一站式完成车牌识别任务:从模型优化到端侧部署
交通领域的应用智能化不断往纵深发展,其中最为成熟的车牌识别早已融入人们的日常生活之中,在高速公路电子收费系统、停车场等场景中随处可见。一些企业在具体业务中倾向采用开源方案降低研发成本,但现有公开的方案中少有完成端到端的车牌应用范例。
本次飞桨产业实践范例库开源车牌识别场景应用,提供了从技术方案、模型训练优化,到模型部署的全流程可复用方案,降低产业落地门槛。
项目链接
https://github.com/PaddlePaddle/PaddleOCR/tree/dygraph/applications
所有源码及教程均已开源。欢迎大家使用,star鼓励~
基于PaddleOCR的轻量级车牌识别系统
场景难点
本范例解决车牌识别任务,需完成车牌检测模型和车牌识别模型的微调与串联,并部署到端侧设备中。项目包含以下难点:
- 车牌在图像中的尺度差异大、在车辆上的悬挂位置不固定;
- 车牌图像质量层次不齐: 角度倾斜、图片模糊、光照不足、过曝等问题严重;
- 边缘和端测场景应用对模型大小有限制,推理速度有要求。

项目方案
针对以上问题,本范例选用PaddleOCR中的超轻量OCR系统PP-OCRv3进行车牌识别系统的开发,通过微调检测和识别模型,在CCPD新能源数据集达到99%的检测精度和94%的识别精度,模型大小为12.8M(检测2.5M+识别10.3M)。基于量化对模型体积进一步压缩到5.8M(1M+4.8M),同时推理速度提升25%。
训练数据
CCPD(Chinese City Parking Dataset)数据集包含蓝底车牌和新能源车牌,覆盖场景包括各类文字形态(倾斜、模糊)与气候环境(如阴雨天、雪天等),其中新能源车牌训练集数量为5769张。CCPD数据标签体现在图片文件名,其命名规范如图2所示。范例中我们通过转换脚本将上述规则转换为PaddleOCR的数据标注格式并划分数据集。

模型优化
在少量数据的情况下,优秀的预训练模型能够带来更好的精度和泛化性。本范例选择PaddleOCR最新发布的PP-OCRv3模型完成数据微调。PP-OCRv3在PP-OCRv2的基础上,端到端指标H-means在中文场景再提升5%, 英文数字模型提升11%,如图3所示。

在具体策略方面,PP-OCRv3在检测部分使用ResidualSE-FPN(残差注意力机制的FPN结构),识别部分使用SVTR_LCNet轻量级文本识别网络,GuidedTraining of CTCAttention损失指导CTC损失训练策略。上述策略的详细解释将在直播课展开。

由于车牌场景均为边端设备部署,因此对速度和模型大小有比较高的要求。采用量化训练的方式能够压缩模型大小、加速模型推理速度。模型量化可以在基本不损失模型精度的情况下,将FP32精度的模型参数转换为Int8精度,减小模型参数大小并加速计算,使用量化后的模型在移动端等部署时更具备速度优势。
综上,对于车牌检测和识别有如下3种方案:
- PP-OCRv3中英文超轻量预训练模型直接预测
- 基于PP-OCRv3的策略在CCPD数据集中微调
- 基于PP-OCRv3的策略在CCPD数据集中微调后量化
最终,检测方案指标如表1所示,识别方案如表2所示。


预测部署
边缘部署和端侧部署是车牌识别的常见部署方式,PaddleLite轻量化推理引擎是飞桨专为手机、IOT端提供的高效推理能力。本范例采用PaddleLite的cpp推理,在骁龙855上完成示例演示,最终端到端预测速度为224ms。
产业实践范例教程,助力企业跨越AI落地鸿沟
飞桨产业实践范例,致力于加速AI在产业落地的前进路径,减少理论技术与产业应用的差距。范例来源于产业真实业务场景,通过完整的代码实现,提供从数据准备到模型部署的方案过程解析,堪称产业落地的“自动导航”。
- 真实产业场景:与实际具有AI应用的企业合作共建,选取企业高频需求的AI应用场景如智慧城市-安全帽检测、智能制造-表计读数等;
- 完整代码实现:提供可一键运行的代码,在“AIStudio一站式开发平台”上使用免费算力一键Notebook运行;
- 详细过程解析:深度解析从数据准备和处理、模型选择、模型优化和部署的AI落地全流程,共享可复用的模型调参和优化经验;
- 直达项目落地:百度高工手把手教用户进行全流程代码实践,轻松直达项目POC阶段。
相关文章:

一站式完成车牌识别任务:从模型优化到端侧部署
交通领域的应用智能化不断往纵深发展,其中最为成熟的车牌识别早已融入人们的日常生活之中,在高速公路电子收费系统、停车场等场景中随处可见。一些企业在具体业务中倾向采用开源方案降低研发成本,但现有公开的方案中少有完成端到端的车牌应用…...

Linux4.8Nginx Rewrite
文章目录 计算机系统5G云计算第六章 LINUX Nginx Rewrite一、Nginx Rewrite 概述1.常用的Nginx 正则表达式2.rewrite和location3.location4.实际网站使用中,至少有三个匹配规则定义5.rewrite6.rewrite 示例 计算机系统 5G云计算 第六章 LINUX Nginx Rewrite 一、…...

DHT11温湿度传感器
接口定义 传感器通信 DHT11采用简化的单总线通信。单总线仅有一根数据线(SDA),通信所进行的数据交换、挂在单总线上的所有设备之间进行信号交换与传递均在一条通讯线上实现。 单总线上必须有一个上拉电阻(Rp)以实现单…...
RestTemplate超简单上手
目录 1.什么是RestTemplate? 2.RestTemplate的使用 2.1spring环境下 注意1:RestTemplate中发送请求execute()和exchange()方法的区别 execute()方式 exchange()方式 二者的区别 注意2:进阶配置——底层HTTP客户端 2.2非spring环境下 1.什么是R…...
监控系统设计原则及实现目标
1.1.1.1 1 .完善的设计理念: 包括符合国际发展潮流的特性化设计,完整的安防监控及围墙周界报警系统 的布线、设备安装、调试、测试、验收的“交钥匙”工程管理制度,以及符合标 准的质量控制体系。 1.1.1.2 设计原则…...

VulnHub项目:MONEYHEIST: CATCH US IF YOU CAN
靶机名称: MONEYHEIST: CATCH US IF YOU CAN 地址:MoneyHeist: Catch Us If You Can ~ VulnHub 这个系列是一部剧改编,还是挺好看的,大家有兴趣可以去看看! 废话不多说,直接上图开始! 渗透…...
对象存储OSS简介,一分钟了解对象存储OSS
对象存储(Object Storage)是一种新兴的数据存储方式,与传统的文件系统和块存储不同,对象存储以对象为基本单位进行数据管理和存储。在对象存储中,每个对象都有唯一的标识符,并包含了数据本身以及与之相关的…...

SpringCloud_微服务基础day2(Eureka简介与依赖导入,服务注册与发现)
p6:Eureka简介与依赖导入 前面我们了解了如何对单体应用进行拆分,并且也学习了如何进行服务之间的相互调用,但是存在一个问题,就是虽然服务拆分完成,但是没有一个比较合理的管理机制,如果单纯只是这样编写,…...
#tmux# #终端# 常用工具tmux
tmux tmux是一个终端复用工具,允许用户在一个终端会话中同时管理多个终端窗口,提高了终端使用效率,尤其在服务器上进行远程管理时更加实用。在tmux中,可以创建多个终端窗口和窗格,并在这些窗口和窗格之间自由切换&…...

后端服务架构高性能设计之道
“N 高 N 可”,高性能、高并发、高可用、高可靠、可扩展、可维护、可用性等是后台开发耳熟能详的词了,它们中有些词在大部分情况下表达相近意思。本序列文章旨在探讨和总结后台架构设计中常用的技术和方法,并归纳成一套方法论。 前言 本文主…...

Python中的Time和DateTime
Python在处理与时间相关的操作时有两个重要模块:time和datetime。在本文中,我们介绍这两个模块并为每个场景提供带有代码和输出的说明性示例。 time模块主要用于处理时间相关的操作,例如获取当前时间、时间的计算和格式化等。它提供了一些函数…...

UNIX网络编程卷一 学习笔记 第十九章 密钥管理套接字
随着IP安全体系结构(IPsec)的引入,密钥加密和认证密钥的管理越来越需要一套标准机制。RFC 2367介绍了一个通用密钥管理API,可用于IPsec和其他网络安全服务,该API创建了一个新协议族,即PF_KEY域,…...

excel如何实现识别文本在对应单元格填上数据?
要实现 Excel 识别文本在对应单元格填上数据,有以下两种方法: 方法一:使用 VLOOKUP 函数 1. 在 Excel 工作表中,输入一个表格,列名为对应的文本,行名为不同条目。 2. 准备输入数据,在一个新的…...

Groovy 基本语法
一、简介 类型转换:当需要时,类型之间会自动发生类型转换: 字符串(String)、基本类型(如int) 和类型的包装类(如Integer) 类说明:如果在一个groovy 文件中没有任何类定义,它将被当做script 来处理,也就意味着这个文件将…...
系统学习IT技术的方法与实践
系统学习IT技术的方法与实践 作为一名技术人员,在学习新的IT技术时,采取系统性的学习方法是至关重要的。这样可以帮助我们更好地理解和掌握技术,并提高学习效率。下面我将分享一些我个人在系统学习IT技术方面的方法和实践。 1. 设定明确的学…...

聊聊TCP协议的粘包、拆包以及http是如何解决的?
目录 一、粘包与拆包是什么? 二、粘包与拆包为什么发生? 三、遇到粘包、拆包怎么办? 解决方案1:固定数据大小 解决方案2:自定义请求协议 解决方案3:特殊字符结尾 四、HTTP如何解决粘包问题的…...

一百二十、Kettle——用kettle把Hive数据同步到ClickHouse
一、目标 用kettle把hive数据同步到clickhouse,简单运行、直接全量导入数据 工具版本:kettle:8.2 Hive:3.1.2 ClickHouse21.9.5.16 二、前提 (一)kettle连上hive (二)kettle连上cli…...

PyTorch 提示和技巧:从张量到神经网络
张量和梯度 我们将深入探讨使用 PyTorch 构建自己的神经网络必须了解的 2 个基本概念:张量和梯度。 张量 张量是 PyTorch 中的中央数据单元。它们是类似于数组的数据结构,在功能和属性方面与 Numpy 数组非常相似。它们之间最重要的区别是 PyTorch 张量…...

第五期:字符串的一些有意思的操作
文章目录 1. 替换空格2. 字符串的左旋转3. 答案代码3.1 替换空格3.2 字符串的左旋转 PS:每道题解题方法不唯一,欢迎讨论!每道题后都有解析帮助你分析做题,答案在最下面,关注博主每天持续更新。 1. 替换空格 题目描述 请…...
使用Anaconda3结合vscode来实现django项目的建立(绝好的介绍)20230608
问题:如何使用Anaconda3结合vscode来实现django项目的建立? 回答: 知识背景 Anaconda3的安装包默认会安装最新版本的Python解释器。如果您想在安装时指定Python解释器的版本,您需要下载对应版本的Anaconda3。例如,如果您想使用Python 3.7&…...
Vue记事本应用实现教程
文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展:显示创建时间8. 功能扩展:记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...

P3 QT项目----记事本(3.8)
3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...

MODBUS TCP转CANopen 技术赋能高效协同作业
在现代工业自动化领域,MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步,这两种通讯协议也正在被逐步融合,形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...

基于TurtleBot3在Gazebo地图实现机器人远程控制
1. TurtleBot3环境配置 # 下载TurtleBot3核心包 mkdir -p ~/catkin_ws/src cd ~/catkin_ws/src git clone -b noetic-devel https://github.com/ROBOTIS-GIT/turtlebot3.git git clone -b noetic https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git git clone -b noetic-dev…...

视觉slam十四讲实践部分记录——ch2、ch3
ch2 一、使用g++编译.cpp为可执行文件并运行(P30) g++ helloSLAM.cpp ./a.out运行 二、使用cmake编译 mkdir build cd build cmake .. makeCMakeCache.txt 文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的 CMakeCache.txt 文件,或者在构建过程中仍然引用了旧的路…...
PAN/FPN
import torch import torch.nn as nn import torch.nn.functional as F import mathclass LowResQueryHighResKVAttention(nn.Module):"""方案 1: 低分辨率特征 (Query) 查询高分辨率特征 (Key, Value).输出分辨率与低分辨率输入相同。"""def __…...

从“安全密码”到测试体系:Gitee Test 赋能关键领域软件质量保障
关键领域软件测试的"安全密码":Gitee Test如何破解行业痛点 在数字化浪潮席卷全球的今天,软件系统已成为国家关键领域的"神经中枢"。从国防军工到能源电力,从金融交易到交通管控,这些关乎国计民生的关键领域…...

【Linux】Linux安装并配置RabbitMQ
目录 1. 安装 Erlang 2. 安装 RabbitMQ 2.1.添加 RabbitMQ 仓库 2.2.安装 RabbitMQ 3.配置 3.1.启动和管理服务 4. 访问管理界面 5.安装问题 6.修改密码 7.修改端口 7.1.找到文件 7.2.修改文件 1. 安装 Erlang 由于 RabbitMQ 是用 Erlang 编写的,需要先安…...
TJCTF 2025
还以为是天津的。这个比较容易,虽然绕了点弯,可还是把CP AK了,不过我会的别人也会,还是没啥名次。记录一下吧。 Crypto bacon-bits with open(flag.txt) as f: flag f.read().strip() with open(text.txt) as t: text t.read…...
Java并发编程实战 Day 11:并发设计模式
【Java并发编程实战 Day 11】并发设计模式 开篇 这是"Java并发编程实战"系列的第11天,今天我们聚焦于并发设计模式。并发设计模式是解决多线程环境下常见问题的经典解决方案,它们不仅提供了优雅的设计思路,还能显著提升系统的性能…...