当前位置: 首页 > news >正文

python基于LBP+SVM开发构建基于fer2013数据集的人脸表情识别模型是种什么体验,让结果告诉你...

本身LBP+SVM是比较经典的技术路线用来做图像识别、目标检测,没有什么特殊的地方

fer2013数据集在我之前的博文中也有详细的实践过,如下:

《fer2013人脸表情数据实践》 系统地基于CNN开发实现

《Python实现将人脸表情数据集fer2013转化为图像形式存储本地》 一键复制代码即可实现原始csv文件转储本地图像

LBP+SVM和fer2013组合起来去使用就出现了有意思的东西了,本身LBP提取出来的特征维度就很大一般都是将近2w维,然后fer2013数据集又有接近4w的数据量,这就导致SVM模型最终的训练极度膨胀缓慢。

我是昨天回去的时候放在云服务器上面跑的,但是隔了4个小时还没有结束就休息了,一早醒来看到结果出来了,就是觉得简单的事情做得挺波折,这个还是服务器的算力计算得到的,如果是普通的PC机估计就更慢了吧。

简单看下:

 整体项目比较精简,train.json表示训练数据提取出来的LBP向量存储得到的文件,test.json表示测试数据提取出来的LBP向量存储得到的文件。mlModel.py是源代码,实现了数据加载,SVM模型训练和测试评估整套流程。results是存储下来的SVM模型和评估指标结果文件。

当我早上看到这个results体积的时候着实惊呆了,从来还没有看到过SVM模型这么这么的大,进入results目录看下,详情如下:

 一个基于LBP特征训练出来的SVM模型居然达到了恐怖的3+GB。

但是从评估结果上来看结果却是比较惨淡的,如下:

 这里也统计了单个类别下的详情:

"angry": {"accuracy": 0.41541755888650969,"F_value": 0.08385562999783879,"precision": 0.14285714285714286,"recall": 0.05934536555521567},"disgust": {"accuracy": 0.3392857142857143,"F_value": 0.08444444444444444,"precision": 0.16666666666666667,"recall": 0.05654761904761905},"fear": {"accuracy": 0.37298387096774196,"F_value": 0.0776169498636459,"precision": 0.14285714285714286,"recall": 0.053283410138248849},"happy": {"accuracy": 0.646927374301676,"F_value": 0.11223105252955999,"precision": 0.14285714285714286,"recall": 0.09241819632881086},"neutral": {"accuracy": 0.41186161449752886,"F_value": 0.08334722453742291,"precision": 0.14285714285714286,"recall": 0.058837373499646978},"sad": {"accuracy": 0.27565084226646249,"F_value": 0.06173898130680843,"precision": 0.14285714285714286,"recall": 0.03937869175235178},"surprise": {"accuracy": 0.6602409638554216,"F_value": 0.11362222682977399,"precision": 0.14285714285714286,"recall": 0.09432013769363167}

整体来看:效果比较一般,这个还是比较适合用深度学习去做的,感觉这样的数据体量和状态下SVM很难有较好的效果!

相关文章:

python基于LBP+SVM开发构建基于fer2013数据集的人脸表情识别模型是种什么体验,让结果告诉你...

本身LBPSVM是比较经典的技术路线用来做图像识别、目标检测,没有什么特殊的地方 fer2013数据集在我之前的博文中也有详细的实践过,如下: 《fer2013人脸表情数据实践》 系统地基于CNN开发实现 《Python实现将人脸表情数据集fer2013转化为图像…...

antd——实现不分页的表格前端排序功能——基础积累

最近在写后台管理系统时,遇到一个需求,就是给表格中的某些字段添加排序功能。注意该表格是不分页的,因此排序可以只通过前端处理。 如下图所示: 在antd官网上是有关于表格排序的功能的。 对某一列数据进行排序,通过…...

案例11:Java超市管理系统设计与实现开题报告

博主介绍:✌全网粉丝30W,csdn特邀作者、博客专家、CSDN新星计划导师、java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 🍅文末获取源码联系🍅 👇🏻 精彩专…...

@JsonAlias 和 @JsonProperty的使用

JsonAlias 和 JsonProperty 前言一、JsonAlias二、JsonProperty总结 前言 使用场景:主要运用于参数映射。 如:将admin_id 的值赋予adminId 常用于:接收第三方参数,并对参数进行驼峰化或别名。 一、JsonAlias 是在反序列化的时候…...

Grafana系列-统一展示-8-ElasticSearch日志快速搜索仪表板

系列文章 Grafana 系列文章 概述 我们是基于这篇文章: Grafana 系列文章(十二):如何使用 Loki 创建一个用于搜索日志的 Grafana 仪表板, 创建一个类似的, 但是基于 ElasticSearch 的日志快速搜索仪表板. 最终完整效果如下: 📝…...

【K8s】openEuler23操作系统安装Docker和Kubernetes

openEuler23操作系统安装 服务器搭建环境随手记 文章目录 openEuler23操作系统安装前言:一、前期准备(所有节点)1.1所有节点,关闭防火墙规则,关闭selinux,关闭swap交换,打通所有服务器网络&am…...

异常数据检测 | Python实现ADTK时间序列异常数据检测

文章目录 文章概述模型描述程序设计参考资料文章概述 异常数据检测 | Python实现ADTK时间序列异常数据检测 智能运维AIOps的数据基本上都是时间序列形式的,而异常检测告警是AIOps中重要组成部分。 模型描述 笔者最近在处理时间序列数据时有使用到adtk这个python库,在这里和大…...

软件测试之jmeter性能测试让你打开一个全新的世界

一、Jmeter简介 1 概述 jmeter是一个软件,使负载测试或业绩为导向的业务(功能)测试不同的协议或技术。 它是 Apache 软件基金会的Stefano Mazzocchi JMeter 最初开发的。 它主要对 Apache JServ(现在称为如 Apache Tomcat…...

Redis数据结构——动态字符串、Dict、ZipList

一、Redis数据结构-动态字符串 我们都知道Redis中保存的Key是字符串,value往往是字符串或者字符串的集合。可见字符串是Redis中最常用的一种数据结构。 不过Redis没有直接使用C语言中的字符串,因为C语言字符串存在很多问题: 获取字符串长度…...

ipad可以用别的品牌的手写笔吗?便宜的ipad电容笔

而对于那些把ipad当做学习工具的人而言,苹果Pencil就成了必备品。但因为苹果Pencil太贵了,学生们买不起。因此,最好的选择还是平替电容笔。作为一个ipad的忠实用户,同时也是一个数字热爱着,这两年来,我一直…...

【数据库】关于SQL SERVER的排序规则的问题分析

在安装报表系统,运行sql语句时候提示“无法解决 equal to 操作的排序规则冲突。”,费了半天时间才搞定,原来是因为sql语句中没有加全collate Chinese_PRC_CI_AI_WS ! 用排序规则特点计算汉字笔划和取得拼音首字母 SQL SERVER的…...

算法修炼之练气篇——练气十三层

博主:命运之光 专栏:算法修炼之练气篇 目录 题目 1023: [编程入门]选择排序 题目描述 输入格式 输出格式 样例输入 样例输出 题目 1065: 二级C语言-最小绝对值 题目描述 输入格式 输出格式 样例输入 样例输出 题目 1021: [编程入门]迭代法求…...

ChatGPT:AI不取代程序员,只取代的不掌握AI的程序员

作者:成都兰亭集势信息技术有限公司技术总监张雄 可能大家会有如下的问题,我就使用chatGPT这个AI工具的API来问一下。 问:chatGPT会替换掉程序员吗?如果能,预计好久? 答:作为一名 AI 语言模型&a…...

数字革命下的产品:百数十年变迁的启示与思考。

随着数字化时代的到来,软件开发成为各行各业不可或缺的一部分。然而,传统的软件开发方法需要长时间的开发周期,高昂的成本和大量的人力资源。因此,低代码开发平台应运而生。低代码开发平台通过简化开发人员的工作和加速软件开发流…...

部门新来一00后,给我卷崩溃了...

2022年已经结束结束了,最近内卷严重,各种跳槽裁员,相信很多小伙伴也在准备今年的金三银四的面试计划。 在此展示一套学习笔记 / 面试手册,年后跳槽的朋友可以好好刷一刷,还是挺有必要的,它几乎涵盖了所有的…...

使用Spring Boot和Docker构建可伸缩的微服务架构,应对增长的业务需求

使用Spring Boot和Docker构建可伸缩的微服务架构,应对增长的业务需求 一、简介1. 微服务架构的定义2. Spring Boot和Docker的概述 二、Spring Boot1. Spring Boot的介绍2. Spring Boot的优势3. Spring Boot的组件4. Spring Boot的应用 三、Docker1. Docker的介绍2. …...

计算机组成原理基础练习题第四章

1.下述说法中()是正确的。 A、半导体RAM信息可读可写,且断电后仍能保持记忆 B、半导体RAM是易失性RAM,而静态RAM中的存储信息是不易失的 C、半导体RAM是易失性RAM,而静态RAM只有在电源不掉电时,所存信息是不易失的 D、以上选项都不对 解析&#xf…...

浅谈Gradle构建工具

一、序言 常见的项目构建工具有Ant、Maven、Gradle,以往项目常见采用Maven进构建,但随着技术的发展,越来越多的项目采用Gradle进行构建,例如 Spring-boot。Gradle站在了Ant和Maven构建工具的肩膀上,使用强大的表达式语…...

如何获取和制作免费的icon图标素材

icon 图标在界面设计中虽然占比不大,但却是不可缺少的设计元素之一。设计师通过 icon 图标,将抽象的概念通俗化,降低用户理解某个操作的难度。而设计师也会通过改变 icon 图标的样式来展现整体界面的视觉效果。icon 图标的风格有很多&#xf…...

【MySQL】MySQL索引--聚簇索引和非聚簇索引的区别

文章目录 前言1.聚簇索引和非聚簇索引的概念2.两者详细介绍2.1 聚簇索引2.2 非聚簇索引 3. 两者的区别3.1 数据存储方式3.2 二级索引查询 前言 1.聚簇索引和非聚簇索引的概念 数据库表的索引从数据存储方式上可以分为聚簇索引和非聚簇索引两种。“聚簇”的意思是数据行被按照…...

相机Camera日志实例分析之二:相机Camx【专业模式开启直方图拍照】单帧流程日志详解

【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了: 这一篇我们开始讲: 目录 一、场景操作步骤 二、日志基础关键字分级如下 三、场景日志如下: 一、场景操作步骤 操作步…...

如何在看板中体现优先级变化

在看板中有效体现优先级变化的关键措施包括:采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中,设置任务排序规则尤其重要,因为它让看板视觉上直观地体…...

【网络安全产品大调研系列】2. 体验漏洞扫描

前言 2023 年漏洞扫描服务市场规模预计为 3.06(十亿美元)。漏洞扫描服务市场行业预计将从 2024 年的 3.48(十亿美元)增长到 2032 年的 9.54(十亿美元)。预测期内漏洞扫描服务市场 CAGR(增长率&…...

如何理解 IP 数据报中的 TTL?

目录 前言理解 前言 面试灵魂一问:说说对 IP 数据报中 TTL 的理解?我们都知道,IP 数据报由首部和数据两部分组成,首部又分为两部分:固定部分和可变部分,共占 20 字节,而即将讨论的 TTL 就位于首…...

Python ROS2【机器人中间件框架】 简介

销量过万TEEIS德国护膝夏天用薄款 优惠券冠生园 百花蜂蜜428g 挤压瓶纯蜂蜜巨奇严选 鞋子除臭剂360ml 多芬身体磨砂膏280g健70%-75%酒精消毒棉片湿巾1418cm 80片/袋3袋大包清洁食品用消毒 优惠券AIMORNY52朵红玫瑰永生香皂花同城配送非鲜花七夕情人节生日礼物送女友 热卖妙洁棉…...

浪潮交换机配置track检测实现高速公路收费网络主备切换NQA

浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求,本次涉及的主要是收费汇聚交换机的配置,浪潮网络设备在高速项目很少,通…...

人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式

今天是关于AI如何在教学中增强学生的学习体验,我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育,这并非炒作,而是已经发生的巨大变革。教育机构和教育者不能忽视它,试图简单地禁止学生使…...

【JVM面试篇】高频八股汇总——类加载和类加载器

目录 1. 讲一下类加载过程? 2. Java创建对象的过程? 3. 对象的生命周期? 4. 类加载器有哪些? 5. 双亲委派模型的作用(好处)? 6. 讲一下类的加载和双亲委派原则? 7. 双亲委派模…...

MySQL的pymysql操作

本章是MySQL的最后一章,MySQL到此完结,下一站Hadoop!!! 这章很简单,完整代码在最后,详细讲解之前python课程里面也有,感兴趣的可以往前找一下 一、查询操作 我们需要打开pycharm …...

恶补电源:1.电桥

一、元器件的选择 搜索并选择电桥,再multisim中选择FWB,就有各种型号的电桥: 电桥是用来干嘛的呢? 它是一个由四个二极管搭成的“桥梁”形状的电路,用来把交流电(AC)变成直流电(DC)。…...