马Mybatis

Mybatis 表现层&#xff1a;页面展示 业务层&#xff1a;逻辑处理 持久层&#xff1a;持久数据化保存 在这里插入图片描述 Mybatis快速入门 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6501c2109c4442118ceb6014725e48e4.png //logback.xml <?xml ver…...

java 实现excel文件转pdf | 无水印 | 无限制

文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...

【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密

在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...

【磁盘】每天掌握一个Linux命令 - iostat

目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat&#xff08;I/O Statistics&#xff09;是Linux系统下用于监视系统输入输出设备和CPU使…...

高等数学(下)题型笔记(八)空间解析几何与向量代数

目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...

【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验

系列回顾&#xff1a; 在上一篇中&#xff0c;我们成功地为应用集成了数据库&#xff0c;并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了&#xff01;但是&#xff0c;如果你仔细审视那些 API&#xff0c;会发现它们还很“粗糙”&#xff1a;有…...