当前位置: 首页 > news >正文

Stable Diffusion 1 - 初始跑通 文字生成图片

文章目录

    • 关于 Stable Diffusion
      • Lexica
    • 代码实现
      • 安装依赖库
      • 登陆 huggingface
        • 查看 huggingface token
      • 下载模型
      • 计算生成
        • 设置宽高
        • 测试迭代次数
        • 生成多列图片


关于 Stable Diffusion

A latent text-to-image diffusion model

Stable Diffusion 是一个文本到图像的潜在扩散模型,由CompVis、Stability AI和LAION的研究人员和工程师创建。
它使用来自LAION-5B数据库子集的512x512图像进行训练。使用这个模型,可以生成包括人脸在内的任何图像,因为有开源的预训练模型,所以我们也可以在自己的机器上运行它。


  • github : https://github.com/CompVis/stable-diffusion
  • stability.ai 公司主页:https://stability.ai
  • 官方创作平台:http://dreamstudio.ai/ 付费/可试用
    https://beta.dreamstudio.ai
  • hugginface : https://huggingface.co/CompVis/stable-diffusion

教程资源

  • 数据派THU : Stable Diffusion的入门介绍和使用教程
    https://mp.weixin.qq.com/s/Y3XsytE4_ewCc6yVp6G43A
  • 35张图,直观理解Stable Diffusion
    https://mp.weixin.qq.com/s/9ngMKHLYKjMASUYeashDJw
  • 当下最强的 AI art 生成模型 Stable Diffusion 最全面介绍
    https://mp.weixin.qq.com/s/Q4ZYjUxt22Jsx2W2179C8Q

Lexica

  • Lexica: The Stable Diffusion search engine
    https://lexica.art

在这里插入图片描述


代码实现

这里我使用 colab 运行,colab 使用操作可参考:
https://blog.csdn.net/lovechris00/article/details/123960622


Stable Diffusion 操作方法可详见:
https://colab.research.google.com/github/huggingface/notebooks/blob/main/diffusers/stable_diffusion.ipynb#scrollTo=AAVZStIokTVv


安装依赖库

!pip install "ipywidgets>=7,<8"
!pip install diffusers==0.12.1 
!pip install  transformers scipy ftfy
!pip install accelerate
!pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 torchaudio==0.11.0 --extra-index-url https://download.pytorch.org/whl/cu113 

如果 diffusers 版本较低(如,小于等于 0.4.0),后面可能会报如下错误:

getattr(): attribute name must be string


查看信息

import diffusers
print(diffusers.__version__)!nvidia-smi

from google.colab import output
output.enable_custom_widget_manager()  

登陆 huggingface

from huggingface_hub import notebook_login
notebook_login()

在这里插入图片描述


查看 huggingface token

settings --> tokens
https://huggingface.co/settings/tokens
你的huggingface 如果还没有激活邮箱,需要激活后操作。在这里插入图片描述


登陆成功后,会返回下述结果:

Token is valid.
Your token has been saved in your configured git credential helpers (store).
Your token has been saved to /root/.cache/huggingface/token
Login successful

下载模型

pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", revision="fp16", torch_dtype=torch.float16, use_auth_token=True)   

pip 内容如下:

StableDiffusionPipeline {"_class_name": "StableDiffusionPipeline","_diffusers_version": "0.12.1","feature_extractor": ["transformers","CLIPFeatureExtractor"],"requires_safety_checker": true,"safety_checker": ["stable_diffusion","StableDiffusionSafetyChecker"],"scheduler": ["diffusers","PNDMScheduler"],"text_encoder": ["transformers","CLIPTextModel"],"tokenizer": ["transformers","CLIPTokenizer"],"unet": ["diffusers","UNet2DConditionModel"],"vae": ["diffusers","AutoencoderKL"]
}

计算生成

from torch import autocast # 移动到 cuda 
pipe = pipe.to('cuda')prompt = "a photo of an astronut riding a horse"
with autocast("cuda"):ret = pipe(prompt)

ret 的内容是:

StableDiffusionPipelineOutput(images=[<PIL.Image.Image image mode=RGB size=512x512 at 0x7F99A7332310>], nsfw_content_detected=[False])

有的demo会使用 sample 键,我这里没有,所以如果调用 sample 会报错


查看图片文件

ret.images[0]

在这里插入图片描述


设置宽高

宽高必须被 8 整除

# `height` and `width` have to be divisible by 8 but are 300 and 200.
with autocast("cuda"):ret = pipe(prompt, width=400, height=640)ret.images[0]

在这里插入图片描述


测试迭代次数

设置随机种子

 # 先快速生成低质量图片看效果,然后调高画质
generator = torch.Generator("cuda").manual_seed(1024)with autocast("cuda"):ret = pipe(prompt, generator=generator)ret.images[0]

在这里插入图片描述


# 调整迭代次数
with autocast("cuda"):ret = pipe(prompt, generator=generator, num_inference_steps=15)ret.images[0]

在这里插入图片描述


生成多列图片

from PIL import Imagedef image_grid(imgs, rows, cols):assert len(imgs) == rows * colsw, h = imgs[0].sizegrid = Image.new("RGB", size=(cols*w, rows*h) )grid_w, grid_h = grid.sizefor i, img in enumerate(imgs):grid.paste(img, box=(i%cols * w, i // cols * h) )return grid  

num_imgs = 3
prompts = [prompt] * num_imgswith autocast("cuda"):ret = pipe(prompts, generator=generator, num_inference_steps=15)

ret 内容如下,包含三张图片

StableDiffusionPipelineOutput(images=[<PIL.Image.Image image mode=RGB size=512x512 at 0x7F99A7150820>, <PIL.Image.Image image mode=RGB size=512x512 at 0x7F99A7103280>, <PIL.Image.Image image mode=RGB size=512x512 at 0x7F99A7103520>], nsfw_content_detected=[False, False, False])

显示图片

grid = image_grid(ret.images, rows=1, cols=3)

在这里插入图片描述


2023-02-15(情人节快乐)

相关文章:

Stable Diffusion 1 - 初始跑通 文字生成图片

文章目录关于 Stable DiffusionLexica代码实现安装依赖库登陆 huggingface查看 huggingface token下载模型计算生成设置宽高测试迭代次数生成多列图片关于 Stable Diffusion A latent text-to-image diffusion model Stable Diffusion 是一个文本到图像的潜在扩散模型&#xff…...

【cuda入门系列】通过代码真实打印线程ID

【cuda入门系列】通过代码真实打印线程ID1.gridDim(6,1),blockDim(4,1)2.gridDim(3,2),blockDim(2,2)【cuda入门系列之参加CUDA线上训练营】在Jetson nano本地跑 hello cuda&#xff01; 【cuda入门系列之参加CUDA线上训练营】一文认识cuda基本概念 【cuda入门系列之参加CUDA线…...

【Python语言基础】——Python NumPy 数据类型

Python语言基础——Python NumPy 数据类型 文章目录 Python语言基础——Python NumPy 数据类型一、Python NumPy 数据类型一、Python NumPy 数据类型 Python 中的数据类型 默认情况下,Python 拥有以下数据类型: strings - 用于表示文本数据,文本用引号引起来。例如 “ABCD”…...

数据工程师需要具备哪些技能?

成为数据工程师需要具备哪些技能&#xff1f;数据工程工作存在于各个行业&#xff0c;在银行业、医疗保健业、大型科技企业、初创企业和其他行业找到工作机会。许多职位描述要求数据工程师、拥有数学或工程学位&#xff0c;但如果有合适的经验学位往往没那么重要。 大数据开发…...

Cosmos 基础 -- Ignite CLI(二)Module basics: Blog

一、快速入门 Ignite CLI version: v0.26.1 在本教程中&#xff0c;我们将使用一个模块创建一个区块链&#xff0c;该模块允许我们从区块链中写入和读取数据。这个模块将实现创建和阅读博客文章的功能&#xff0c;类似于博客应用程序。最终用户将能够提交新的博客文章&#x…...

Quartz 快速入门案例,看这一篇就够了

前言 Quartz 是基于 Java 实现的任务调度框架&#xff0c;对任务的创建、修改、删除、触发以及监控这些操作直接提供了 api&#xff0c;这意味着开发人员拥有最大的操作权&#xff0c;也带来了更高的灵活性。 什么是任务调度&#xff1f; 任务调度指在将来某个特定的时间、固…...

图解LeetCode——1233. 删除子文件夹(难道:中等)

一、题目 你是一位系统管理员&#xff0c;手里有一份文件夹列表 folder&#xff0c;你的任务是要删除该列表中的所有 子文件夹&#xff0c;并以 任意顺序 返回剩下的文件夹。 如果文件夹 folder[i] 位于另一个文件夹 folder[j] 下&#xff0c;那么 folder[i] 就是 folder[j] …...

Doris--简单使用

一、数据表的创建与数据导入 1.1、创建表 1.1.1、单分区 CREATE TABLE table1 (siteid INT DEFAULT 10,citycode SMALLINT,username VARCHAR(32) DEFAULT ,pv BIGINT SUM DEFAULT 0 -- 聚合模型&#xff0c; value column 使用sum聚合 ) AGGREGATE KEY(siteid, citycode, …...

使用GPT让你的RStudio如虎添翼

API的的调用目前来说不限制地区&#xff0c;但是OpenAI的API的申请限制了地区。运行的时候&#xff0c;如果出现了429&#xff0c;意味着你被限流了&#xff0c;需要等一会才行。 前提是&#xff0c;你需要注册一个OpenAI的账户&#xff0c;然后在https://openai.com/api/ 里申…...

Python 算法交易实验45 再探量化

说明 去年大部分精力都在构建底层架构和工具了,一直都没有时间搞量化。目前底层的数据库服务(ADB)和清洗(衍生 AETL) 工具已经好了,我想尽快的把量化启动起来。 内容 1 思想 作为交易来说,只有买卖。通过数据分析与模型,我们获得的增强点是决策。在合适的时候进行买卖的…...

Dubbo加载配置文件方式,加载流程,加载配置文件源码解析

配置方法 API配置 以Java编码的方式组织配置&#xff0c;Dubbo3配置API详解 &#xff1a;https://dubbo.apache.org/zh/docs3-v2/java-sdk/reference-manual/config/api/#bootstrap-api public static void main(String[] args) throws IOException {ServiceConfig<Greet…...

十大开源测试工具和框架,一定有你需要的

目录 前言 Katalon Studio Selenium Appium JMeter SOAP UI Robot Framework Watir JUnit Robotium Citrus 总结 前言 免费的开源框架和工具由于其开源特性&#xff0c;现在逐渐成为自动化测试的首选解决方案。区别在于&#xff0c;你是喜欢使用类库编写一个全新的…...

加密技术在android中的应用

1、算法基础 算法基础参照linux的全盘加密与文件系统加密在android中的应用 消息摘要算法 对称加密算法 非对称加密算法...

备战蓝桥杯【一维前缀和】

&#x1f339;作者:云小逸 &#x1f4dd;个人主页:云小逸的主页 &#x1f4dd;Github:云小逸的Github &#x1f91f;motto:要敢于一个人默默的面对自己&#xff0c;强大自己才是核心。不要等到什么都没有了&#xff0c;才下定决心去做。种一颗树&#xff0c;最好的时间是十年前…...

研报精选230214

目录 【行业230214艾瑞股份】中国增强现实&#xff08;AR&#xff09;行业研究报告【行业230214国信证券】信息安全深度剖析5&#xff1a;密评和信创双催化&#xff0c;密码产业开启从1到N【行业230214民生证券】磁性元器件深度报告&#xff1a;乘新能源之风&#xff0c;磁性元…...

【SSL/TLS】准备工作:证书格式

证书格式1. 格式说明1.1 文件编码格式1.2 文件后缀格式2. xca导出格式1. 格式说明 1.1 文件编码格式 1. PEM格式: 使用Base 64 ASCII进行编码的纯文本格式。后缀为“.pem”, ".cer", ".crt", ".key" 2. DER格式 二进制编码格式&#xff0c;文件…...

Linux常用命令---系统常用命令

Linux系统常用命令场景一&#xff1a; 查看当前系统内核版本相关信息场景二&#xff1a; sosreport 命令场景三&#xff1a; 如何定位并确定命令&#xff1f;场景四&#xff1a;查看当前系统运行负载怎场景五&#xff1a; 查看当前系统的内存可用情况场景六&#xff1a;查看网卡…...

C 结构体

C 数组允许定义可存储相同类型数据项的变量&#xff0c;结构是 C 编程中另一种用户自定义的可用的数据类型&#xff0c;它允许您存储不同类型的数据项。结构用于表示一条记录&#xff0c;假设您想要跟踪图书馆中书本的动态&#xff0c;您可能需要跟踪每本书的下列属性&#xff…...

手语检测识别

论文&#xff1a;Real-Time Sign Language Detection using Human Pose Estimation Github&#xff1a;https://github.com/google-research/google-research/tree/master/sign_language_detection SLRTP 2020 手语识别任务包括手语检测&#xff08;Sign language detection&a…...

android fwk模块之Sensor架构

本文基于Android 12源码整理&#xff0c;包含如下内容&#xff1a; 通信架构应用层实现使用方式SensorManager抽象接口具体实现fwk层的实现native中的SensorManager的初始化流程native中的消息队列初始化与数据读取sensorservice实现HAL层的实现通信架构 应用层实现 涉及代码&…...

安装less-loader5出现webpack版本不兼容

今天遇到一个问题&#xff1a; 安装less-loader5之后其它包提示peerDependencies WARNING&#xff0c;意思是包版本不兼容。 【难题】 虽然NPM已经很自动化了&#xff0c;但依赖问题真的是一个难题&#xff0c;无法自动解决&#xff0c;需要人工干预调整。 【解决办法】 去查…...

Java 网络编程

1.UDP和TCPUDP和TCP是传输层协议中最核心的两种协议他们的特点分别是UDP: 无连接,不可靠传输,面向数据报,全双工TCP: 有连接,是可靠传输,面向字节流,全双工有无连接有连接:就好比两个人打电话,打电话的一方发出连接请求,被打电话的一方选择确认连接,此时双方才能进行通话无连接…...

BEV学习记录

近期可能要经常性的开展BEV工作&#xff0c;打算把自己觉着不错的网站拿出来记录一下。 首先贴上来我还没有细读的一篇觉着不错的文章。 自动驾驶感知新范式——BEV感知经典论文总结和对比&#xff08;上&#xff09;_苹果姐的博客-CSDN博客_bev视角 开山之作--LSS ECCV 202…...

Webrtc Native C++切换音频输入源

modules/audio_device/audio_device_impl.cc #include “api/audio_options.h” #include “modules/audio_device/include/factory.h” // 创建一个 AudioDeviceModule 对象 auto audio_device_module = webrtc::AudioDeviceModule::Create( webrtc::AudioDeviceModule::kPl…...

裸辞5个月,面试了37家公司,终于找到理想工作了

上半年裁员&#xff0c;下半年裸辞&#xff0c;有不少人高呼裸辞后躺平真的好快乐&#xff01;但也有很多人&#xff0c;裸辞后的生活五味杂陈。 面试37次终于找到心仪工作 因为工作压力大、领导PUA等各种原因&#xff0c;今年2月下旬我从一家互联网小厂裸辞&#xff0c;没想…...

Mybatis-plus@DS实现动态切换数据源应用

目录1 DS实现动态切换数据源原理2 不可在事务中切换数据库分析解决3 原因解析1 DS实现动态切换数据源原理 首先mybatis-plus使用com.baomidou.dynamic.datasource.AbstractRoutingDataSource继承 AbstractDataSource接管数据源&#xff1b;具体实现类为com.baomidou.dynamic.d…...

SpringBoot的创建和使用

SpringBoot是什么&#xff1f;SpringBoot诞生的目的就是为了简化Spring开发&#xff0c;而相对于Spring&#xff0c;SpringBoot算是一个很大的升级&#xff0c;就如同汽车手动挡变成了自动挡。Spring&#xff1a;SpringBoot&#xff1a;SpringBoot的优点SpringBoot让Spring开发…...

居家电话客服宝典

客服分类从销售的流程来分&#xff0c;客服分为售前和售后。售前一般都带有销售性质&#xff0c;工资主要靠提成&#xff0c;售后一般是解答问题&#xff0c;工资主要看服务质量和差评量。从工作模式来分&#xff0c;客服分为在线客服和热线客服。在线客服以打字聊天为主&#…...

开发方案设计

1、开发流程产品需求设计-->需求粗评-->做设计方案-->粗估时-->需求细评-->排期-->开发-->提测、修bug-->code review-->上线设计方案主要是写实现思路、模块划分code review&#xff1a;完善代码&#xff0c;发现未考虑到的边界问题2、具体实现方案…...

文件路径模块pathlib

文件路径模块pathlib 文章目录文件路径模块pathlib1.概述2.创建路径2.1.创建非windos平台路径2.2.动态拼接路径joinpath2.3.替换文件名称 with_name2.4.创建固定目录2.5.创建文件夹和文件1.创建多级目录mkdir2.创建空文件3.路径解析3.1.根据路径分隔符解析路径parts3.2.获取父级…...

做调查问卷赚钱的网站/网络营销产品策略

亲测可用&#xff0c;若有疑问请私信 错误信息&#xff1a; The nginx plugin is not working; there may be problems with your existing configuration. The error was: NoInstallationError() Certbot默认使用nginx的路径&#xff0c;需求如下配置 ln -s /usr/local/ngi…...

网站服务器多少钱一年/百度知道合伙人官网登录入口

leetcode 297. Serialize and Deserialize Binary Tree 找工作面试的过程中碰见了一道出场率很高的面试题&#xff0c;在leetcode上有这道题&#xff0c;属于hard难度&#xff0c;leetcode297-实现二叉树的序列化和反序列化。用了两种方法&#xff0c;一种按层次(BFS)进行序列…...

wordpress 图片 二级域名/企业整站seo

作者&#xff1a;白介素2大家好&#xff0c;我是白介素2同学&#xff0c;想必小伙伴们早已开工了&#xff0c;白介素同学这个春节实在是没怎么学习呀(所谓人在江湖&#xff0c;身不由己&#xff0c;容我甩个锅)&#xff0c;惭愧惭愧&#xff0c;悟已往之不谏&#xff0c;知来者…...

成都程序员网站/清远新闻最新

1、拆分含有多个分隔符的字符 拆分含有多个分隔符的字符def mySplit(s, ds):res [s]for d in ds:t []list(map(lambda x: t.extend(x.split(d)), res)) #这个地方不加list会返回空&#xff0c;什么原因也不是很清楚res treturn [x for x in res if x]s ab;cd|efg|hi,,jkl|…...

免费网站app源码/广州竞价外包

摘要&#xff1a; 受Reddit网站上讨论区的启发&#xff0c;我决定快速地浏览一下2018年关于GAN最有趣的文章。我很高兴今年参加了一个研究项目&#xff0c;这要求我必须熟悉大量用于计算机视觉方面的深度学习领域的资料。我对过去两、三年内取得的进展感到惊讶&#xff0c;这真…...

建一个网站式系统/网络推广团队

php-fpm经常出现502解决方法更多请支持&#xff1a;www.Bkjia.com最近nginx经常502&#xff0c;解决502最好的办法就是重启php-fpm。手动去重启还是比较麻烦的事情&#xff0c;最好的就是扔到shell里去。vim restart-php-fpm.sh#!/bin/shSERVICEphp-fpm#if ps ax | grep -v gre…...