当前位置: 首页 > news >正文

XGBoost

目录

1.XGBoost推导示意图

2.分裂节点算法

Weighted Quantile Sketch

 3.对缺失值得处理


1.XGBoost推导示意图

XGBoost有两个很不错得典型算法,分别是用来进行分裂节点选择和缺失值处理

2.分裂节点算法

Weighted Quantile Sketch

对于特征切点点得选择,xgboost不单单是采用简单得分位数得方法,而是对分位数进行加权(使用二阶梯度h),称为:weighted quantile sketch.

对特征k构造multi-set得数据集:D_k=(x_{1k},h_1),(x_{2k},h_2),...,(x_{nk},h_n),其中x_{ik}表示样本i得特征k得取值,而h_i则为对应得二阶梯度。

 式子中分子是x小于z得所有样本对应得h之和(即小于z得样本加权和,权重为h),分母为所有样本得加权和。该式子表达了第k个特征小于z得样本比例,和分位数相似,不过这里是按照二阶梯度进行累计。

而候选切分点S_k={s_{k1},s_{k2},...,s_{kl}}要求:

 即让相邻两个候选分裂点带入r_k(z)中,相差不超过某个值\varepsilon,由于,最终会切分处1/\varepsilon,如下面例子:

选取 \varepsilon=1/3,会得到三个桶,h总和1.8,因此s_{k1}=0.6,s_{k2}=1.2.

到这里,xgboost得分裂点选择就讲完了,然后再基于分裂前后得损失大小去判断选择最终得分裂点即可。但是还有个问题需要解答,为什么选择h而不是g或者其他?证明如下:

 3.对缺失值得处理

xgboost模型得一个优点就是允许特征存在缺失值。对缺失值得处理方式如下:

  • 在特征k上寻找最佳split point时,不会对该列特征missing得样本进行遍历,而只对该列特征值为non-missing得样本上对应得特征值进行遍历,通过这个技巧来减少了为稀疏离散特征寻找split point得时间开销
  • 在逻辑实现上,为了保证完备性,会将该特征值missing得样本分别分配到左叶子节点和有叶子节点,两种情况都计算一遍后,选择分裂后增益最大得那个方向(左分支或右分支),作为预测时特征值确实样本得默认分支方向。
  • 如果在训练中没有缺失值而在预测中出现缺失,那么会自动将缺失值得划分方向放到右子节点。

xgboost常见面试题:

珍藏版 | 20道XGBoost面试题_无名氏a的博客-CSDN博客_xgboost面试题

【xgboost】常见面试题_数分面试加油的博客-CSDN博客_xgboost 算法面试题目 

相关文章:

XGBoost

目录 1.XGBoost推导示意图 2.分裂节点算法 Weighted Quantile Sketch 3.对缺失值得处理 1.XGBoost推导示意图 XGBoost有两个很不错得典型算法,分别是用来进行分裂节点选择和缺失值处理 2.分裂节点算法 Weighted Quantile Sketch 对于特征切点点得选择&#xff…...

你是什么时候从轻视到高看软件测试的?

刚开始学软件测试很轻视,因为我那时很无知,这也是那时绝大多数人员的心态,那时中国最讲究“编程才是硬道理”。 如今却非常热爱软件测试,包括软件测试工具,方法,理论,技术。因为我在3年的测试工…...

基于ssm的航空售票系统

博主介绍:java高级开发,从事互联网行业六年,熟悉各种主流语言,精通java、python、php、爬虫、web开发,已经从做了六年的毕业设计程序开发,开发过上千套毕业设计程序,没有什么华丽的语言&#xf…...

滑动窗口最大值

给定一个数组 nums 和滑动窗口的大小 k,请找出所有滑动窗口里的最大值。 示例: 输入: nums = [1,3,-1,-3,5,3,6,7], 和 k = 3 输出: [3,3,5,5,6,7] 解释: 滑动窗口的位置 最大值 --------------- ----- [1 3 -1] -3 5 3 6 7 3 …...

接口文档参考示例

接口文档参考示例 用户登录 - POST /api/login/ 接口说明:登录成功后,会生成或更新用户令牌(token)。 使用帮助:测试数据库中预设了四个可供使用的账号,如下表所示。 Untitled 请求参数: Untitled 响应信息: 登录成功: {"code": 30000, "message&qu…...

2010-2019年290个城市经济发展与环境污染数据

2010-2019年290个城市经济发展与环境污染数据 1、时间:2010-2019年 2、统计口径:全市 3、来源:城市统计NJ,缺失情况与年鉴一致 4、指标包括: 综合经济:地区生产总值、人均地区生产总值、地区生产总值增…...

web开发

目录 使用Idea搭建Web项目 使用Idea开发Web项目基本知识 tomcat配置信息 HTML /CSS 开发主页 Servlet 学习和掌握的内容: HTML/CSSServlet MVC模式和Web开发数据库基本应用和JDBC应用软件项目开发流程 环境及工具版本: Windows10,JDK1.8 Idea2…...

【数据结构】优先级队列----堆

优先级队列----堆优先级队列堆堆的创建堆的插入:堆的删除:PriorityQueue的特性PriorityQueue的构造与方法优先级队列 优先级队列: 不同于先进先出的普通队列,在一些情况下,优先级高的元素要先出队列。而这种队列需要提…...

Python深度学习实战PyQt5信号与槽的连接

本文讲解信号与槽的连接机制,详细示范各种类型的信号/槽连接的实现方法,这是图形用户界面的核心内容。还将介绍面向对象的程序设计,这是图形用户界面的基本思想目录1. 信号与槽(Signals and slots)信号与槽机制是 PyQt…...

Window 10 OpenCV 打开罗技(Logitech)摄像头速度慢问题解决

采用最新版OpenCV 4.7.0 摄像头对罗技摄像头进行视频图像抓取时,发现存在打开摄像头慢的问题。 测试环境如下: 系统Windows 10 专业版CPUIntel i7-7700K 4.20GHz 摄像头型号罗技Logitech C930c 网络摄像头OpenCV版本4.7.0语言C 测试结果表明&#xff…...

基于yolo的小球位置实时检测

基于yolo的小球位置实时检测 Yolo安装 操作系统:ubuntu 安装cuda和opencv git clone https://github.com/pjreddie/darknet.git cd darknet 修改Makefile文件,使GPU1,OPENCV1 make 2. 数据集处理 2.1 制作数据集 将小球放在摄像头前…...

【微服务】Elasticsearch数据聚合自动补全数据同步(四)

🚗Es学习第四站~ 🚩Es学习起始站:【微服务】Elasticsearch概述&环境搭建(一) 🚩本文已收录至专栏:微服务探索之旅 👍希望您能有所收获 在第二站的学习中,我们已经导入了大量数据到es中&…...

java面试题(十七)spring

2.1 请你说说Spring的核心是什么 参考答案 Spring框架包含众多模块,如Core、Testing、Data Access、Web Servlet等,其中Core是整个Spring框架的核心模块。Core模块提供了IoC容器、AOP功能、数据绑定、类型转换等一系列的基础功能,而这些功能…...

你知道 BI 是什么吗?关于 BI 系统的概述

BI 作为信息化建设中的关键一环,在企业中通常起到承上启下的作用,下能连接打通企业业务系统数据库,将各部门数据分类分级统一储存到数据仓库,简化存储取数流程,减少人力、时间成本;上能提供数据可视化报表…...

git:详解git rebase命令

背景 今天无意中打开 git 官网,发现 git 命令还是很多的,然而我们常用的就那几个,今天来学习一个也不怎么常用的命令 rebase 官网链接 都说学一个东西最好的方式就是读他的 官方文档,这里我读了一遍,把一些核心的地…...

第四章——随机变量的数字特征

文章目录1、数字特征的定义2、数学期望(均值)2.1、数学期望的定义及性质2.1.1、定义2.1.2、性质2.2、数学期望相关例题2.3、Yg(X)的数学期望2.4、Zg(X,Y)的数学期望2.5、随机变量函数的数学期望例题3、方差3.1、方差的定义与性质3.2、相关例题3.3、切比雪…...

vue2源码阅读理解-响应式数据原理

首先明确,vue2是如何实现响应式的? 通过object.defineProperty观察者模式实现,在创建vue实例的过程中,也就是介于beforecomputed~computed的过程中,会执行如下函数initState export function initState (vm: Componen…...

服务调用分布式session

目录一、nginx动静分离二、服务调用1、创建配置zmall-cart购物车模块2、创建配置zmall-order订单模块3、服务调用三、spring session实战1、什么是Spring Session2、为什么要使用Spring Session3、错误案例展示4、配置spring-session四、二级域名问题五、用户登录一、nginx动静…...

Maven知识点-插件-maven-surefire-plugin简介

Maven本身并不是一个单元测试框架,Java 世界中主流的单元测试框架为JUnit 和TestNG。 Maven 所做的只是在构建执行到特定生命周期阶段的时候,通过插件来执行JUnit或者TestNG的测试用例。 这一插件就是maven-surefire-plugin,可以称之为测试…...

如何借力Alluxio推动大数据产品性能提升与成本优化?

内容简介 随着数字化不断发展,各行各业数据呈现海量增长的趋势。存算分离将存储系统和计算框架拆分为独立的模块,Alluxio作为如今主流云数据编排软件之一,为计算型应用(如 Apache Spark、Presto)和存储系统&#xff0…...

OpenLayers 可视化之热力图

注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 热力图(Heatmap)又叫热点图,是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...

从WWDC看苹果产品发展的规律

WWDC 是苹果公司一年一度面向全球开发者的盛会,其主题演讲展现了苹果在产品设计、技术路线、用户体验和生态系统构建上的核心理念与演进脉络。我们借助 ChatGPT Deep Research 工具,对过去十年 WWDC 主题演讲内容进行了系统化分析,形成了这份…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

在四层代理中还原真实客户端ngx_stream_realip_module

一、模块原理与价值 PROXY Protocol 回溯 第三方负载均衡(如 HAProxy、AWS NLB、阿里 SLB)发起上游连接时,将真实客户端 IP/Port 写入 PROXY Protocol v1/v2 头。Stream 层接收到头部后,ngx_stream_realip_module 从中提取原始信息…...

【项目实战】通过多模态+LangGraph实现PPT生成助手

PPT自动生成系统 基于LangGraph的PPT自动生成系统,可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析:自动解析Markdown文档结构PPT模板分析:分析PPT模板的布局和风格智能布局决策:匹配内容与合适的PPT布局自动…...

《通信之道——从微积分到 5G》读书总结

第1章 绪 论 1.1 这是一本什么样的书 通信技术,说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号(调制) 把信息从信号中抽取出来&am…...

Web 架构之 CDN 加速原理与落地实践

文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 &#xf…...

scikit-learn机器学习

# 同时添加如下代码, 这样每次环境(kernel)启动的时候只要运行下方代码即可: # Also add the following code, # so that every time the environment (kernel) starts, # just run the following code: import sys sys.path.append(/home/aistudio/external-libraries)机…...

零知开源——STM32F103RBT6驱动 ICM20948 九轴传感器及 vofa + 上位机可视化教程

STM32F1 本教程使用零知标准板(STM32F103RBT6)通过I2C驱动ICM20948九轴传感器,实现姿态解算,并通过串口将数据实时发送至VOFA上位机进行3D可视化。代码基于开源库修改优化,适合嵌入式及物联网开发者。在基础驱动上新增…...

针对药品仓库的效期管理问题,如何利用WMS系统“破局”

案例: 某医药分销企业,主要经营各类药品的批发与零售。由于药品的特殊性,效期管理至关重要,但该企业一直面临效期问题的困扰。在未使用WMS系统之前,其药品入库、存储、出库等环节的效期管理主要依赖人工记录与检查。库…...