当前位置: 首页 > news >正文

人工智能中(Pytorch)框架下模型训练效果的提升方法

大家好,我是微学AI,今天给大家介绍一下人工智能中(Pytorch)框架下模型训练效果的提升方法。随着深度学习技术的快速发展,越来越多的应用场景需要建立复杂的、高精度的深度学习模型。为了实现这些目标,必须采用一系列复杂的技术来提高训练效果。

一、为什么要研究模型训练效果的提升方法

在过去,训练一个深度神经网络往往需要大量的时间和计算资源,而且结果也可能不如人意。但是随着新的技术被引入,训练深度学习模型的效率和准确度都得到了极大的提升。

例如,学习率调整法动态调整学习率,应用在训练过程中,通过降低学习率来让模型更好地收敛。Batch Normalization技术能够使神经网络中的每一层都具有相似的分布,从而加速收敛和提高训练准确性;Dropout 技术可以防止过拟合,从而提高模型的泛化能力;数据增强技术可以增加训练样本数量并提高模型的泛化性能;迁移学习可以通过利用已有的模型或预训练的模型来解决新问题,从而节省训练时间并更快地达到较高的准确性。

同时,随着深度学习应用的广泛普及和深度学习模型的复杂化,提高训练效果的重要性也越来越凸显。训练效果好的模型可以更准确地预测未知数据,更好地满足实际应用需求。因此,应用复杂技术来提高训练效果已成为深度学习领域的研究热点,同时也是实现深度学习应用的必要手段。

二、模型训练效果的提升方法具体案例

在训练深度学习模型过程中,复杂技术可以应用于提高训练效果,下面我将举几个案例:学习率调整、批量归一化、权重正则化、梯度剪裁。

1. 学习率调整

动态调整学习率,应用在训练过程中,通过降低学习率来让模型更好地收敛。以PyTorch框架为例

import torch
import torch.optim as optim
from torchvision import datasets, transforms# 数据加载
train_dataset = datasets.MNIST(root=‘./data’, train=True, transform=transforms.ToTensor())train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)# 定义模型
model = torch.nn.Sequential(torch.nn.Linear(784, 1000),torch.nn.ReLU(),torch.nn.Linear(1000, 10),torch.nn.Softmax(dim=1),
)
optimizer = torch.optim.SGD(model.parameters(), lr=0.001)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=30, gamma=0.1)# 训练
for epoch in range(epochs):for batch_idx, (data, target) in enumerate(train_loader):data = data.view(-1, 2828)optimizer.zero_grad()output = model(data)loss = torch.nn.functional.cross_entropy(output, target)loss.backward()optimizer.step()# 调整学习率scheduler.step()

 2. 批量归一化(Batch Normalization)

在每一层之间添加一个 batch normalization 层,将输入进行标准化(归一化)处理,有助于加速训练速度。

import torch# 定义模型并添加批量归一化层,这里以两层线性层为例
model = torch.nn.Sequential(torch.nn.Linear(784, 1000),torch.nn.BatchNorm1d(1000),torch.nn.ReLU(),torch.nn.Linear(1000, 10),torch.nn.Softmax(dim=1),
)

3. 权重正则化

常见的有 L1 和 L2 正则化,帮助限制模型参数的范数(和 LASSO/Ridge 最小二乘回归类似)。可以有效限制模型复杂度,以减小过拟合的风险。


import torch.optim as optim
from torch.utils.data import Dataset, DataLoader# 定义模型
model = torch.nn.Sequential(torch.nn.Linear(784, 1000),torch.nn.ReLU(),torch.nn.Linear(1000, 10),torch.nn.Softmax(dim=1),
)# 模型的参数
parameters = model.parameters()# 设置优化器并添加L2正则化
optimizer = optim.SGD(parameters, lr=0.001, weight_decay=1e-5)

4. 梯度剪裁

在训练过程中,梯度可能会变得很大,这可能导致梯度爆炸的问题。梯度剪裁可以避免梯度过大。

import torch
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from torchvision import datasets, transformstrain_dataset = datasets.MNIST(root=‘./data’, train=True, transform=transforms.ToTensor())train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)model = torch.nn.Sequential(torch.nn.Linear(784, 1000),torch.nn.ReLU(),torch.nn.Linear(1000, 10),torch.nn.Softmax(dim=1),
)
optimizer = optim.SGD(model.parameters(), lr=0.001)# 训练循环
for epoch in range(epochs):for batch_idx, (data, target) in enumerate(train_loader):data = data.view(-1, 2828)optimizer.zero_grad()output = model(data)loss = torch.nn.functional.cross_entropy(output, target)loss.backward()# 梯度剪裁torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1)optimizer.step()

我举了以上神经网络训练过程中一些运用技巧,可以应用在模型训练过程中提高训练效果。更多内容希望大家持续关注。

相关文章:

人工智能中(Pytorch)框架下模型训练效果的提升方法

大家好,我是微学AI,今天给大家介绍一下人工智能中(Pytorch)框架下模型训练效果的提升方法。随着深度学习技术的快速发展,越来越多的应用场景需要建立复杂的、高精度的深度学习模型。为了实现这些目标,必须采用一系列复杂的技术来提…...

树莓派CSI摄像头使用python调用opencv库函数进行运动检测识别

目录 一、完成摄像头的调用 二、利用python调用opencv库函数对图像进行处理 2.1 图像处理大体流程 2.2 opencv调用函数的参数以及含义 2.2.1 ret, img cap.read() 读取帧图像 2.2.2 cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 灰度图像 2.2.3 gray_diff_img cv2.absdiff(g…...

Parameters(in)、Parameters(out) and Parameters(inout)

0前言 参数类型(Parameters)指的是函数参数在调用时所具有的性质,从而对函数的调用方式产生影响。在 C 语言中,存在三种不同类型的函数参数:Parameters(in)、Parameters(out) 和 Parameters(inout) 1定义 Parameter…...

jstat命令查看jvm内存情况及GC内存变化

命令格式 jstat [Options] pid [interval] [count] 参数说明: Options,选项,一般使用 -gc、-gccapacity查看gc情况 pid,VM的进程号,即当前运行的java进程号 interval,间隔时间(按该时间频率自动刷新当前内存…...

java 图形化小工具Abstract Window Toolit :画笔Graphics,画布Canvas(),弹球小游戏

画笔Graphics Java中提供了Graphics类,他是一个抽象的画笔,可以在Canvas组件(画布)上绘制丰富多彩的几何图和位图。 Graphics常用的画图方法如下: drawLine(): 绘制直线drawString(): 绘制字符串drawRect(): 绘制矩形drawRoundRect(): 绘制…...

HCIA-RS实验-STP和RSTP(1)

这篇文章开始前,先简单说下这2个协议; 本文介绍了STP和RSTP的基本原理、优缺点以及应用场景。STP和RSTP都是生成树协议,主要作用于避免网络中的环路,保证数据包能够正常转发。在实际应用中,需要根据实际情况选择合适的…...

Leetcodes刷题之删除链表的倒数N个结点和删除链表的中间的结点

吾心信其可行,则移山填海之难,终有成功之日。 --孙中山 目录 🍉一.删除链表的倒数N个结点 🌻1.双指针 🍁2.求链表的长度 🌸二.删除链表的中间的结点 🍉一.删除链…...

Java-数据结构-并查集<二>

一.并查集的简单介绍 二. 并查集的主要构成和实现方式 三.HashMap模板和数组模板 由于在下文的模板基本一致,不再每次都罗列,大体的模板如下,若有错误可以在leetcode找到对应的题目解答,已经附上连接。 HashMap class UnionFi…...

JSP网上教学资源共享系统(源代码+论文)

通过网上教学资源共享系统的建设,完成了对于操作系统课程的远程化授课。可以使学生不受时间空间的限制,通过网络对于这门课程进行学习。建立起了基于B/C的网络化教学系统。本网站采用当前最流行的JSP网络编程技术,可以实现数据的高效、动态、…...

QT C++入门学习(1) QT Creator安装和使用

Qt官方下载 Qt 官网有一个专门的资源下载网站,所有的开发环境和相关工具都可以从这里下载,具体地址是:http://download.qt.io/ 进入链接后,是一个文件目录,依次进入这个路径:archive/qt/5.12/5.12.9/qt-o…...

UE动画状态机的事件触发顺序测试

正常A状态过渡到B状态的事件顺序: 整个流程为: 调用B状态的On Become Relevant事件调用B状态的On Update事件调用A状态的Left State Event事件调用B状态的Entered State Event事件调用B状态的Start Transition Event事件调用B状态的End Transition Even…...

数学建模的搜索技巧

你真的会使用“度娘”吗?是不是在查找所需要的东西的时候,搜出来的信息价值并不是很大,跟着北海老师学习,如何更高效的使用百度去查询自己想要的,有用的资料! 搜索技巧 完全匹配搜索 : 查询词的外边加上双…...

学成在线笔记+踩坑(10)——课程搜索、课程发布时同步索引库。

导航: 【黑马Java笔记踩坑汇总】JavaSEJavaWebSSMSpringBoot瑞吉外卖SpringCloud黑马旅游谷粒商城学成在线牛客面试题_java黑马笔记 目录 1 【检索模块】需求分析 1.1 全文检索介绍 1.2 业务流程 1.2.1、课程发布时索引库里新增一条记录 1.2.2、课程搜索 2 准…...

某应用虚拟化系统远程代码执行

漏洞简介 微步在线漏洞团队通过“X漏洞奖励计划”获取到瑞友天翼应用虚拟化系统远程代码执行漏洞情报(0day),攻击者可以通过该漏洞执行任意代码,导致系统被攻击与控制。瑞友天翼应用虚拟化系统是基于服务器计算架构的应用虚拟化平台,它将用户…...

solaris-Oracle11g于linux-mysql相连

Oracle11g(solaris64sparc)mysql(linux)实验 此实验目的,实现公司ebs R12 连mysql上的短信平台.预警和提示ebs中信息, 一,环境 主机名 ip 平台 数据库 dbname ebs234 192.168.1.234 …...

大厂齐出海:字节忙种草,网易爱社交

配图来自Canva可画 随着国内移动互联网红利逐渐触顶,互联网市场日趋饱和,国内各互联网企业之间的竞争便愈发激烈起来。在此背景下,广阔的海外市场就成为了腾讯、阿里、字节、京东、拼多多、百度、网易、快手、B站等互联网公司关注和争夺的重…...

几个实用的正则表达式

1到100之间的正整数正则 表达式:^[1-9]\d?$|^100$ 解释: ^表示匹配字符串开始位置 [1-9]表示数字1-9中的任意一个 \d表示任意一个数字 ?表示前面一个字符或子表达式出现0或1次 $表示匹配字符串结束位置 |表示或 最终的解释为:匹配满…...

python实战应用讲解-【numpy数组篇】常用函数(八)(附python示例代码)

目录 Python Numpy MaskedArray.cumprod()函数 Python Numpy MaskedArray.cumsum()函数 Python Numpy MaskedArray.default_fill_value()函数 Python Numpy MaskedArray.flatten()函数 Python Numpy MaskedArray.masked_equal()函数 Python Numpy MaskedArray.cumprod()函…...

Speech and Language Processing-之N-gram语言模型

正如一句老话所说,预测是困难的,尤其是预测未来。但是,如何预测一些看起来容易得多的事情,比如某人接下来要说的几句话后面可能跟着哪个单词。 希望你们大多数人都能总结出一个很可能的词是in,或者可能是over&#x…...

【AI】Python 安装时启用长路径支持

文章目录 场景:解释:关于文件长路径:计算方法: 场景: Python 安装时,会出现 Disable path length limit 的提示。 解释: 在 Windows 操作系统中,文件路径的长度是有限制的。在早期…...

C++_核心编程_多态案例二-制作饮品

#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为&#xff1a;煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例&#xff0c;提供抽象制作饮品基类&#xff0c;提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...

模型参数、模型存储精度、参数与显存

模型参数量衡量单位 M&#xff1a;百万&#xff08;Million&#xff09; B&#xff1a;十亿&#xff08;Billion&#xff09; 1 B 1000 M 1B 1000M 1B1000M 参数存储精度 模型参数是固定的&#xff0c;但是一个参数所表示多少字节不一定&#xff0c;需要看这个参数以什么…...

uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖

在前面的练习中&#xff0c;每个页面需要使用ref&#xff0c;onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入&#xff0c;需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...

解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八

现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet&#xff0c;点击确认后如下提示 最终上报fail 解决方法 内核升级导致&#xff0c;需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...

JVM垃圾回收机制全解析

Java虚拟机&#xff08;JVM&#xff09;中的垃圾收集器&#xff08;Garbage Collector&#xff0c;简称GC&#xff09;是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象&#xff0c;从而释放内存空间&#xff0c;避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...

React Native在HarmonyOS 5.0阅读类应用开发中的实践

一、技术选型背景 随着HarmonyOS 5.0对Web兼容层的增强&#xff0c;React Native作为跨平台框架可通过重新编译ArkTS组件实现85%以上的代码复用率。阅读类应用具有UI复杂度低、数据流清晰的特点。 二、核心实现方案 1. 环境配置 &#xff08;1&#xff09;使用React Native…...

Python爬虫(二):爬虫完整流程

爬虫完整流程详解&#xff08;7大核心步骤实战技巧&#xff09; 一、爬虫完整工作流程 以下是爬虫开发的完整流程&#xff0c;我将结合具体技术点和实战经验展开说明&#xff1a; 1. 目标分析与前期准备 网站技术分析&#xff1a; 使用浏览器开发者工具&#xff08;F12&…...

GC1808高性能24位立体声音频ADC芯片解析

1. 芯片概述 GC1808是一款24位立体声音频模数转换器&#xff08;ADC&#xff09;&#xff0c;支持8kHz~96kHz采样率&#xff0c;集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器&#xff0c;适用于高保真音频采集场景。 2. 核心特性 高精度&#xff1a;24位分辨率&#xff0c…...

华硕a豆14 Air香氛版,美学与科技的馨香融合

在快节奏的现代生活中&#xff0c;我们渴望一个能激发创想、愉悦感官的工作与生活伙伴&#xff0c;它不仅是冰冷的科技工具&#xff0c;更能触动我们内心深处的细腻情感。正是在这样的期许下&#xff0c;华硕a豆14 Air香氛版翩然而至&#xff0c;它以一种前所未有的方式&#x…...