当前位置: 首页 > news >正文

「Codeforces」D. Infinite Set

D. Infinite Set

https://codeforces.com/contest/1635/problem/D

题目描述

你有一个由不同正整数组成的数组和一个无限集 S,现在你需要往集合 S 中塞入所有符合 x x x 条件的数。

x x x 的条件(满足其中任意一个即可):

  1. x = a i ( 1 ≤ i ≤ n ) x = a_i(1\leq i\leq n) x=ai(1in)
  2. x = 2 y + 1 ( y ∈ S ) x = 2y + 1 (y \in S) x=2y+1(yS) y y y 必须在 S 集合中)
  3. x = 4 y ( y ∈ S ) x = 4y (y \in S) x=4y(yS) ($y $ 必须在 S 集合中)

求无限集 S 中所有小于 2 p 2^p 2p 的个数。

输入描述

第一行包含两个整数 n 和 p (1≤n,p≤2⋅105)。

第二行包含 n 个整数 a1,a2,…,an (1≤ai≤109)。

保证 a 中的所有数字都是不同的。

输出描述

打印一个整数,即 S 中严格小于 2p 的元素数。 请记住以 109+7 为模打印。

样例

#1

2 4
6 1
9

#2

4 7
20 39 5 200
14

#3

2 200000
48763 1000000000
448201910

提示

在第一个示例中,小于 24 的元素是 {1,3,4,6,7,9,12,13,15}。

在第二个例子中,小于 27 的元素是 {5,11,20,23,39,41,44,47,79,80,83,89,92,95}。

解析

有一说一,二进制的题目我确实没写过…,一时间也只能想到暴力,可这样不可能过,后面看大佬题解,发现要用二进制…

**Tips:**以后但凡看到这种 2 p 2^p 2p 次幂的形式,要往二进制想想。

根据二进制, x x x 的第二和第三条件可以转为:

  1. 第一条件其实就是 A 数组的所有元素均属于 S
  2. 2 x + 1 2x+1 2x+1 相当于 2 < < 1 2 << 1 2<<1 然后加 1 1 1 (向后添加一个 1)
  3. 4 x 4x 4x 相当于 4 < < 2 4 << 2 4<<2 (向后添加两个 0)

题目要我们求 S 中所有小于 2 p 2^p 2p 的数,其实就是求对应的二进制最高位 1 的后面 0 的变化,例如 p = 3 p=3 p=3 时,对应二进制为 1000 1000 1000 ,我们可以得到且不保证符合的有 0000 、 0100 、 0110 、 0111 、 0010 、 0011 、 0001 0000、0100、0110、0111、0010、0011、0001 0000010001100111001000110001

通过上面的例子,我们发现,只是 1 后面的 0 发生了变化,而我们的规则是要么增加一个 1,要么增加两个0(这0是一起添加的,不能分开)。

我们假设一个数为 x x x ,那么我们可以得到:

x x x 增加位数得到的不同的数
0 x x x1
1 x 1 x1 x11
2 x 00 、 x 11 x00、x11 x00x112
3 x 001 、 x 100 、 x 111 x001、x100、x111 x001x100x1113
4 x 0000 、 x 1100 、 x 0011 、 x 1111 、 x 1001 x0000、x1100、x0011、x1111、x1001 x0000x1100x0011x1111x10015

上表意思:一个数的二进制在其后面增加若干位数,每次只能增加一个 1 或两个 0 ,那么最终得到的不同的数有多少个。

并且能发现,无论如何变化,它们都保证是唯一的。

看得出来这是个斐波那契数列 F [ i ] = F [ i − 1 ] + F [ i − 2 ] F[i] = F[i-1] + F[i-2] F[i]=F[i1]+F[i2] ,这里表示一个数增加 i i i 位可以得到的不同数的数量为 F [ i ] F[i] F[i] 个。

我们现在只是求了一个数增加若干位若得到的不同数,并没有将前面的也算进来,所以还需要对其做一个前缀和 p r e f i x [ i ] = p r e f i x [ i − 1 ] + F [ i ] prefix[i] = prefix[i-1] + F[i] prefix[i]=prefix[i1]+F[i] ,此时定义变为 p r e f i x [ i ] prefix[i] prefix[i] 表示增加 i i i 位后所得到的所有不同数。

最后需要注意若一个数 a i a_i ai 可以由另外一个数得到 a j a_j aj ,因此为了不重复计算,所以只保留 a i a_i ai ,例如 A 有 2, 8 两个元素,8 可以通过 2 得到,因此我们只保留 2 即可。

2:0010

8:1000

0010 可以通过一次变化(即在尾部加两个 0 )==> 001000 ==> 1000

AC Code

public class Main {static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));static StreamTokenizer st = new StreamTokenizer(br);static PrintWriter out = new PrintWriter(new BufferedOutputStream(System.out));public static void main(String[] args) throws Exception {final int MOD = 1000000000 + 7;final int MAX = 200005;int n = nextInt(), p = nextInt(), ans = 0;int[] A = new int[MAX];int[] F = new int[MAX];int[] prefix = new int[MAX];F[0] = F[1] = 1;prefix[0] = 1; prefix[1] = 2;HashMap<Integer, Boolean> map = new HashMap<>();for(int i = 2; i < MAX; i++) {F[i] = (F[i-1] + F[i-2]) % MOD;prefix[i] = (prefix[i-1] + F[i]) % MOD;}for(int i = 1; i <= n; i++) {A[i] = nextInt();map.put(A[i], true);}// 对数组元素进行去重for(int i = 1; i <= n; i++) {int x = A[i];while(x != 0) {if(x % 2 == 1) x >>= 1; // 条件2,末尾加 1else if(x % 4 == 0) x >>= 2; // 条件3,末尾加两个 0else break;if(map.containsKey(x)) { // 判断 x 是否已经存在 S 中map.remove(A[i]); // 若存在,则表示 A[i] 可以通过其它元素得到,估抛弃该元素break;}}}Set<Integer> set = map.keySet();for(Integer x : set) {int bit = 32 - Integer.numberOfLeadingZeros(x); // 获取 x 二进制位数的前导零个数if(bit > p) continue;ans += prefix[p - bit];ans %= MOD;}System.out.println(ans);}public static int nextInt() throws Exception {st.nextToken();return (int) st.nval;}
}

相关文章:

「Codeforces」D. Infinite Set

D. Infinite Set https://codeforces.com/contest/1635/problem/D 题目描述 你有一个由不同正整数组成的数组和一个无限集 S&#xff0c;现在你需要往集合 S 中塞入所有符合 x x x 条件的数。 x x x 的条件&#xff08;满足其中任意一个即可&#xff09;&#xff1a; x a i …...

项目---基于TCP的高并发聊天系统

目录 服务端 服务端视角下的流程图 一、数据库管理模块 1.1 数据库表的创建 1.2 .对于数据库的操作 1.2.1首先得连接数据库 1.2.2执行数据库语句 1.2.3 返回数据库中存放的所有用户的信息 1.2.4返回数据库中存放的所有用户的好友信息 二、用户管理模块 2.1、UserInfo类&…...

iOS热更新-8种实现方式

一、JSPatch 热更新时&#xff0c;从服务器拉去js脚本。理论上可以修改和新建所有的模块&#xff0c;但是不建议这样做。 建议 用来做紧急的小需求和 修复严重的线上bug。 二、lua脚本 比如&#xff1a; wax。热更新时&#xff0c;从服务器拉去lua脚本。游戏开发经常用到。…...

R语言 | 编写自己的函数

目录 一、正式编写程序 二、设计第一个函数 三、函数也是一个对象 四、程序代码的简化 五、return()函数的功能 六、省略函数的大括号 七、传递多个参数函数的应用 7.1 设计可传递2个参数的函数 7.2 函数参数的默认值 7.3 3点参数“…”的使用 八、函数也可以作为参数 …...

【Java校招面试】基础知识(七)——数据库

目录 前言一、数据库索引二、数据库锁三、数据库事务四、数据库连接池后记 前言 本篇主要介绍数据库的相关内容。 “基础知识”是本专栏的第一个部分&#xff0c;本篇博文是第六篇博文&#xff0c;如有需要&#xff0c;可&#xff1a; 点击这里&#xff0c;返回本专栏的索引文…...

MySQL高级--锁

一、锁 锁是计算机协调多个进程或线程并发访问某一资源的机制。在数据库中&#xff0c;除传统的计算资源&#xff08;CPU、RAM、I/O&#xff09;的争用以外&#xff0c;数据也是一种供许多用户共享的资源。如何保证数据并发访问的一致性、有效性是所有数据库必须解决的一个问题…...

Maven(六):Maven的使用——继承与聚合

Maven&#xff08;六&#xff09;&#xff1a;Maven的使用——继承与聚合 前言一、实验九&#xff1a;继承1、概念2、作用3、举例4、操作4.1 创建父工程4.2 创建模块工程4.3 查看被添加新内容的父工程 pom.xml4.4 解读子工程的pom.xml4.5 在父工程中配置依赖的统一管理4.6 子工…...

Java ---System类

System 类位于 java.lang 包&#xff0c;代表当前 Java 程序的运行平台&#xff0c;系统级的很多属性和控制方法都放置在该类的内部。由于该类的构造方法是 private 的&#xff0c;所以无法创建该类的对象&#xff0c;也就是无法实例化该类。 System 类提供了一些类变量和类方…...

代码随想录_贪心_leetcode 406 452

leetcode 406. 根据身高重建队列 406. 根据身高重建队列 假设有打乱顺序的一群人站成一个队列&#xff0c;数组 people 表示队列中一些人的属性&#xff08;不一定按顺序&#xff09;。每个 people[i] [hi, ki] 表示第 i 个人的身高为 hi &#xff0c;前面 正好 有 ki 个身高…...

C++类的静态成员详解:成员函数非静态成员函数的非法调用

在C中&#xff0c;静态成员是属于整个类的而不是某个对象&#xff0c;静态成员变量只存储一份供所有对象共用。所以在所有对象中都可以共享它。使用静态成员变量实现多个对象之间的数据共享不会破坏隐藏的原则&#xff0c;保证了安全性还可以节省内存。 静态成员的定义或声明要…...

Qt之滑动条和进度条(QSlider、QProgressBar)

文章目录 前言一、QSliderQSlider的常用API信号与槽 二、QProgressBar滑动条和滚动条的常用API 总结 前言 在用户界面设计中&#xff0c;滑动条和进度条是常见的控件。Qt中提供了QProgressBar和QSlider两个类来实现滚动条和滑动条。 一、QSlider 在Qt中&#xff0c;QSlider是…...

Flutter之插件开发plugin

目的:适用于独立业务模块,或者与原生页面交互频繁的地方。 基于flutter3.x , IDE :androidStudio demo:https://download.csdn.net/download/SHTLoveXX/87751845​​​​​​​ 步骤: 1.新建flutter project 【New flutter project】. 2. 在新建工程面板记得切换 …...

asp.net基于web的音乐管理网站dzkf17A9程序

本系统主要包含了等系统用户管理、公告信息管理、音乐资讯管理、音乐类型管理多个功能模块。下面分别简单阐述一下这几个功能模块需求。 管理员的登录模块&#xff1a;管理员登录系统对本系统其他管理模块进行管理。 用户的登录模块&#xff1a;用户登录本系统&#xff0c;对个…...

itop-3568开发板驱动学习笔记(25)设备树(四)GPIO 实例分析

《【北京迅为】itop-3568开发板驱动开发指南.pdf》 学习笔记 文章目录 GPIO 控制器必要属性其他属性 指定 GPIO 引脚 和时钟类似&#xff0c;GPIO 在设备树中也存在两层定义&#xff0c;首先是 GPIO 控制器&#xff0c;这部分由芯片原厂工程师编写&#xff0c;相当于 GPIO 底层…...

函数(定义、返回值、调用、参数)

目录 ❤ 无参函数 ❤ 有参函数 ❤ 空函数 ❤ 什么是返回值&#xff1f; ❤ 为什么要有返回值&#xff1f; ❤ 什么是函数调用&#xff1f; ❤ 为何用调用函数&#xff1f; ❤ 函数调用的三种形式 ❤ 形参和实参 形参 实参 ❤ 位置参数 位置形参 位置实…...

28. Kubernetes 核心组件讲解——API Server

本章讲解知识点 Kubernetes API Server 概述etcd 简介API Server 架构解析API Server 的 List-Watch 机制独特的 Kubernetes Proxy API 接口集群功能模板之间的通信1. Kubernetes API Server 概述 1.1 基本概念 Kubernetes API Server(API Server)是 Kubernetes 的核心组件…...

springboot框架开发医院云HIS 住院医生站、住院护士站功能实现

住院医生站主模块&#xff1a;包括医嘱管理、病案首页、分配入科、住院清单、我的质控等子模块 &#xff08;1&#xff09;医嘱管理功能简介 ①住院患者开立医嘱、支持医嘱复制、停止、作废等操作&#xff1b; ②医嘱类型含药品、项目、材料、嘱托&#xff1b; ③支持住院各…...

高性能定时器介绍及代码逐行解析--时间堆

简介 在《Linux高性能服务器编程》中&#xff0c;介绍了三种定时方法&#xff1a; socket选项SO_RCVTIMEO和SO_SNDTIMEOSIGALRM信号I/O复用系统调用的超时参数 基础知识 非活跃&#xff0c;是指客户端&#xff08;这里是浏览器&#xff09;与服务器端建立连接后&#xff0c…...

汇编语言学习笔记五

div指令 除法&#xff0c; 被除数&#xff1a;默认是放在ax或者dx中&#xff0c;其位数为16位&#xff0c;则在ax中&#xff0c;如位数为32位&#xff0c;则高位在dx中&#xff0c;低位在ax中 除数&#xff1a;放在寄存器或者内存单元中&#xff0c;有8位和16位两种。 结果&am…...

Linux下的epf 是什么?

EPF (Extended Page Frame) 是 Linux 内核中的一个功能&#xff0c;它用于管理大内存系统中的物理页框。具体来说&#xff0c;当系统中的物理内存超过 1TB 时&#xff0c;传统的页表结构会变得非常庞大和复杂&#xff0c;给内存管理带来很大的困难。 EPF 架构通过将物理地址分…...

如何在广告形式选择上化解用户厌恶和变现瓶颈?

​用户讨厌广告&#xff0c;这似乎是一个共识。在日复一日的使用中&#xff0c;用户会遇到各种各样的广告形式&#xff0c;从搜索结果中的广告链接&#xff0c;到视频中不间断的广告&#xff0c;再到流行应用中的推广内容。 无处不在的广告已经让用户不胜其烦&#xff0c;这也…...

【Android入门到项目实战-- 9.2】—— 传感器实战使用教程(靠近黑屏和计步器)

上篇文章介绍了传感器的基础用法&#xff08;如有需要&#xff0c;可先移步&#xff09;&#xff0c;下面将通过两个实战案例学习具体如何使用。 一、靠近黑屏 这是距离传感器的简单应用。 –检测手机是否贴在耳朵上正在打电话&#xff0c;以便自动熄灭屏幕达到省电的目的。也…...

软件项目生命周期模型

目录 瀑布模型 快速原型模型 敏捷模型 迭代模型&#xff08;增量模型&#xff09; 螺旋模型 瀑布模型 定义&#xff1a;早就计划好了&#xff0c;按计划顺序&#xff08;计划、设计、开发、测试、维护&#xff09;线性执行 适用于&#xff1a;需求明确、变化少的项目 缺…...

linux系统TP-ti,tsc2046外设调试

一、整体调试思路 tp外设属于比较常见且比较简单的外设&#xff0c;今天以ti,tsc2046这款为例简述下tp外设的调试。 整体思路 1、配置设备树----驱动调试的device部分 2、tp驱动编译及匹配—driver部分 3、驱动整体调试 二、配置设备树 对于ti,tsc2046我们可以参考内核Docum…...

ChatGPT指令大全

1. 写报告&#xff1a;我现在正在 [报告的情境与目的]。我的简报主题是 [主题]&#xff0c;请提供 [数字] 种开头方式&#xff0c;要简单到 [目标族群] 能听懂&#xff0c;同时要足够能吸引人&#xff0c;让他们愿意专心听下去。 2. 研究报告&#xff1a;写出一篇有关 [知识] …...

【Vue面试题】Vue2.x生命周期?

文章目录 1.有哪些生命周期&#xff08;系统自带&#xff09;?beforeCreate( 创建前 )created ( 创建后&#xff09;beforeMount (挂载前)mount (挂载后)beforeUpdate (更新前)updated (更新后)beforeDestroy&#xff08;销毁前&#xff09;destroy&#xff08;销毁后&#xf…...

运算放大器 - 笔记 02 -恒流源

恒流源 / 电流源 一、方案一二、方案二三、方案三四、方案四 前言&#xff1a;最近在学习运放&#xff0c;三极管&#xff0c;二极管&#xff0c;场效应管等器件的组合电路。捡起了以前的模电知识&#xff0c;写下笔记&#xff0c;以防再度忘记。 本文使用Multisim仿真软件进行…...

Python:Python进阶:Python字符串驻留技术

Python字符串驻留技术 1.什么是字符串驻留2. 为什么要驻留字符串3. Python的字符串驻留4. Python 字符驻留原理4.1 如何驻留字符串4.2 如何清理驻留的字符串 5. 字符串驻留的实现5.1. 变量、常量与函数名5.2 字典的键5.3 任何对象的属性5.4 显式地驻留 6 字符串驻留的其他发现 …...

2022年 全国职业院校技能大赛(中职组)网络安全赛项 正式赛卷 A模块 做题记录

评分标准文件及环境 评分标准&#xff1a;ZZ-2022029 网络安全赛项正式赛卷.zip 自己做的Linux靶机&#xff1a; 自己做的Windows靶机&#xff1a; 文章目录 评分标准文件及环境A-1 任务一 登录安全加固1. 密码策略&#xff08;Windows&#xff0c;Linux&#xff09;a. 最小密…...

华为OD机试 - 优选核酸检测点(Python)

题目描述 张三要去外地出差,需要做核酸,需要在指定时间点前做完核酸,请帮他找到满足条件的核酸检测点。 给出一组核酸检测点的距离和每个核酸检测点当前的人数给出张三要去做核酸的出发时间 出发时间是10分钟的倍数,同时给出张三做核酸的最晚结束时间题目中给出的距离是整…...

文做网站/新闻头条今日要闻国内

自助选座步骤分为&#xff1a;1、选择区域 ——> 2、 选择座位 ——> 3、 结账详细介绍如下&#xff1a;步骤一&#xff1a;选择区域在演出信息页选择场次(图1)&#xff0c;并点击在线选座&#xff0c;进入选择区域页面(图2)&#xff1b;选择观看演出的所需区域&#xff…...

免备案空间网站/地方网站建设

首先在oracle中没有datediff()函数可以用以下方法在oracle中实现该函数的功能:1.利用日期间的加减运算天&#xff1a;ROUND(TO_NUMBER(END_DATE - START_DATE))小时&#xff1a;ROUND(TO_NUMBER(END_DATE - START_DATE) * 24)分钟&#xff1a;ROUND(TO_NUMBER(END_DATE - START…...

网站建设运营费用包括哪些/网络营销好找工作吗

阅读本文大概需要 3.5 分钟。 本篇是设计模式系列的开篇&#xff0c;虽然之前也写过相应的文章&#xff0c;但是因为种种原因后来断掉了&#xff0c;而且发现之前写的内容也很渣&#xff0c;不够系统。 所以现在打算重写&#xff0c;加上距离现在也有一段时间了&#xff0c;也算…...

网站设计到底做多宽/搭建一个app平台要多少钱

2018年12月更新(12个月后)&#xff1a;原始字符串文字(在琥珀色列表中)不会进入JDK 12。看看这里的批评。Java的未来版本可能存在(10个或更多)。从2018年1月开始参见JEPS 8196004 :(“JEP”是“JDK增强计划”)JEP草案&#xff1a;原始字符串文字将一种新的文字(原始字符串文字)…...

seo批量建站/怎样创建自己的网站

回收宝给出的今年低配高价手机排名数据显示&#xff0c;国产手机四强的华为、OPPO、vivo的手机均上榜&#xff0c;仅有小米的手机未有入榜。回收宝给出的数据显示&#xff0c;今年低配高价手机前十名当中以三星Galaxy note20居于第一名&#xff0c;华为有四款手机入榜&#xff…...

做网站基本流程/百度网址入口

在进程一開始执行&#xff0c;就自己主动打开了三个相应设备的文件。它们是标准输入、输出、错误流。分别用全局文件指针stdin、stdout、stderr表示&#xff0c;相应的文件描写叙述符为0。1。2&#xff1b;stdin具有可读属性&#xff0c;缺省情况下是指从键盘的读取输入&#x…...