当前位置: 首页 > news >正文

【C++】AVL树

 


目录

 1 简介

2 实现

2.1 框架构建

2.2 插入操作

2.2.1 平衡因子的更新

2.2.2 平衡因子异常时树的调整

3 检验 


 1 简介

AVL树基于二叉搜索树之上,又对其提出了平衡的要求,即:当向二叉搜索树插入新节点后,保证每个节点的左右子树高度之差的绝对值不超过1

AVL树具有如下性质:

1、它的左右子树都是二叉搜索树。

2、左右子树高度之差(简称平衡因子 = 右子树高度 - 左子树高度)的绝对值不超过1。

AVL树有多种方法来实现,使用平衡因子的方式只是其中一种,接下来讲解实现过程。

2 实现

2.1 框架构建

#pragma once
#include<iostream>template<class K, class V>
struct AVLTreeNode
{std::pair<K, V> _kv;AVLTreeNode<K, V>* _left; //左指针AVLTreeNode<K, V>* _right; //右指针AVLTreeNode<K, V>* _parent; //父指针int _bf; //balance factor 平衡因子
};template<class K, class V>
class AVLTree
{typedef AVLTreeNode<K, V> Node;
public://
private:Node* _root = nullptr;
};

2.2 插入操作

2.2.1 平衡因子的更新

//1、更新平衡因子转换成代码
//这里注意:最坏情况下,平衡因子要持续更新到根节点后停止while (parent){if (cur == parent->_left)--parent->_bf;else++parent->_bf;if (parent->_bf == 0)break;else if(parent->_bf == 1 || parent->_bf == -1){cur = parent;parent = parent->_parent;}else if(parent->_bf == 2 || parent->_bf == -2){//调整树来减小平衡因子}else assert(false);}

2.2.2 平衡因子异常时树的调整

对于如何调整树,我们引入AVL树的旋转操作,AVL树的旋转分为4种

而旋转最终的目的:

1、让这颗子树左右高度差不超过1

2、旋转过程中让它继续保持是搜索树

3、更新调整孩子节点的平衡因子

4、让这棵树的高度跟插入前保持一致

情况1:新节点插入较深右子树的右侧---右右:左单旋 

步骤:1、将值为60的节点的左子树移到值为30的节点的右指针下

2、再将以值为30的节点的树移到值为60的节点的左指针下 

void RotateL(Node* parent){Node* sub = parent->_right;Node* subL = sub->_left;if (subL)subL->_parent = parent;Node* ppnode = parent->_parent;parent->_right = subL;sub->_left = parent;parent->_parent = sub;if (ppnode == nullptr){_root = sub;_root->_parent = nullptr;}else{if (ppnode->_right == parent)ppnode->_right = sub;else if (ppnode->_left == parent)ppnode->_left = sub;sub->_parent = ppnode;}//重新更新平衡因子sub->_bf = 0;parent->_bf = 0;}

情况2:新节点插入较深左子树的左侧---左左:右单旋 

步骤:1、将值为30的节点的右子树移到值为60的节点的左指针下

2、再将以值为60的节点的树移到值为30的节点的右指针下 

代码与左单旋类似

void RotateR(Node* parent){Node* sub = parent->_left;Node* subR = sub->_right;if (subR)subR->_parent = parent;Node* ppnode = parent->_parent;parent->_left = subR;sub->_right = parent;parent->_parent = sub;if (ppnode == nullptr){_root = sub;_root->_parent = nullptr;}else{if (ppnode->_left == parent)ppnode->_left = sub;else if (ppnode->_right == parent)ppnode->_right = sub;sub->_parent = ppnode;}sub->_bf = 0;parent->_bf = 0;}

情况3:新节点插入较高左子树的右侧---左右:先左单旋再右单旋  -- 左右双旋

步骤:先以30为轴进行左单旋,再以60为轴进行右单旋

 

 

void RotateLR(Node* parent){Node* sub = parent->_left;Node* subR = sub->_right;int bf = subR->_bf; //记录subR的_bf来判断是左插入还是右插入...RotateL(parent->_left);RotateR(parent);if (bf == -1) //subR左子树新增{sub->_bf = 0;parent->_bf = 1;subR->_bf = 0;}else if (bf == 1) //subR右子树新增{parent->_bf = 0;sub->_bf = -1;subR->_bf = 0;}else if (bf == 0) //subR自己就是新增{parent->_bf = 0;sub->_bf = 0;subR->_bf = 0;}elseassert(false);}

 

情况4:新节点插入较高右子树的左侧---右左:先右单旋再左单旋  -- 右左双旋

 

代码与左右双旋类似

void RotateRL(Node* parent){Node* sub = parent->_right;Node* subL = sub->_left;int bf = subL->_bf;RotateR(parent->_right);RotateL(parent);if (bf == 1){parent->_bf = -1;sub->_bf = 0;subL->_bf = 0;}else if (bf == 0){parent->_bf = 0;sub->_bf = 0;subL->_bf = 0;}else if (bf == -1){parent->_bf = 0;sub->_bf = 1;subL->_bf = 0;}elseassert(false);}

综上可得到AVL数插入节点的整体过程:

bool insert(const pair<K, V>& kv){if (_root == nullptr){_root = new Node(kv);return true;}Node* parent = nullptr;Node* cur = _root;while (cur){if (cur->_kv.first < kv.first){parent = cur;cur = cur->_right;}else if (cur->_kv.first > kv.first){parent = cur;cur = cur->_left;}elsereturn false;}cur = new Node(kv);if (parent->_kv.first < kv.first){parent->_right = cur;cur->_parent = parent;}else{parent->_left = cur;cur->_parent = parent;}//更新平衡因子while (parent){if (cur == parent->_left)--parent->_bf;else++parent->_bf;if (parent->_bf == 0)break;else if (parent->_bf == -1 || parent->_bf == 1){cur = parent;parent = parent->_parent;}else if (parent->_bf == -2 || parent->_bf == 2){if (parent->_bf == 2 && cur->_bf == 1)RotateL(parent);else if (parent->_bf == -2 && cur->_bf == -1)RotateR(parent);else if (parent->_bf == -2 && cur->_bf == 1)RotateLR(parent);else if (parent->_bf == 2 && cur->_bf == -1)RotateRL(parent);break;}}return true;}

3 检验 

要检验一棵树是否为AVL树,可以先检验是否为二叉搜索树,再检验是否平衡树

如下附上代码:

//按照中序遍历打印,若为有序则是二叉搜索树
void _inorder(Node* root) {if (root == nullptr)return;_inorder(root->_left);cout << root->_kv.first << ":" << root->_kv.second << endl;_inorder(root->_right);}
//检验是否为平衡二叉树
int getHeight(Node* root){if (root == nullptr)return 0;int lh = getHeight(root->_left);int rh = getHeight(root->_right);return lh > rh ? lh + 1 : rh + 1;}bool _isBalanced(Node* root){if (root == nullptr)return true;int lh = getHeight(root->_left);int rh = getHeight(root->_right);if (rh - lh != root->_bf)cout << "平衡因子异常" << endl;if (abs(lh - rh) > 2)return false;return _isBalanced(root->_left)&& _isBalanced(root->_right);}

本文着重讲解AVL数的整体构建过程,并未涉及到迭代器和其他等接口的设计,这些内容会在之后讲解红黑树一起加入。

感谢阅读

相关文章:

【C++】AVL树

目录 1 简介 2 实现 2.1 框架构建 2.2 插入操作 2.2.1 平衡因子的更新 2.2.2 平衡因子异常时树的调整 3 检验 1 简介 AVL树基于二叉搜索树之上&#xff0c;又对其提出了平衡的要求&#xff0c;即&#xff1a;当向二叉搜索树插入新节点后&#xff0c;保证每个节点的左右…...

Mybatis源码(2) - SqlSessionTemplate的介绍及创建过程

0. 前言1. Spring对SqlSessionTemplate的管理1.1. SqlSessionTemplate的创建&#xff1a;1.2. MapperProxy中sqlSession的来源&#xff1a;2. SqlSessionInterceptor中的getSqlSession0. 前言 众所周知&#x1f60f;:MyBatis通过SqlSessionFactory 创建SqlSession去调用Executo…...

女生做大数据有发展前景吗?

当前大数据发展前景非常不错&#xff0c;且大数据领域对于人才类型的需求比较多元化&#xff0c;女生学习大数据也会有比较多的工作机会。大数据是一个交叉学科涉及到的知识量比较大学习有一定的难度&#xff0c;女生比较适合大数据采集和大数据分析方向的工作岗位。 大数据采…...

Git实用指令记录

config 用例&#xff1a;对git最先要做的一个操作就是配置用户名和邮箱&#xff0c;否则无法commit查看所有可以config的条目&#xff0c;非常之多$ git config --list core.symlinksfalse core.autocrlftrue core.fscachetrue color.interactivetrue color.uiauto help.forma…...

复杂美公链技术重要特色:平行公链架构

复杂美公链技术Chain33从11月开源至今&#xff0c;获得众多合作方的认可&#xff0c;其中首创的平行公链架构被百度、阿里、360等机构认可并跟进研究&#xff0c;这也说明了平行公链或许是区块链普及应用的重要解决方案之一。 平行公链&#xff08;以下简称平行链&#xff09;是…...

Java——进制转换的一些内容

Java——进制转换的一些内容1.16进制字符串String转字节数组byte[]2.16进制字符串String转10进制数字int3.字节数组byte[]转字符串String4.16进制字符串String-->byte[]-->String&#xff08;使用ByteBuffer转换&#xff09;5.字节数组byte[]转字符数组char[]6.字节byte转…...

使用 Nodejs、Express、Postgres、Docker 在 JavaScript 中构建 CRUD Rest API

让我们在 JavaScript 中创建一个 CRUD rest API&#xff0c;使用&#xff1a;节点.js表达续集Postgres码头工人码头工人组成介绍这是我们将要创建的应用程序架构的架构&#xff1a;我们将为基本的 CRUD 操作创建 5 个端点&#xff1a;创造阅读全部读一个更新删除我们将使用以下…...

电子招标采购系统源码之什么是电子招投标系统?

随着互联网时代的到来&#xff0c;各行业都受到不同的影响&#xff0c;其中招投标行业也不例外。为了顺应互联网潮流的发展&#xff0c;电子招投标逐渐取代传统的纸质的招投标方式&#xff0c;给招标方、投标方、招标代理等各方也带来了前所未有的机遇与挑战。那么什么是电子招…...

匹配文件名称模块glob和fnmatch

匹配文件名称模块glob 1.概述 glob模式规则与re模块的正则表达式规则不大相同&#xff0c;glob模块遵循标准的UNIX路径扩展规则。 fnmatch模块用于根据glob模式比较文件名 2.glob表达式匹配文件名 2.1.测试文件 介绍glob配置规则前&#xff0c;先使用下面的代码创建测试文…...

day12_oop

今日内容 上课同步视频:CuteN饕餮的个人空间_哔哩哔哩_bilibili 同步笔记沐沐霸的博客_CSDN博客-Java2301 零、 复习昨日 一、作业 二、继承 三、重写 四、this和super 五、访问修饰符 零、 复习昨日 局部变量和成员变量什么区别 位置,作用域,初始值,内存位置,生命周期 构造方法…...

在 Flutter 中使用 webview_flutter 4.0 | js 交互

大家好&#xff0c;我是 17。 已经有很多关于 Flutter WebView 的文章了&#xff0c;为什么还要写一篇。两个原因&#xff1a; Flutter WebView 是 Flutter 开发的必备技能现有的文章都是关于老版本的&#xff0c;新版本 4.x 有了重要变化&#xff0c;基于 3.x 的代码很多要重…...

嵌入式ARM工业边缘计算机BL302的CAN总线接口如何设置?

CAN 接口如图所示&#xff0c;输入如下命令&#xff1a; ifconfig -a //查看所有网卡 如果 FlexCAN 驱动工作正常的话就会看到 CAN 对应的网卡接口&#xff0c;如图。从图中可 以看出&#xff0c;有一个名为“can0”的网卡&#xff0c;这个就是 BL302 板上的 CAN1 接口对应的 c…...

Win11系统如何安装Ubuntu20.04(WSL版本)并安装docker

终于还是下定决心去换电脑了……这次采用轻量级的WSL&#xff0c;发现虽然没有占内存的GUI界面&#xff0c;但是编码和阅读文档还是非常nice的 1、首先开启Win11的虚拟机服务 2、下载你期望的Ubuntu服务器&#xff08;这里以20.04为例&#xff09; 安装成功后&#xff0c;发现…...

Elasticsearch和Solr的区别

背景&#xff1a;它们都是基于Lucene搜索服务器基础之上开发&#xff0c;一款优秀的&#xff0c;高性能的企业级搜索服务器。&#xff08;是因为他们都是基于分词技术构建的倒排索引的方式进行查询&#xff09;开发语言&#xff1a;java语言开发诞生时间&#xff1a;Solr2004年…...

如何在北京买房

首先我陈述一点&#xff0c;如果为了买房后再卖掉赚取差价&#xff0c;我这篇文章也许不适合&#xff0c;我这篇文章为整体愿景的发展而设计&#xff0c;为可操作房产的买卖而操作。 买房的愿景&#xff1a; 首先&#xff0c;我们要以一种心态来买房。那就是以始为终的态度&am…...

使用Proxifier+burp抓包总结

一、微信小程序&网页抓包 1. Proxifier简介 Proxifier是一款功能非常强大的socks5客户端&#xff0c;可以让不支持通过代理服务器工作的网络程序能通过HTTPS或SOCKS代理或代理链。 2. 使用Proxifier代理抓包 原理&#xff1a;让微信相关流量先走127.0.0.1:80到burp。具体…...

安装华为aab包的处理方式

1、转换 aab包 为 apks 说明&#xff1a; 1、bundletool-all-1.11.2.jar 转换文件的工具 2、a.aab aab源文件 3、xxx.apks 导入的文件以及路径&#xff08;例如&#xff1a;D:\Android\xxx.apks&#xff09; 4、–ksxxxx.jks 该aab打包所需的jsk文件 5、三条命令为 jsk打包所…...

Word处理控件Aspose.Words功能演示:使用 C++ 将 RTF 文档转换为 PDF

Aspose.Words 是一种高级Word文档处理API&#xff0c;用于执行各种文档管理和操作任务。API支持生成&#xff0c;修改&#xff0c;转换&#xff0c;呈现和打印文档&#xff0c;而无需在跨平台应用程序中直接使用Microsoft Word。此外&#xff0c;API支持所有流行的Word处理文件…...

【Java|多线程与高并发】进程与线程的区别与联系

文章目录什么是进程什么是线程上下文切换多线程一定比串行执行快吗进程与线程的区别与联系什么是进程 进程的定义:进程是正在运行的程序实体&#xff0c;并且包括这个运行的程序中占据的所有系统资源&#xff0c;比如说CPU&#xff08;寄存器&#xff09;&#xff0c;IO,内存&a…...

K8s手工创建kubeconfig

我们通过 kubectl 命令行连接 k8s apiserver 时需要依赖 kubeconfig 文件。 kubeconfig 文件通常包含了 context&#xff08;上下文&#xff09;列表&#xff0c;每个 context 又会引用 cluster 和 user&#xff0c;最后通过 current-context 指定当前 kubeconfig 使用哪个 con…...

【SQL开发实战技巧】系列(十七):时间类型操作(下):确定两个日期之间的工作天数、计算—年中周内各日期出现次数、确定当前记录和下一条记录之间相差的天数

系列文章目录 【SQL开发实战技巧】系列&#xff08;一&#xff09;:关于SQL不得不说的那些事 【SQL开发实战技巧】系列&#xff08;二&#xff09;&#xff1a;简单单表查询 【SQL开发实战技巧】系列&#xff08;三&#xff09;&#xff1a;SQL排序的那些事 【SQL开发实战技巧…...

代码随想录算法训练营第二十八天 | 491.递增子序列,46.全排列,47.全排列 II

一、参考资料递增子序列题目链接/文章讲解&#xff1a;https://programmercarl.com/0491.%E9%80%92%E5%A2%9E%E5%AD%90%E5%BA%8F%E5%88%97.html 视频讲解&#xff1a;https://www.bilibili.com/video/BV1EG4y1h78v 全排列题目链接/文章讲解&#xff1a;https://programmercarl.…...

使用 Three.js 后处理的粗略铅笔画效果

本文使用Three.js的后处理创建粗略的铅笔画效果。我们将完成创建自定义后处理渲染通道、在 WebGL中实现边缘检测、将法线缓冲区重新渲染到渲染目标以及使用生成和导入的纹理调整最终结果的步骤。翻译自Codrops&#xff0c;有改动。 Three.js 中的后处理 Three.js中的后处理是一…...

推荐一些不常见的搜索引擎

5.雅虎网来自 Yahoo.com 的屏幕截图&#xff0c;2023 年 2 月截至 2022 年 1 月&#xff0c;Yahoo.com&#xff08;Verizon Media&#xff09;的搜索市场份额为 11.2%。雅虎的优势在于多元化&#xff0c;除搜索外还提供电子邮件、新闻、金融等服务。二十多年来&#xff0c;雅虎…...

RabbitMQ工作模式

目录1.Work queues工作队列模式1.1 模式说明1.2 代码1.3 测试1.4 小结2.订阅模式类型3.Publish/Subscribe发布与订阅模式3.1 模式说明3.2 代码3.3 测试3.4 小结4.Routing路由模式4.1 模式说明4.2 代码4.3 测试4.4 小结5.Topics通配符模式5.1 模式说明5.2 代码5.3 测试5.4 小结6…...

机器学习在预测脊髓型颈椎病中的应用:一项28名参与者的事后初步研究

机器学习在预测脊髓型颈椎病中的应用:一项28名参与者的事后初步研究 Machine Learning for the Prediction of Cervical Spondylotic Myelopathy: A Post Hoc Pilot Study of 28 Participants 简单说&#xff1a;训练了两个模型&#xff1a;1)预测脊髓型颈椎病诊断&#xff0…...

【智能计算数学】微积分

高数问题解决流程引例&#xff1a;回归回归引例&#xff1a;分类分类线性可分FLD线性不可分智能计算讨论范围下降法为什么要用下降法&#xff1f;- 解析解很难写出公式或很复杂难计算有哪些常用的下降法&#xff1f;- 梯度下降&高斯-牛顿法梯度下降&#xff08;Gradient De…...

win10+RTX4070ti+libtorch部署

环境cuda 11.7、cudnn8.6.0、libtorch1.13.1cu117 注意&#xff1a; 1&#xff09;libtorch官网进不去的可直接下载 Release version https://download.pytorch.org/libtorch/cu117/libtorch-win-shared-with-deps-1.13.1%2Bcu117.zip Debug version https://download.pytorch.…...

【Python百日进阶-Web开发-Vue3】Day518 - Vue+ts后台项目5:用户列表

文章目录 一、获取用户列表的数据1.1 定义用户列表和角色列表的接口src/request/api.ts1.2 获取用户列表数据src/views/UserView.vue二、定义用户列表数据类型2.1 src/type/user.ts三、展示用户列表内容3.1 element-plus中的Select 选择器3.2 element-plus中的表格插槽3.3 展示…...

Linux内核转储---kdump原理梳理

文章目录Kexec和Kdump设计的区别kexeckdumpKdump的执行流程kexec的实现用户空间kexec内核空间vmcoreKdump的实现可以分为两部分&#xff1a;内核和用户工具。内核提供机制&#xff0c;用户工具在这些机制上实现各种转储策略&#xff0c;内核机制对用户工具的接口是一个系统调用…...

呼家楼做网站的公司哪家好/北京排名seo

1.福利 | 飞桨中国行——生产制造专场 https://ai.baidu.com/support/news?actiondetail&id2704&hmsrAI&hmplZ 2.利器 | 数字化石油的开采利器&#xff1a;智能图像识别系统 https://ai.baidu.com/support/news?actiondetail&id2707&hmsrAI&hmplZ…...

北京做网站建设公司排名/浏览器2345网址导航下载安装

windeployqt test.exe转载于:https://www.cnblogs.com/nanqiang/p/10083313.html...

常州辉煌网络网站建设/西安关键词排名优化

前言前阵子来哈尔滨上学&#xff0c;坐火车的时候感到非常的无趣&#xff0c;所以在这个过程中我想到了一个办法来打发时间&#xff0c;看电影&#xff0c;然后无意间在一个小面馆里下载各种电影的时候看到爱奇艺里面卧虎藏龙这部电影是免费的&#xff0c;于是我想到把它下载下…...

天津学网站建设/东莞营销网站建设优化

介绍两个用于C/C/Java格式化的工具1. IndentIndent 非常简单&#xff0c;是gcc自带的一个工具.indent [options] [input-files]indent [options] [single-input-file] [-o output-file]For example (处理很多文件)Windows:for /R %f in (*.cpp) do indent %fLinux:find ./ -nam…...

怎么做自己的手机网站/网站排名查询

#include <iostream> using namespace std; const int N 1e5, M 31 * N; int son[M][2]; int idx; int a[N]; void Insert(int x) { int p 0; for (int i 30; i > 0; i--)//由高位二进制数进行存储数据&#xff0c;p为根结点同时为空结点 { …...

江苏省建设工程招标网站/app拉新一手渠道

点击上方☝&#xff0c;轻松关注&#xff01;及时获取有趣有料的技术文章本文讲一下Java线程池中创建 ThreadFactory 设置线程名称的三种方式。设置线程名称是很重要的&#xff0c;如果你没有设置过&#xff0c;说明你还“涩世”不深&#xff0c;这里面的坑还不曾踩过&#xff…...