当前位置: 首页 > news >正文

XGBoost

目录

1.XGBoost推导示意图

2.分裂节点算法

Weighted Quantile Sketch

 3.对缺失值得处理


1.XGBoost推导示意图

XGBoost有两个很不错得典型算法,分别是用来进行分裂节点选择和缺失值处理

2.分裂节点算法

Weighted Quantile Sketch

对于特征切点点得选择,xgboost不单单是采用简单得分位数得方法,而是对分位数进行加权(使用二阶梯度h),称为:weighted quantile sketch.

对特征k构造multi-set得数据集:D_k=(x_{1k},h_1),(x_{2k},h_2),...,(x_{nk},h_n),其中x_{ik}表示样本i得特征k得取值,而h_i则为对应得二阶梯度。

 式子中分子是x小于z得所有样本对应得h之和(即小于z得样本加权和,权重为h),分母为所有样本得加权和。该式子表达了第k个特征小于z得样本比例,和分位数相似,不过这里是按照二阶梯度进行累计。

而候选切分点S_k={s_{k1},s_{k2},...,s_{kl}}要求:

 即让相邻两个候选分裂点带入r_k(z)中,相差不超过某个值\varepsilon,由于,最终会切分处1/\varepsilon,如下面例子:

选取 \varepsilon=1/3,会得到三个桶,h总和1.8,因此s_{k1}=0.6,s_{k2}=1.2.

到这里,xgboost得分裂点选择就讲完了,然后再基于分裂前后得损失大小去判断选择最终得分裂点即可。但是还有个问题需要解答,为什么选择h而不是g或者其他?证明如下:

 3.对缺失值得处理

xgboost模型得一个优点就是允许特征存在缺失值。对缺失值得处理方式如下:

  • 在特征k上寻找最佳split point时,不会对该列特征missing得样本进行遍历,而只对该列特征值为non-missing得样本上对应得特征值进行遍历,通过这个技巧来减少了为稀疏离散特征寻找split point得时间开销
  • 在逻辑实现上,为了保证完备性,会将该特征值missing得样本分别分配到左叶子节点和有叶子节点,两种情况都计算一遍后,选择分裂后增益最大得那个方向(左分支或右分支),作为预测时特征值确实样本得默认分支方向。
  • 如果在训练中没有缺失值而在预测中出现缺失,那么会自动将缺失值得划分方向放到右子节点。

xgboost常见面试题:

珍藏版 | 20道XGBoost面试题_无名氏a的博客-CSDN博客_xgboost面试题

【xgboost】常见面试题_数分面试加油的博客-CSDN博客_xgboost 算法面试题目 

相关文章:

XGBoost

目录 1.XGBoost推导示意图 2.分裂节点算法 Weighted Quantile Sketch 3.对缺失值得处理 1.XGBoost推导示意图 XGBoost有两个很不错得典型算法,分别是用来进行分裂节点选择和缺失值处理 2.分裂节点算法 Weighted Quantile Sketch 对于特征切点点得选择&#xff…...

你是什么时候从轻视到高看软件测试的?

刚开始学软件测试很轻视,因为我那时很无知,这也是那时绝大多数人员的心态,那时中国最讲究“编程才是硬道理”。 如今却非常热爱软件测试,包括软件测试工具,方法,理论,技术。因为我在3年的测试工…...

基于ssm的航空售票系统

博主介绍:java高级开发,从事互联网行业六年,熟悉各种主流语言,精通java、python、php、爬虫、web开发,已经从做了六年的毕业设计程序开发,开发过上千套毕业设计程序,没有什么华丽的语言&#xf…...

滑动窗口最大值

给定一个数组 nums 和滑动窗口的大小 k,请找出所有滑动窗口里的最大值。 示例: 输入: nums = [1,3,-1,-3,5,3,6,7], 和 k = 3 输出: [3,3,5,5,6,7] 解释: 滑动窗口的位置 最大值 --------------- ----- [1 3 -1] -3 5 3 6 7 3 …...

接口文档参考示例

接口文档参考示例 用户登录 - POST /api/login/ 接口说明:登录成功后,会生成或更新用户令牌(token)。 使用帮助:测试数据库中预设了四个可供使用的账号,如下表所示。 Untitled 请求参数: Untitled 响应信息: 登录成功: {"code": 30000, "message&qu…...

2010-2019年290个城市经济发展与环境污染数据

2010-2019年290个城市经济发展与环境污染数据 1、时间:2010-2019年 2、统计口径:全市 3、来源:城市统计NJ,缺失情况与年鉴一致 4、指标包括: 综合经济:地区生产总值、人均地区生产总值、地区生产总值增…...

web开发

目录 使用Idea搭建Web项目 使用Idea开发Web项目基本知识 tomcat配置信息 HTML /CSS 开发主页 Servlet 学习和掌握的内容: HTML/CSSServlet MVC模式和Web开发数据库基本应用和JDBC应用软件项目开发流程 环境及工具版本: Windows10,JDK1.8 Idea2…...

【数据结构】优先级队列----堆

优先级队列----堆优先级队列堆堆的创建堆的插入:堆的删除:PriorityQueue的特性PriorityQueue的构造与方法优先级队列 优先级队列: 不同于先进先出的普通队列,在一些情况下,优先级高的元素要先出队列。而这种队列需要提…...

Python深度学习实战PyQt5信号与槽的连接

本文讲解信号与槽的连接机制,详细示范各种类型的信号/槽连接的实现方法,这是图形用户界面的核心内容。还将介绍面向对象的程序设计,这是图形用户界面的基本思想目录1. 信号与槽(Signals and slots)信号与槽机制是 PyQt…...

Window 10 OpenCV 打开罗技(Logitech)摄像头速度慢问题解决

采用最新版OpenCV 4.7.0 摄像头对罗技摄像头进行视频图像抓取时,发现存在打开摄像头慢的问题。 测试环境如下: 系统Windows 10 专业版CPUIntel i7-7700K 4.20GHz 摄像头型号罗技Logitech C930c 网络摄像头OpenCV版本4.7.0语言C 测试结果表明&#xff…...

基于yolo的小球位置实时检测

基于yolo的小球位置实时检测 Yolo安装 操作系统:ubuntu 安装cuda和opencv git clone https://github.com/pjreddie/darknet.git cd darknet 修改Makefile文件,使GPU1,OPENCV1 make 2. 数据集处理 2.1 制作数据集 将小球放在摄像头前…...

【微服务】Elasticsearch数据聚合自动补全数据同步(四)

🚗Es学习第四站~ 🚩Es学习起始站:【微服务】Elasticsearch概述&环境搭建(一) 🚩本文已收录至专栏:微服务探索之旅 👍希望您能有所收获 在第二站的学习中,我们已经导入了大量数据到es中&…...

java面试题(十七)spring

2.1 请你说说Spring的核心是什么 参考答案 Spring框架包含众多模块,如Core、Testing、Data Access、Web Servlet等,其中Core是整个Spring框架的核心模块。Core模块提供了IoC容器、AOP功能、数据绑定、类型转换等一系列的基础功能,而这些功能…...

你知道 BI 是什么吗?关于 BI 系统的概述

BI 作为信息化建设中的关键一环,在企业中通常起到承上启下的作用,下能连接打通企业业务系统数据库,将各部门数据分类分级统一储存到数据仓库,简化存储取数流程,减少人力、时间成本;上能提供数据可视化报表…...

git:详解git rebase命令

背景 今天无意中打开 git 官网,发现 git 命令还是很多的,然而我们常用的就那几个,今天来学习一个也不怎么常用的命令 rebase 官网链接 都说学一个东西最好的方式就是读他的 官方文档,这里我读了一遍,把一些核心的地…...

第四章——随机变量的数字特征

文章目录1、数字特征的定义2、数学期望(均值)2.1、数学期望的定义及性质2.1.1、定义2.1.2、性质2.2、数学期望相关例题2.3、Yg(X)的数学期望2.4、Zg(X,Y)的数学期望2.5、随机变量函数的数学期望例题3、方差3.1、方差的定义与性质3.2、相关例题3.3、切比雪…...

vue2源码阅读理解-响应式数据原理

首先明确,vue2是如何实现响应式的? 通过object.defineProperty观察者模式实现,在创建vue实例的过程中,也就是介于beforecomputed~computed的过程中,会执行如下函数initState export function initState (vm: Componen…...

服务调用分布式session

目录一、nginx动静分离二、服务调用1、创建配置zmall-cart购物车模块2、创建配置zmall-order订单模块3、服务调用三、spring session实战1、什么是Spring Session2、为什么要使用Spring Session3、错误案例展示4、配置spring-session四、二级域名问题五、用户登录一、nginx动静…...

Maven知识点-插件-maven-surefire-plugin简介

Maven本身并不是一个单元测试框架,Java 世界中主流的单元测试框架为JUnit 和TestNG。 Maven 所做的只是在构建执行到特定生命周期阶段的时候,通过插件来执行JUnit或者TestNG的测试用例。 这一插件就是maven-surefire-plugin,可以称之为测试…...

如何借力Alluxio推动大数据产品性能提升与成本优化?

内容简介 随着数字化不断发展,各行各业数据呈现海量增长的趋势。存算分离将存储系统和计算框架拆分为独立的模块,Alluxio作为如今主流云数据编排软件之一,为计算型应用(如 Apache Spark、Presto)和存储系统&#xff0…...

基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销,平衡网络负载,延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...

k8s从入门到放弃之Ingress七层负载

k8s从入门到放弃之Ingress七层负载 在Kubernetes(简称K8s)中,Ingress是一个API对象,它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress,你可…...

Java如何权衡是使用无序的数组还是有序的数组

在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...

对WWDC 2025 Keynote 内容的预测

借助我们以往对苹果公司发展路径的深入研究经验,以及大语言模型的分析能力,我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际,我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测,聊作存档。等到明…...

c++第七天 继承与派生2

这一篇文章主要内容是 派生类构造函数与析构函数 在派生类中重写基类成员 以及多继承 第一部分:派生类构造函数与析构函数 当创建一个派生类对象时,基类成员是如何初始化的? 1.当派生类对象创建的时候,基类成员的初始化顺序 …...

安卓基础(Java 和 Gradle 版本)

1. 设置项目的 JDK 版本 方法1:通过 Project Structure File → Project Structure... (或按 CtrlAltShiftS) 左侧选择 SDK Location 在 Gradle Settings 部分,设置 Gradle JDK 方法2:通过 Settings File → Settings... (或 CtrlAltS)…...

MySQL 主从同步异常处理

阅读原文:https://www.xiaozaoshu.top/articles/mysql-m-s-update-pk MySQL 做双主,遇到的这个错误: Could not execute Update_rows event on table ... Error_code: 1032是 MySQL 主从复制时的经典错误之一,通常表示&#xff…...

Python竞赛环境搭建全攻略

Python环境搭建竞赛技术文章大纲 竞赛背景与意义 竞赛的目的与价值Python在竞赛中的应用场景环境搭建对竞赛效率的影响 竞赛环境需求分析 常见竞赛类型(算法、数据分析、机器学习等)不同竞赛对Python版本及库的要求硬件与操作系统的兼容性问题 Pyth…...

ubuntu22.04有线网络无法连接,图标也没了

今天突然无法有线网络无法连接任何设备,并且图标都没了 错误案例 往上一顿搜索,试了很多博客都不行,比如 Ubuntu22.04右上角网络图标消失 最后解决的办法 下载网卡驱动,重新安装 操作步骤 查看自己网卡的型号 lspci | gre…...

人工智能 - 在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型

在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型。这些平台各有侧重,适用场景差异显著。下面我将从核心功能定位、典型应用场景、真实体验痛点、选型决策关键点进行拆解,并提供具体场景下的推荐方案。 一、核心功能定位速览 平台核心定位技术栈亮…...