【LeetCode】74. 搜索二维矩阵
74. 搜索二维矩阵(中等)




方法一:二分查找
思路
-
总体思路
由于二维矩阵固定列的「从上到下」或者固定行的「从左到右」都是升序的
因此我们可以使用两次二分来定位到目标位置。- 第一次二分: 从第 0 列中的「所有行」开始找,找到合适的行 row, 即找到最后一个满足
matrix[x][0] <= target的行号; - 第二次二分:从 row 中「所有列」开始找,找到合适的列 col ,即找到最后一个满足
matrix[row][y] <= target的列号。
- 第一次二分: 从第 0 列中的「所有行」开始找,找到合适的行 row, 即找到最后一个满足
-
二分代码解释:
这里用到了二分查找的高级模板,
left = mid,用于查找数组中当前索引及其直接左邻居索引的元素或条件。注意,while 语句的条件是
left < right。此外,mid 值计算需要 +1 ,如果不加 1 会出现死循环(比如l = 2, r = 3 的时候,如果不加 1,在满足 l = mid 的情况下,会一直死循环)。
int binarySearch(vector<int>& nums, int target){if(nums.size() == 0)return -1;int left = 0, right = nums.size();while(left < right){// Prevent (left + right) overflowint mid = left + (right - left) / 2;if(nums[mid] == target){ return mid; }else if(nums[mid] <= target) { left = mid; }else { right = mid + 1; }}// Post-processing:// End Condition: left == rightif(left != nums.size() && nums[right] == target) return right;return -1;}
代码
class Solution {
public:bool searchMatrix(vector<vector<int>>& matrix, int target) {int m = matrix.size(), n = matrix[0].size();int row, col;int left = 0, right = m-1;// 第一次二分找到最后一个不大于目标值的元素的所在行while(left < right){int mid = left + (right - left + 1) / 2;if(matrix[mid][0] <= target) left = mid;else right = mid - 1;}row = right;// 可以先判断,减少时间复杂度if(matrix[row][0] == target) return true;if(matrix[row][0] > target) return false;// 第二次二分找到所在列left = 0, right = n-1;while(left<right){int mid = left + (right - left + 1) / 2;if(matrix[row][mid] <= target) left = mid;else right = mid - 1;}col = right;return matrix[row][col] == target;}
};
方法二:一次二分
思路
- 如果将数组按行逐元素连接起来,那么数组将形成一个单调递增序列,我们可以使用一次二分在该 “一维数组” 中查找,如果找到target ,返回 true;否则返回false。
- 对于一次二分,因为只有找到 target 和 没找到 target 两种情况,所以只需要普通的模板。
代码
class Solution {
public:bool searchMatrix(vector<vector<int>>& matrix, int target) {int m = matrix.size(), n = matrix[0].size();int left = 0, right = m * n - 1;// 一次二分while(left <= right){int mid = left + (right - left) / 2;if(matrix[mid/n][mid%n] == target) return true;else if(matrix[mid/n][mid%n] < target) left = mid + 1;else right = mid - 1; }return false;}
};
方法三:抽象二叉搜索树
思路
-
我们可以将二维矩阵抽象成「以右上角为根的 BST」:

-
那么我们可以从根(右上角)开始搜索,如果当前的节点不等于目标值,可以按照树的搜索顺序进行:
- 当前节点「大于」目标值,搜索当前节点的「左子树」,也就是当前矩阵位置的「左方格子」,即 y–;
- 当前节点「小于」目标值,搜索当前节点的「右子树」,也就是当前矩阵位置的「下方格子」,即 x++。
代码
class Solution {
public:bool searchMatrix(vector<vector<int>>& matrix, int target) {int m = matrix.size(), n = matrix[0].size();// 当前的坐标值,从右上角开始查找int x = 0, y = n-1;while(check(x, y, m, n) && matrix[x][y] != target){// 如果matrix[x][y] > target 说明需要向左查找if(matrix[x][y] > target) y--;// 如果matrix[x][y] > target 说明需要向下查找else if(matrix[x][y] < target) x++;}return check(x, y, m, n) && matrix[x][y] == target;}// 边界情况判断bool check(int x, int y, int m, int n){return x>=0 && x<m && y>=0 && y<n;}
};
参考资料
-
二分查找的三种模板(C++版)
-
【宫水三叶】一题双解:「二分」&「抽象 BST」解法
相关文章:
【LeetCode】74. 搜索二维矩阵
74. 搜索二维矩阵(中等) 方法一:二分查找 思路 总体思路 由于二维矩阵固定列的「从上到下」或者固定行的「从左到右」都是升序的 因此我们可以使用两次二分来定位到目标位置。 第一次二分: 从第 0 列中的「所有行」开始找&#x…...
Nginx rewrite
一.location 大致可以分为三类: 精准匹配:location / {…}一般匹配:location / {…}正则匹配:location ~ / {…} 1.location 常用的匹配规则: :进行普通字符精确匹配,也就是完全匹配。^~ &am…...
【数据分享】1929-2022年全球站点的逐日降水量(Shp\Excel\12000个站点)
气象数据是在各项研究中都经常使用的数据,气象指标包括气温、风速、降水、湿度等指标,说到常用的降水数据,最详细的降水数据是具体到气象监测站点的降水数据! 有关气象指标的监测站点数据,之前我们分享过1929-2022年全…...
【论文阅读】(2013)Exact algorithms for the bin packing problem with fragile objects
文章目录 一、摘要二、介绍三、之前在这个问题上的工作四、易碎物品背包问题的求解4.1 ILP模型4.2 基于KP01的方法4.3 动态规划 五、二元分支方案5.1 分支方案1(基于决策变量的分支)5.2 分支方案2(基于yj和xji的分支)5.3 将L2嵌入…...
K8S YAML 部署XXLJOB 集群
apiVersion: apps/v1 kind: Deployment metadata: labels: app: xxl-job-admin name: xxl-job-admin namespace: ccetest #根据情况修改namespace spec: replicas: 3 #根据情况修改副本数 selector: matchLabels: app: xxl-job-admin strat…...
Linux防火墙学习笔记3
iptables链的概念: 当客户端访问服务器端的Web服务的时候,客户端发送请求报文到网卡,而TCP/IP协议栈是属于内核的一部分。客户端的请求报文会通过内核的TCP协议传输到用户空间的Web服务,而客户端报文的目的地址为Web服务器所监听的…...
数仓用户行为数据分析
分层优点:复杂的东西可以简单化、解耦(屏蔽层作用)、提高复用、方便管理 SA 贴源 数据组织结构与源系统保持一致 shm 历史层 针对不同特征的数据做不同算法,目的都是为了得到一份完整的数据 PDM 明细层 做最细粒度的数据明细…...
RK3288 Android5.1添加WiFiBT模块AP6212
CPU:RK3288 系统:Android 5.1 注:RK3288系统,目前 Android 5.0 Kernel 3.10 SDK 支持 Braodcom,Realtek 等 WiFi BT 模块 各个 WiFi BT 模块已经做到动态兼容,Android 上层不再需要像以前一样进 行特定宏的配置 此…...
使用 YApi 管理 API 文档,测试, mock
随着互联网的发展,API变的至关重要。根据统计,目前市面上有上千万的开发者,互联网项目超过10亿,保守统计涉及的 API 数量大约有 100 亿。这么大基数的API,只要解决某些共有的痛点,将会是非常有意义的事情。…...
chatgpt生成【2023高考作文】北京卷二 - 亮相
舞台上,戏曲演员有登场亮相的瞬间。生活中也有许多亮相时刻:国旗下的讲话,研学成果的汇报,新产品的发布……每一次亮相,都受到众人关注;每一次亮相,也会有一段故事。 请以“亮相”为题目&#x…...
实验四、shell编程
一、实验目的 1.了解shell的特点和主要种类。 2.掌握 shel1 脚本的建立和执行方式。 3.掌握bash的基本语法。 4.学会编写shell 脚本。 二、实验内容 shell 脚本的建立和执行。历史命令和别名定义。shell变量和位置参数、环境变量。bash的特殊字符。一般控制结构。算术运算及…...
【代码随想录】刷题Day51
1.最佳买卖股票时机含冷冻期 309. 最佳买卖股票时机含冷冻期 1.dp数组的含义:dp[i][0]为第i天卖出股票的最大价值;dp[i][1]为第i天持有股票的最大价值 2.dp数组的条件:由于有冷冻期,所以dp数组的条件就变了。第i天卖出股票的最大…...
centos7下svnserve方式部署subversion/SVN服务端(实操)
一般来说,subversion服务器可以用两种方式架设: 一种是基于svnserve,svnserve作为服务端; 一种是基于Apache,用apache作为服务端。 这里采用第一种方式部署。 执行如下命令,安装SVN。 yum install sub…...
一款红队批量脆弱点搜集工具
功能 指纹识别:调用“三米前有香蕉皮“前辈工具,他的工具比finger好用 寻找资产中404,403,以及网页中存在的其他薄弱点,以及需要特定路径访问的资产 后续会把nuclei加进来 目前只有windows可以用 使用 第一次使用脚本请运行p…...
Docker 基本管理
一、Docker 概述 Docker是一个开源的应用容器引擎,基于go语言开发并遵守了apache2.0协议开源。 Docker是在Linux容器里运行应用的开源工具,是一种轻量级的“虚拟机”。 Docker的容器技术可以在一台主机上轻松为任何应用创建一个轻量级的、可移植的、自…...
Debezium系列之:把多张表的数据分发到同一个Kafka Topic,同一张表的数据始终进入Topic相同分区
Debezium系列之:把多张表的数据分发到同一个Kafka Topic,同一张表的数据始终进入Topic相同分区 一、需求背景二、实现思路三、核心参数和参数详解四、创建相关表五、提交Debezium Connector六、插入数据七、消费Kafka Topic八、总结和延展一、需求背景 debezium采集数据库的多…...
雪崩 - 如何重试 - sla和重试风暴的双保证
父文章 异常导致级联雪崩的例子 - 不应该有立即重试._个人渣记录仅为自己搜索用的博客-CSDN博客 一个系统处于稳态临界点 如果立即重试3次, 会导致流量瞬间增大, 哪怕后来系统10s内自愈了, 这个时候, 流量本质上增加了3倍. 如果rpc框架不是fastFail ( 超过 调用方失败timeout上…...
[网鼎杯 2018]Fakebook1
拿到题目后是一个博客的界面,这里可以登录和注册 点入登录界面,猜测可能是sql注入 试了很多次,都不是,也没有回显报错,所以把目光放到了注册上面 注册的其他行数据,差不多都可以乱填,只有一个bl…...
Oracle-第一章-多表查询和其他
4多表关联查询 4.1表的别名 ①在多表关联查询时,如果多个表之间存在同名的列,则必须用表名限定列的引用如dept.deptno,emp.deptno ②为使语句简洁,使用表别名,表别名在from子句中定义如 emp e ③表别名一经定义,在整…...
Office Visio 2016安装
哈喽,大家好。今天一起学习的是Visio 2016的安装,这是一个绘制流程图的软件,用有效的绘图表达信息,比任何文字都更加形象和直观。Office Visio 是office软件系列中负责绘制流程图和示意图的软件,便于IT和商务人员就复杂…...
SpringBoot-17-MyBatis动态SQL标签之常用标签
文章目录 1 代码1.1 实体User.java1.2 接口UserMapper.java1.3 映射UserMapper.xml1.3.1 标签if1.3.2 标签if和where1.3.3 标签choose和when和otherwise1.4 UserController.java2 常用动态SQL标签2.1 标签set2.1.1 UserMapper.java2.1.2 UserMapper.xml2.1.3 UserController.ja…...
日语AI面试高效通关秘籍:专业解读与青柚面试智能助攻
在如今就业市场竞争日益激烈的背景下,越来越多的求职者将目光投向了日本及中日双语岗位。但是,一场日语面试往往让许多人感到步履维艰。你是否也曾因为面试官抛出的“刁钻问题”而心生畏惧?面对生疏的日语交流环境,即便提前恶补了…...
(十)学生端搭建
本次旨在将之前的已完成的部分功能进行拼装到学生端,同时完善学生端的构建。本次工作主要包括: 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...
逻辑回归:给不确定性划界的分类大师
想象你是一名医生。面对患者的检查报告(肿瘤大小、血液指标),你需要做出一个**决定性判断**:恶性还是良性?这种“非黑即白”的抉择,正是**逻辑回归(Logistic Regression)** 的战场&a…...
在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:
在 HarmonyOS 应用开发中,手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力,既支持点击、长按、拖拽等基础单一手势的精细控制,也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档,…...
2.Vue编写一个app
1.src中重要的组成 1.1main.ts // 引入createApp用于创建应用 import { createApp } from "vue"; // 引用App根组件 import App from ./App.vue;createApp(App).mount(#app)1.2 App.vue 其中要写三种标签 <template> <!--html--> </template>…...
大模型多显卡多服务器并行计算方法与实践指南
一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...
C# SqlSugar:依赖注入与仓储模式实践
C# SqlSugar:依赖注入与仓储模式实践 在 C# 的应用开发中,数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护,许多开发者会选择成熟的 ORM(对象关系映射)框架,SqlSugar 就是其中备受…...
NLP学习路线图(二十三):长短期记忆网络(LSTM)
在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...
【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分
一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计,提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合:各模块职责清晰,便于独立开发…...
