当前位置: 首页 > news >正文

MySQL入门篇-MySQL高级窗口函数简介

备注:测试数据库版本为MySQL 8.0

这个blog我们来聊聊MySQL高级窗口函数
窗口函数在复杂查询以及数据仓库中应用得比较频繁
与sql打交道比较多的技术人员都需要掌握

如需要scott用户下建表及录入数据语句,可参考:
scott建表及录入数据sql脚本

 

分析函数有3个基本组成部分:
1.分区子句
2.排序子句
3.开窗子句

function1 (argument1,argument2,..argumentN)
over  w
window w as ([partition-by-clause] [order-by-clause] [windowing-clause])

窗口说明子句的语法:
默认的窗口子句是rows between unbounded preceding and current row。如果你没有显示声明窗口,就将会使用默认窗口。
并不是所有的分析函数都支持开窗子句

[rows | range] between <start expr> and [end expr]whereas
<start expr> is [unbounded preceding | current row | n preceding | n following]
<end expr> is [unbounded following | current row | n preceding | n following]

row_number、rank、dense_rank 

row_number语法:

row_number() over w
window w as (partition-clause order-by-clause)

row_number不支持开窗子句
rank、dense_rank语法同row_number语法

现在需要对分不同部门来看部门内的工资排名,且从大到小排列:

-- 可以看到deptno为30的员工工资有重复的,重复的工资为1250
-- row_number()  不关注重复的,直接排名,1-2-3-4-5-6
-- rank()        重复排名,会跳过,1-2-3-4-4-6
-- dense_rank()  重复排名,不跳过,1-2-3-4-4-5
select a.empno,a.ename,a.deptno,a.sal,row_number() over w as 'num',rank() over w as 'rank',dense_rank() over w  as 'dense_rank'from emp awindow w as (partition by a.deptno order by a.sal desc)
;
mysql> select a.empno,->        a.ename,->        a.deptno,->        a.sal,->        row_number() over w as 'num',->        rank() over w as 'rank',->        dense_rank() over w  as 'dense_rank'->   from emp a->   window w as (partition by a.deptno order by a.sal desc)-> ;
+-------+--------+--------+---------+-----+------+------------+
| empno | ename  | deptno | sal     | num | rank | dense_rank |
+-------+--------+--------+---------+-----+------+------------+
|  7839 | KING   |     10 | 5000.00 |   1 |    1 |          1 |
|  7782 | CLARK  |     10 | 2450.00 |   2 |    2 |          2 |
|  7934 | MILLER |     10 | 1300.00 |   3 |    3 |          3 |
|  7788 | SCOTT  |     20 | 3000.00 |   1 |    1 |          1 |
|  7902 | FORD   |     20 | 3000.00 |   2 |    1 |          1 |
|  7566 | JONES  |     20 | 2975.00 |   3 |    3 |          2 |
|  7876 | ADAMS  |     20 | 1100.00 |   4 |    4 |          3 |
|  7369 | SMITH  |     20 |  800.00 |   5 |    5 |          4 |
|  7698 | BLAKE  |     30 | 2850.00 |   1 |    1 |          1 |
|  7499 | ALLEN  |     30 | 1600.00 |   2 |    2 |          2 |
|  7844 | TURNER |     30 | 1500.00 |   3 |    3 |          3 |
|  7521 | WARD   |     30 | 1250.00 |   4 |    4 |          4 |
|  7654 | MARTIN |     30 | 1250.00 |   5 |    4 |          4 |
|  7900 | JAMES  |     30 |  950.00 |   6 |    6 |          5 |
+-------+--------+--------+---------+-----+------+------------+
14 rows in set (0.01 sec)

lag、lead

lag语法:

lag (expression, offset, default) over w
window w as  (partition-clause order-by-clause)

lag不支持开窗子句
lead同lag语法

-- 根据分组,取值上n条和下n条   如果是第一条或最后一条,就给个默认值
SELECT a.empno,a.deptno,a.hiredate,a.sal,lag(sal, 1, 0) over w as 'pre_sal',lead(sal, 1, 0) over w as 'next_sal',lag(sal, 2, 0) over w  as 'pre2_sal',lead(sal, 2, 0) over w as 'next_2sal'FROM emp awindow w  as (PARTITION BY a.deptno ORDER BY hiredate ASC)
;
mysql> SELECT a.empno,->        a.deptno,->        a.hiredate,->        a.sal,->        lag(sal, 1, 0) over w as 'pre_sal',->        lead(sal, 1, 0) over w as 'next_sal',->        lag(sal, 2, 0) over w  as 'pre2_sal',->        lead(sal, 2, 0) over w as 'next_2sal'->   FROM emp a->   window w  as (PARTITION BY a.deptno ORDER BY hiredate ASC)-> ;
+-------+--------+------------+---------+---------+----------+----------+-----------+
| empno | deptno | hiredate   | sal     | pre_sal | next_sal | pre2_sal | next_2sal |
+-------+--------+------------+---------+---------+----------+----------+-----------+
|  7782 |     10 | 1981-06-09 | 2450.00 |    0.00 |  5000.00 |     0.00 |   1300.00 |
|  7839 |     10 | 1981-11-17 | 5000.00 | 2450.00 |  1300.00 |     0.00 |      0.00 |
|  7934 |     10 | 1982-01-23 | 1300.00 | 5000.00 |     0.00 |  2450.00 |      0.00 |
|  7369 |     20 | 1980-12-17 |  800.00 |    0.00 |  2975.00 |     0.00 |   3000.00 |
|  7566 |     20 | 1981-04-02 | 2975.00 |  800.00 |  3000.00 |     0.00 |   3000.00 |
|  7902 |     20 | 1981-12-03 | 3000.00 | 2975.00 |  3000.00 |   800.00 |   1100.00 |
|  7788 |     20 | 1987-06-13 | 3000.00 | 3000.00 |  1100.00 |  2975.00 |      0.00 |
|  7876 |     20 | 1987-06-13 | 1100.00 | 3000.00 |     0.00 |  3000.00 |      0.00 |
|  7499 |     30 | 1981-02-20 | 1600.00 |    0.00 |  1250.00 |     0.00 |   2850.00 |
|  7521 |     30 | 1981-02-22 | 1250.00 | 1600.00 |  2850.00 |     0.00 |   1500.00 |
|  7698 |     30 | 1981-05-01 | 2850.00 | 1250.00 |  1500.00 |  1600.00 |   1250.00 |
|  7844 |     30 | 1981-09-08 | 1500.00 | 2850.00 |  1250.00 |  1250.00 |    950.00 |
|  7654 |     30 | 1981-09-28 | 1250.00 | 1500.00 |   950.00 |  2850.00 |      0.00 |
|  7900 |     30 | 1981-12-03 |  950.00 | 1250.00 |     0.00 |  1500.00 |      0.00 |
+-------+--------+------------+---------+---------+----------+----------+-----------+
14 rows in set (0.00 sec)
-- 没有比自己小我的我们设为AAA,没有比自己大的,我们设置为ZZZ
select deptno,ename,lag(ename, 1, 'AAA') over w as 'lower_name',lead(ename, 1, 'ZZZ') over w as 'higher_name'from emp
window w as(PARTITION BY deptno ORDER BY ename)
;-- 部门重复的话值输出第一行的部门编号  
select (case when deptno= lag(deptno,1)over w then null else deptno end) as 'deptno',ename,lag(ename, 1, 'AAA') over w  as 'lower_name',lead(ename, 1, 'ZZZ') over w as 'higher_name'from emp
window w  as (PARTITION BY deptno ORDER BY ename)
;
mysql> -- 没有比自己小我的我们设为AAA,没有比自己大的,我们设置为ZZZ
mysql> select deptno,->        ename,->        lag(ename, 1, 'AAA') over w as 'lower_name',->        lead(ename, 1, 'ZZZ') over w as 'higher_name'->   from emp-> window w as(PARTITION BY deptno ORDER BY ename)-> ;
+--------+--------+------------+-------------+
| deptno | ename  | lower_name | higher_name |
+--------+--------+------------+-------------+
|     10 | CLARK  | AAA        | KING        |
|     10 | KING   | CLARK      | MILLER      |
|     10 | MILLER | KING       | ZZZ         |
|     20 | ADAMS  | AAA        | FORD        |
|     20 | FORD   | ADAMS      | JONES       |
|     20 | JONES  | FORD       | SCOTT       |
|     20 | SCOTT  | JONES      | SMITH       |
|     20 | SMITH  | SCOTT      | ZZZ         |
|     30 | ALLEN  | AAA        | BLAKE       |
|     30 | BLAKE  | ALLEN      | JAMES       |
|     30 | JAMES  | BLAKE      | MARTIN      |
|     30 | MARTIN | JAMES      | TURNER      |
|     30 | TURNER | MARTIN     | WARD        |
|     30 | WARD   | TURNER     | ZZZ         |
+--------+--------+------------+-------------+
14 rows in set (0.00 sec)mysql>
mysql> -- 部门重复的话值输出第一行的部门编号
mysql> select (case when deptno= lag(deptno,1)over w then null else deptno end) as 'deptno',->         ename,->        lag(ename, 1, 'AAA') over w  as 'lower_name',->        lead(ename, 1, 'ZZZ') over w as 'higher_name'->   from emp-> window w  as (PARTITION BY deptno ORDER BY ename)-> ;
+--------+--------+------------+-------------+
| deptno | ename  | lower_name | higher_name |
+--------+--------+------------+-------------+
|     10 | CLARK  | AAA        | KING        |
|   NULL | KING   | CLARK      | MILLER      |
|   NULL | MILLER | KING       | ZZZ         |
|     20 | ADAMS  | AAA        | FORD        |
|   NULL | FORD   | ADAMS      | JONES       |
|   NULL | JONES  | FORD       | SCOTT       |
|   NULL | SCOTT  | JONES      | SMITH       |
|   NULL | SMITH  | SCOTT      | ZZZ         |
|     30 | ALLEN  | AAA        | BLAKE       |
|   NULL | BLAKE  | ALLEN      | JAMES       |
|   NULL | JAMES  | BLAKE      | MARTIN      |
|   NULL | MARTIN | JAMES      | TURNER      |
|   NULL | TURNER | MARTIN     | WARD        |
|   NULL | WARD   | TURNER     | ZZZ         |
+--------+--------+------------+-------------+
14 rows in set (0.00 sec)

first_value、last_value、nth_value

first_value、last_value语法:

first_value(expression) over w 
window w as  (partition-clause order-by-clause windowing-clause)
last_value(expression) over w
window w as  (partition-clause order-by-clause windowing-clause)

nth_value语法:

nth_value (measure, n) [ from first | from last ] [ respect nulls | ignore nulls ]
over  w
window w as  (partitioning-clause order-by-clause windowing-clause) 

/*
需求:求每个部门工资最高的和工资最低的以及工资第二高的
*/-- 默认不带开窗子句,从第一行到当前行
select a.empno,a.deptno,a.sal,first_value(a.sal)  over w as 'first',last_value(a.sal) over w as 'last',nth_value(a.sal,2) over w as 'top_2'from emp awindow w  as (partition by a.deptno order by sal)
;-- rows between unbounded preceding and current row  从第一行到当前行
select a.empno,a.deptno,a.sal,first_value(a.sal)  over w as 'first',last_value(a.sal) over w as 'last',nth_value(a.sal,2) over w as 'top_2'from emp awindow w  as (partition by a.deptno order by sal rows between unbounded preceding and current row)
;-- rows between unbounded preceding and unbounded following 从第一行到最后一行select a.empno,a.deptno,a.sal,first_value(a.sal)  over w as 'first',last_value(a.sal) over w as 'last',nth_value(a.sal,2) over w as 'top_2'from emp awindow w  as (partition by a.deptno order by sal rows between unbounded preceding and unbounded following)
; -- 1 preceding and 1 following   当前行的前一行到当前行的后一行 select a.empno,a.deptno,a.sal,first_value(a.sal)  over w as 'first',last_value(a.sal) over w as 'last',nth_value(a.sal,2) over w as 'top_2'from emp awindow w  as (partition by a.deptno order by sal rows between 1 preceding and 1 following)
; 
mysql> -- 默认不带开窗子句,从第一行到当前行
mysql> select a.empno,a.deptno,a.sal,->        first_value(a.sal)  over w as 'first',->        last_value(a.sal) over w as 'last',->        nth_value(a.sal,2) over w as 'top_2'->   from emp a->   window w  as (partition by a.deptno order by sal)-> ;
+-------+--------+---------+---------+---------+---------+
| empno | deptno | sal     | first   | last    | top_2   |
+-------+--------+---------+---------+---------+---------+
|  7934 |     10 | 1300.00 | 1300.00 | 1300.00 |    NULL |
|  7782 |     10 | 2450.00 | 1300.00 | 2450.00 | 2450.00 |
|  7839 |     10 | 5000.00 | 1300.00 | 5000.00 | 2450.00 |
|  7369 |     20 |  800.00 |  800.00 |  800.00 |    NULL |
|  7876 |     20 | 1100.00 |  800.00 | 1100.00 | 1100.00 |
|  7566 |     20 | 2975.00 |  800.00 | 2975.00 | 1100.00 |
|  7788 |     20 | 3000.00 |  800.00 | 3000.00 | 1100.00 |
|  7902 |     20 | 3000.00 |  800.00 | 3000.00 | 1100.00 |
|  7900 |     30 |  950.00 |  950.00 |  950.00 |    NULL |
|  7521 |     30 | 1250.00 |  950.00 | 1250.00 | 1250.00 |
|  7654 |     30 | 1250.00 |  950.00 | 1250.00 | 1250.00 |
|  7844 |     30 | 1500.00 |  950.00 | 1500.00 | 1250.00 |
|  7499 |     30 | 1600.00 |  950.00 | 1600.00 | 1250.00 |
|  7698 |     30 | 2850.00 |  950.00 | 2850.00 | 1250.00 |
+-------+--------+---------+---------+---------+---------+
14 rows in set (0.00 sec)mysql>
mysql> -- rows between unbounded preceding and current row  从第一行到当前行
mysql> select a.empno,a.deptno,a.sal,->        first_value(a.sal)  over w as 'first',->        last_value(a.sal) over w as 'last',->        nth_value(a.sal,2) over w as 'top_2'->   from emp a->    window w  as (partition by a.deptno order by sal rows between unbounded preceding and current row)-> ;
+-------+--------+---------+---------+---------+---------+
| empno | deptno | sal     | first   | last    | top_2   |
+-------+--------+---------+---------+---------+---------+
|  7934 |     10 | 1300.00 | 1300.00 | 1300.00 |    NULL |
|  7782 |     10 | 2450.00 | 1300.00 | 2450.00 | 2450.00 |
|  7839 |     10 | 5000.00 | 1300.00 | 5000.00 | 2450.00 |
|  7369 |     20 |  800.00 |  800.00 |  800.00 |    NULL |
|  7876 |     20 | 1100.00 |  800.00 | 1100.00 | 1100.00 |
|  7566 |     20 | 2975.00 |  800.00 | 2975.00 | 1100.00 |
|  7788 |     20 | 3000.00 |  800.00 | 3000.00 | 1100.00 |
|  7902 |     20 | 3000.00 |  800.00 | 3000.00 | 1100.00 |
|  7900 |     30 |  950.00 |  950.00 |  950.00 |    NULL |
|  7521 |     30 | 1250.00 |  950.00 | 1250.00 | 1250.00 |
|  7654 |     30 | 1250.00 |  950.00 | 1250.00 | 1250.00 |
|  7844 |     30 | 1500.00 |  950.00 | 1500.00 | 1250.00 |
|  7499 |     30 | 1600.00 |  950.00 | 1600.00 | 1250.00 |
|  7698 |     30 | 2850.00 |  950.00 | 2850.00 | 1250.00 |
+-------+--------+---------+---------+---------+---------+
14 rows in set (0.00 sec)mysql>
mysql>
mysql> -- rows between unbounded preceding and unbounded following 从第一行到最后一行
mysql>  select a.empno,a.deptno,a.sal,->        first_value(a.sal)  over w as 'first',->        last_value(a.sal) over w as 'last',->        nth_value(a.sal,2) over w as 'top_2'->   from emp a->  window w  as (partition by a.deptno order by sal rows between unbounded preceding and unbounded following)-> ;
+-------+--------+---------+---------+---------+---------+
| empno | deptno | sal     | first   | last    | top_2   |
+-------+--------+---------+---------+---------+---------+
|  7934 |     10 | 1300.00 | 1300.00 | 5000.00 | 2450.00 |
|  7782 |     10 | 2450.00 | 1300.00 | 5000.00 | 2450.00 |
|  7839 |     10 | 5000.00 | 1300.00 | 5000.00 | 2450.00 |
|  7369 |     20 |  800.00 |  800.00 | 3000.00 | 1100.00 |
|  7876 |     20 | 1100.00 |  800.00 | 3000.00 | 1100.00 |
|  7566 |     20 | 2975.00 |  800.00 | 3000.00 | 1100.00 |
|  7788 |     20 | 3000.00 |  800.00 | 3000.00 | 1100.00 |
|  7902 |     20 | 3000.00 |  800.00 | 3000.00 | 1100.00 |
|  7900 |     30 |  950.00 |  950.00 | 2850.00 | 1250.00 |
|  7521 |     30 | 1250.00 |  950.00 | 2850.00 | 1250.00 |
|  7654 |     30 | 1250.00 |  950.00 | 2850.00 | 1250.00 |
|  7844 |     30 | 1500.00 |  950.00 | 2850.00 | 1250.00 |
|  7499 |     30 | 1600.00 |  950.00 | 2850.00 | 1250.00 |
|  7698 |     30 | 2850.00 |  950.00 | 2850.00 | 1250.00 |
+-------+--------+---------+---------+---------+---------+
14 rows in set (0.00 sec)mysql>
mysql>  -- 1 preceding and 1 following   当前行的前一行到当前行的后一行
mysql>   select a.empno,a.deptno,a.sal,->        first_value(a.sal)  over w as 'first',->        last_value(a.sal) over w as 'last',->        nth_value(a.sal,2) over w as 'top_2'->   from emp a->  window w  as (partition by a.deptno order by sal rows between 1 preceding and 1 following)-> ;
+-------+--------+---------+---------+---------+---------+
| empno | deptno | sal     | first   | last    | top_2   |
+-------+--------+---------+---------+---------+---------+
|  7934 |     10 | 1300.00 | 1300.00 | 2450.00 | 2450.00 |
|  7782 |     10 | 2450.00 | 1300.00 | 5000.00 | 2450.00 |
|  7839 |     10 | 5000.00 | 2450.00 | 5000.00 | 5000.00 |
|  7369 |     20 |  800.00 |  800.00 | 1100.00 | 1100.00 |
|  7876 |     20 | 1100.00 |  800.00 | 2975.00 | 1100.00 |
|  7566 |     20 | 2975.00 | 1100.00 | 3000.00 | 2975.00 |
|  7788 |     20 | 3000.00 | 2975.00 | 3000.00 | 3000.00 |
|  7902 |     20 | 3000.00 | 3000.00 | 3000.00 | 3000.00 |
|  7900 |     30 |  950.00 |  950.00 | 1250.00 | 1250.00 |
|  7521 |     30 | 1250.00 |  950.00 | 1250.00 | 1250.00 |
|  7654 |     30 | 1250.00 | 1250.00 | 1500.00 | 1250.00 |
|  7844 |     30 | 1500.00 | 1250.00 | 1600.00 | 1500.00 |
|  7499 |     30 | 1600.00 | 1500.00 | 2850.00 | 1600.00 |
|  7698 |     30 | 2850.00 | 1600.00 | 2850.00 | 2850.00 |
+-------+--------+---------+---------+---------+---------+
14 rows in set (0.00 sec)

percent_rank、CUME_DIST

percent_rank语法:

percent_rank() over w
window w as  ([partition-by-clause] [order-by-clause] )

CUME_DIST语法

cume_dist() over w
window w as  ([partition-by-clause] [order-by-clause] )

percent_rank:
– percent_rank函数以0到1之间的分数形式返回某个值在数据分区中的排名
– percent_rank的计算公式为(rank-1)/(n-1)

CUME_DIST:
–一个5行的组中,返回的累计分布值为0.2,0.4,0.6,0.8,1.0;
–注意对于重复行,计算时取重复行中的最后一行的位置。
 

SELECT a.empno,a.ename,a.deptno,a.sal,percent_rank() over w as 'num',cume_dist() over w as 'cume'FROM emp awindow w  as (PARTITION BY a.deptno ORDER BY a.sal DESC)
;
mysql> SELECT a.empno,->        a.ename,->        a.deptno,->        a.sal,->        percent_rank() over w as 'num',->        cume_dist() over w as 'cume'->   FROM emp a->   window w  as (PARTITION BY a.deptno ORDER BY a.sal DESC);
+-------+--------+--------+---------+------+---------------------+
| empno | ename  | deptno | sal     | num  | cume                |
+-------+--------+--------+---------+------+---------------------+
|  7839 | KING   |     10 | 5000.00 |    0 |  0.3333333333333333 |
|  7782 | CLARK  |     10 | 2450.00 |  0.5 |  0.6666666666666666 |
|  7934 | MILLER |     10 | 1300.00 |    1 |                   1 |
|  7788 | SCOTT  |     20 | 3000.00 |    0 |                 0.4 |
|  7902 | FORD   |     20 | 3000.00 |    0 |                 0.4 |
|  7566 | JONES  |     20 | 2975.00 |  0.5 |                 0.6 |
|  7876 | ADAMS  |     20 | 1100.00 | 0.75 |                 0.8 |
|  7369 | SMITH  |     20 |  800.00 |    1 |                   1 |
|  7698 | BLAKE  |     30 | 2850.00 |    0 | 0.16666666666666666 |
|  7499 | ALLEN  |     30 | 1600.00 |  0.2 |  0.3333333333333333 |
|  7844 | TURNER |     30 | 1500.00 |  0.4 |                 0.5 |
|  7521 | WARD   |     30 | 1250.00 |  0.6 |  0.8333333333333334 |
|  7654 | MARTIN |     30 | 1250.00 |  0.6 |  0.8333333333333334 |
|  7900 | JAMES  |     30 |  950.00 |    1 |                   1 |
+-------+--------+--------+---------+------+---------------------+
14 rows in set (0.00 sec)

ntile

Ntile语法:

Ntile(expr) OVER w
window w as   ([ query_partition_clause ] order_by_clause)

Ntile 把数据行分成N个桶。每个桶会有相同的行数,正负误差为1

将员工表emp按照工资分为2、3个桶

-- 分成2个桶
SELECT ENAME, SAL, NTILE(2) OVER w as 'n' FROM EMP
window w  as (ORDER BY SAL ASC)
;-- 分成3个桶
SELECT ENAME, SAL, NTILE(3) OVER w as 'n' FROM EMP
window w  as (ORDER BY SAL ASC)
;
mysql> -- 分成2个桶
mysql> SELECT ENAME, SAL, NTILE(2) OVER w as 'n' FROM EMP-> window w  as (ORDER BY SAL ASC)-> ;
+--------+---------+------+
| ENAME  | SAL     | n    |
+--------+---------+------+
| SMITH  |  800.00 |    1 |
| JAMES  |  950.00 |    1 |
| ADAMS  | 1100.00 |    1 |
| WARD   | 1250.00 |    1 |
| MARTIN | 1250.00 |    1 |
| MILLER | 1300.00 |    1 |
| TURNER | 1500.00 |    1 |
| ALLEN  | 1600.00 |    2 |
| CLARK  | 2450.00 |    2 |
| BLAKE  | 2850.00 |    2 |
| JONES  | 2975.00 |    2 |
| SCOTT  | 3000.00 |    2 |
| FORD   | 3000.00 |    2 |
| KING   | 5000.00 |    2 |
+--------+---------+------+
14 rows in set (0.00 sec)mysql>
mysql> -- 分成3个桶
mysql> SELECT ENAME, SAL, NTILE(3) OVER w as 'n' FROM EMP-> window w  as (ORDER BY SAL ASC)-> ;
+--------+---------+------+
| ENAME  | SAL     | n    |
+--------+---------+------+
| SMITH  |  800.00 |    1 |
| JAMES  |  950.00 |    1 |
| ADAMS  | 1100.00 |    1 |
| WARD   | 1250.00 |    1 |
| MARTIN | 1250.00 |    1 |
| MILLER | 1300.00 |    2 |
| TURNER | 1500.00 |    2 |
| ALLEN  | 1600.00 |    2 |
| CLARK  | 2450.00 |    2 |
| BLAKE  | 2850.00 |    2 |
| JONES  | 2975.00 |    3 |
| SCOTT  | 3000.00 |    3 |
| FORD   | 3000.00 |    3 |
| KING   | 5000.00 |    3 |
+--------+---------+------+
14 rows in set (0.00 sec)

相关文章:

MySQL入门篇-MySQL高级窗口函数简介

备注:测试数据库版本为MySQL 8.0 这个blog我们来聊聊MySQL高级窗口函数 窗口函数在复杂查询以及数据仓库中应用得比较频繁 与sql打交道比较多的技术人员都需要掌握 如需要scott用户下建表及录入数据语句&#xff0c;可参考:scott建表及录入数据sql脚本 分析函数有3个基本组成…...

什么是 API(应用程序接口)?

API&#xff08;应用程序接口&#xff09;是一种软件中介&#xff0c;它允许两个不相关的应用程序相互通信。它就像一座桥梁&#xff0c;从一个程序接收请求或消息&#xff0c;然后将其传递给另一个程序&#xff0c;翻译消息并根据 API 的程序设计执行协议。API 几乎存在于我们…...

如何在外网访问内网的 Nginx 服务?

计算机业内人士对Nginx 并不陌生&#xff0c;它是一款轻量级的 Web 服务器/反向代理服务器及电子邮件&#xff08;IMAP/POP3&#xff09;代理服务器&#xff0c;除了nginx外&#xff0c;类似的apache、tomcat、IIS这几种都是主流的中间件。 Nginx 是在 BSD-like 协议下发行的&…...

vue2中defineProperty和vue3中proxy区别

区别一&#xff1a;defineProperty 是对属性劫持&#xff0c;proxy 是对代理对象 下面我们针对一个对象使用不同的方式进行监听&#xff0c;看写法上有什么不同。 // 原始对象 const data {name: Jane,age: 21 }defineProperty defineProperty 只能劫持对象的某一个属性&…...

将bean注入Spring容器的五种方式

前言 我们在项目开发中都用到Spring&#xff0c;知道对象是交由Spring去管理。那么将一个对象加入到Spring容器中&#xff0c;有几种方法呢&#xff0c;我们来总结一下。 ComponentScan Component ComponentScan可以放在启动类上&#xff0c;指定要扫描的包路径&#xff1b;…...

C生万物 | 常量指针和指针常量的感性理解

文章目录&#x1f4da;引言✒常量指针&#x1f50d;介绍与分析&#x1f4f0;小结与记忆口诀✒指针常量&#x1f50d;介绍与分析&#x1f4f0;小结与记忆口诀&#x1f449;一份凉皮所引发的故事&#x1f448;总结与提炼&#x1f4da;引言 本文我们来说说大家很困惑的两个东西&am…...

python 打包工具 pyinstaller和Nuitka区别

1.1 使用需求 这次也是由于项目需要&#xff0c;要将python的代码转成exe的程序&#xff0c;在找了许久后&#xff0c;发现了2个都能对python项目打包的工具——pyintaller和nuitka。 这2个工具同时都能满足项目的需要&#xff1a; 隐藏源码。这里的pyinstaller是通过设置key来…...

Python解题 - CSDN周赛第28期

上一期周赛问哥因为在路上&#xff0c;无法参加&#xff0c;但还是抽空登上来看了一下题目。4道题都挺简单的&#xff0c;有点遗憾未能参加。不过即使参加了&#xff0c;手速也未必能挤进前十。 本期也是一样&#xff0c;感觉新增的题目都偏数学类&#xff0c;基本用不到所谓的…...

DNS记录类型有哪些,分别代表什么含义?

DNS解析将域名指向IP地址&#xff0c;是互联网中的一项重要服务。而由于业务场景不同&#xff0c;在设置DNS解析时&#xff0c;需要选择不同的记录类型。网站管理人员需要准确了解每一种DNS记录类型所代表的含义和用途&#xff0c;才能满足不同场景的解析需求。本文中科三方简单…...

ICLR 2022—你不应该错过的 10 篇论文(上)

CV - 计算机视觉 | ML - 机器学习 | RL - 强化学习 | NLP 自然语言处理 ICLR 2023已经放榜&#xff0c;但是今天我们先来回顾一下去年的ICLR 2022&#xff01; ICLR 2022将于2022年 4 月 25 日星期一至 4 月 29 日星期五在线举行&#xff08;连续第三年&#xff01;&#xf…...

HydroD 实用教程(三)环境数据

目 录一、前言二、Location三、Wind Profile四、Directions五、Water5.1 Wave Spectrums5.2 Current Profile5.3 Frequency Set5.4 Phase Set5.5 Wave Height5.6 Regular Wave Set六、参考文献一、前言 SESAM &#xff08;Super Element Structure Analysis Module&#xff09;…...

第四章 统计机器学习

机器学习&#xff1a;从数据中学习知识&#xff1b; 原始数据中提取特征&#xff1b;学习映射函数f&#xff1b;通过映射函数f将原始数据映射到语义空间&#xff0c;即寻找数据和任务目标之间的关系&#xff1b; 机器学习&#xff1a; 监督学习&#xff1a;数据有标签&#x…...

Redis第一讲

目录 一、Redis01 1.1 NoSql 1.1.1 NoSql介绍 1.1.2 NoSql起源 1.1.3 NoSql的使用 1.2 常见NoSql数据库介绍 1.3 Redis简介 1.3.1 Redis介绍 1.3.2 Redis数据结构的多样性 1.3.3 Redis应用场景 1.4 Redis安装、配置以及使用 1.4.1 Redis安装的两种方式 1.4.2 Redi…...

Java面试题-消息队列

消息队列 1. 消息队列的使用场景 六字箴言&#xff1a;削峰、异步、解耦 削峰&#xff1a;接口请求在某个时间段内会出现峰值&#xff0c;服务器在达到峰值的情况下会奔溃&#xff1b;通过消息队列将请求进行分流、限流&#xff0c;确保服务器在正常环境下处理请求。异步&am…...

基于离散时间频率增益传感器的P级至M级PMU模型的实现(Matlab代码实现)

&#x1f468;‍&#x1f393;个人主页&#xff1a;研学社的博客&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5;&#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密…...

9个相见恨晚的提升办公效率的网站!

推荐9个完全免费的神器网站&#xff0c;每一个都是功能强大&#xff0c;完全免费&#xff0c;良心好用&#xff0c;让你相见恨晚。 1&#xff1a;知犀思维导图 https://www.zhixi.com/ 知犀思维导图是一个完全免费的宝藏在线思维导图工具。它完全免费&#xff0c;界面简洁唯美…...

java的双亲委派模型-附源码分析

1、类加载器 1.1 类加载的概念 要了解双亲委派模型&#xff0c;首先我们需要知道java的类加载器。所谓类加载器就是通过一个类的全限定名来获取描述此类的二进制字节流&#xff0c;然后把这个字节流加载到虚拟机中&#xff0c;获取响应的java.lang.Class类的一个实例。我们把实…...

Docker 笔记

Docker docker pull redis&#xff1a;5.0 docker images [image:57DAAA3E-CC88-454B-B8AC-587E27C9CD3A-85324-0001A93C6707F2A4/93F703D2-5F44-49AB-83C7-05E2E22FB226.png] Docker有点类似于虚拟机 区别大概&#xff1a; docker&#xff1a;启动 Docker 相当于启动宿主操…...

用户认证-cookie和session

无状态&短链接 短链接的概念是指&#xff1a;将原本冗长的URL做一次“包装”&#xff0c;变成一个简洁可读的URL。 什么是短链接-> https://www.cnblogs.com/54chensongxia/p/11673522.html HTTP是一种无状态的协议 短链接&#xff1a;一次请求和一次响应之后&#…...

UUID的弊端以及雪花算法

目录 一、问题 为什么需要分布式全局唯一ID以及分布式ID的业务需求 ID生成规则部分硬性要求 ID号生成系统的可用性要求 二、一般通用方案 &#xff08;一&#xff09;UUID &#xff08;二&#xff09;数据库自增主键 &#xff08;三&#xff09;Redis生成全局id策略 三…...

云计算——弹性云计算器(ECS)

弹性云服务器&#xff1a;ECS 概述 云计算重构了ICT系统&#xff0c;云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台&#xff0c;包含如下主要概念。 ECS&#xff08;Elastic Cloud Server&#xff09;&#xff1a;即弹性云服务器&#xff0c;是云计算…...

Linux-07 ubuntu 的 chrome 启动不了

文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了&#xff0c;报错如下四、启动不了&#xff0c;解决如下 总结 问题原因 在应用中可以看到chrome&#xff0c;但是打不开(说明&#xff1a;原来的ubuntu系统出问题了&#xff0c;这个是备用的硬盘&a…...

高防服务器能够抵御哪些网络攻击呢?

高防服务器作为一种有着高度防御能力的服务器&#xff0c;可以帮助网站应对分布式拒绝服务攻击&#xff0c;有效识别和清理一些恶意的网络流量&#xff0c;为用户提供安全且稳定的网络环境&#xff0c;那么&#xff0c;高防服务器一般都可以抵御哪些网络攻击呢&#xff1f;下面…...

Fabric V2.5 通用溯源系统——增加图片上传与下载功能

fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...

技术栈RabbitMq的介绍和使用

目录 1. 什么是消息队列&#xff1f;2. 消息队列的优点3. RabbitMQ 消息队列概述4. RabbitMQ 安装5. Exchange 四种类型5.1 direct 精准匹配5.2 fanout 广播5.3 topic 正则匹配 6. RabbitMQ 队列模式6.1 简单队列模式6.2 工作队列模式6.3 发布/订阅模式6.4 路由模式6.5 主题模式…...

排序算法总结(C++)

目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指&#xff1a;同样大小的样本 **&#xff08;同样大小的数据&#xff09;**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...

深度学习水论文:mamba+图像增强

&#x1f9c0;当前视觉领域对高效长序列建模需求激增&#xff0c;对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模&#xff0c;以及动态计算优势&#xff0c;在图像质量提升和细节恢复方面有难以替代的作用。 &#x1f9c0;因此短时间内&#xff0c;就有不…...

毫米波雷达基础理论(3D+4D)

3D、4D毫米波雷达基础知识及厂商选型 PreView : https://mp.weixin.qq.com/s/bQkju4r6med7I3TBGJI_bQ 1. FMCW毫米波雷达基础知识 主要参考博文&#xff1a; 一文入门汽车毫米波雷达基本原理 &#xff1a;https://mp.weixin.qq.com/s/_EN7A5lKcz2Eh8dLnjE19w 毫米波雷达基础…...

FOPLP vs CoWoS

以下是 FOPLP&#xff08;Fan-out panel-level packaging 扇出型面板级封装&#xff09;与 CoWoS&#xff08;Chip on Wafer on Substrate&#xff09;两种先进封装技术的详细对比分析&#xff0c;涵盖技术原理、性能、成本、应用场景及市场趋势等维度&#xff1a; 一、技术原…...

Python第七周作业

Python第七周作业 文章目录 Python第七周作业 1.使用open以只读模式打开文件data.txt&#xff0c;并逐行打印内容 2.使用pathlib模块获取当前脚本的绝对路径&#xff0c;并创建logs目录&#xff08;若不存在&#xff09; 3.递归遍历目录data&#xff0c;输出所有.csv文件的路径…...