NumPy库的学习
本文主要记录的是笔者在B站自学Numpy库的学习笔记。
引入numpy库
import numpy as np
矩阵的创建
创建一个二行三列的矩阵。
array = np.array([[1,2,3],[2,3,4]])
查看array的行数、形状、元素数量
print("number of dim:",array.ndim)
print("shape:",array.shape)
print("size:",array.size)
执行结果:
其中
ndim显示的是它的行数;
shape显示的是它的形状(2行3列的矩阵);
size显示的是它的元素数量(6个)
创建0矩阵
array = np.zeros((4,5)) #4行5列的0矩阵
执行结果:
创建全1矩阵
array = np.ones((4, 5),dtype=int) # 4行5列的全1矩阵并用dtype属性设置成int类型
执行结果:
创建有步长的一维矩阵
array = np.arange(1,22,3) # [1,22)步长为3的一维矩阵
执行结果
用reshape方法创建多维矩阵
array = np.arange(20).reshape((4,5)) # 4行5列0~19的矩阵
执行结果
创建一维序列线段
array = np.linspace(10,30,6) # 一行从10到30,6个步长的序列线段
执行结果
创建多维序列线段
array = np.linspace(10, 30, 6).reshape((3,2)) # 3行2列从10到30,6个步长的序列线段
执行结果
生成多维随机数矩阵
array = np.random.random((3,5)) # 3行5列从0到1的随机数
我们还可以使用numpy内置的一些方法进行数值计算,比如求和、搜索最大值、走索最小值、按行求和、按列求最小值、按行求最大值等等(axis=1时表示横向,axis=0表示纵向)。
np.sum(array) #将元素求和
np.min(array) # 将元素求最小值
np.max(array) # 将元素求最大值
np.sum(array,axis=1) # 按行求和
np.min(array, axis=0) # 按列求最小值
np.max(array, axis=1) # 按行求最大值
执行结果
矩阵相加
矩阵相加,只需要简单的用+号就可以完成。
a = np.array([4,5,6,7,8])
b = np.arange(5)
c = a+b
执行结果
矩阵点乘
矩阵点乘指的是矩阵之间对应位置元素相乘。
用刚才的b矩阵点乘自身。
b = b**2
执行结果
c = np.array([[1,1,1],[0,1,2],[2,3,4]])
d = np.arange(9).reshape((3,3))
e = c*d #c矩阵和d矩阵进行点乘
运行结果:
矩阵叉乘
矩阵叉乘就是我们在线性代数里面学的“矩阵乘法”。
叉乘使用的方法是dot()。两种写法:
dot = np.dot(c,d)
dot = c.dot(d)
执行结果:
矩阵的元素布尔判断
判断a矩阵里的元素是否比6大
a > 6
执行结果:
一些常用的运算
例如找最大元素的索引、最小元素索引、计算平均值、计算中位数、计算逐项累加值、计算逐项差值、寻找非0元素下索引、逐行排序、矩阵转置、矩阵自叉乘、按列计算平均值、滤波操作等。
array = np.arange(2, 14).reshape((3, 4))np.argmax(array) # 最大值索引
np.argmin(array) # 最小值索引
array.mean() # 计算平均值
np.average(array) # 计算平均值
np.median(array) # 计算中位数
pnp.cumsum(array) # 计算逐项累加值
np.diff(array) # 计算逐项差值
np.nonzero(array) # 给出非0元素的下标
np.sort(array) # 逐行排序
np.transpose(array) # 矩阵的转置
array.transpose() # 矩阵的转置
array.T # 矩阵的转置
(array.T).dot(array) # 矩阵转置后叉乘
np.mean(array, axis=0) # 按列计算平均值
np.clip(array, 5, 9) # 滤波,设置小于5的数等于5,大于9的数等于9
运行结果:
关于非0元素下标,输出的是两个一位数组,分别代表非0元素的x轴位置和y轴位置。
矩阵索引
array = np.arange(0,16).reshape((4,4)) array[2] #获取第二行的所有元素
array[2][1] #获取第2行第1列的元素
array[2,1] #也可以这么写
array[:,1] #第1列所有数
array[1, 1:3] # 第1行第1列到第3列之前所有数
array.flatten() #拉平矩阵
运行结果:
矩阵的合并
a = np.array([1,2,3])
b = np.array([4,5,6])
np.vstack((a, b)) # 上下合并 v:vertical
np.hstack((a, b)) # 左右合并 h:horizontal
运行结果
一维矩阵的转置
对单行序列不可以通过转置的方式得到单列的序列,直接写a.T是转置不了a的。通过a.shape可以得到:(3,),说明现在只有一个维度,而转置是两个维度的事情。所以可以通过newaxis的方式添加纵向维度来达到转置的目的。
a[:,np.newaxis] #[横向维度,纵向维度]
如果还要转置回来,a.T可不可以达到目的呢?也不可以。通过a.shape还是会得到:(3,),说明此时a还是被看作是一维的数组。再转置回来怎么办?那就通过添加横向纬度来转置!
a[np.newaxis,:]
运行结果:
矩阵的分割
用split、vsplit、hsplit可以进行等份分割,用array_split可以进行不等份分割
a = np.arange(20).reshape((4, 5))
np.split(a, 5, axis=1) # 分割后成横向排列,也就是对列进行等分分割,分割成5部分
np.split(a, 2, axis=0) # 分割后成纵向排列,也就是对行进行等分分割,分割成2部分
#等效写法:
np.vsplit(a, 2) #等份分割后成纵向
np.hsplit(a, 5) #等份分割后成横向
#不等分划分
np.array_split(a, 3, axis=1) #不等份分割成4份后成横向
运行结果:
“成横向”的意思是分割完毕后每一组是横向摆,同理“成纵向”是分割完毕后每一组是纵向摆。
浅拷贝与深拷贝
假设现在有两个矩阵array1,array2。
浅拷贝的写法是:array2 = array1; 这种写法只是array2对array1的简单引用,也就意味着对array1的属性进行修改时,array2的属性也会跟着变,说白了此时array2就是array1。类似于C语言的地址传递(实参传递)。
深拷贝的写法是:array2 = array1.copy(); 这种写法是将array1的所有属性及参数一并拷贝给array2,但是array2并不对array1进行引用。这也就意味着,array1的属性改变时,不会影响array2的属性。类似于C语言的值传递(形参传递)
array1 = np.arange(4)
os.system("cls")
print("当前array1:\n",array1,"\n")
array2 = array1 # 浅拷贝。类似于地址传递,实参赋值
print("array2浅拷贝array1:\n",array2,"\n")
array2[2] = 6
print("array2[2]修改后的array2:\n",array2,"\n")
print("array2[2]修改后的array1:\n",array1,"\n") # array2 和 array是同一个东西
array1[1:3] = [8,9]
print("array1[1:3]修改后的array1:\n",array1,"\n")
print("array1[1:3]修改后的array2:\n",array2,"\n") # 深拷贝
array3 = array1.copy()
print("array3深拷贝array1:\n",array3,"\n")
array1[0] = 7
print("array1[0]修改后的array1:\n",array1,"\n")
print("array1[0]修改后的array3:\n",array3,"\n")
运行结果:
敬请批评指正。
相关文章:

NumPy库的学习
本文主要记录的是笔者在B站自学Numpy库的学习笔记。 引入numpy库 import numpy as np矩阵的创建 创建一个二行三列的矩阵。 array np.array([[1,2,3],[2,3,4]])查看array的行数、形状、元素数量 print("number of dim:",array.ndim) print("shape:"…...
CentOS安装IRIS
最近电脑提搞了,可以无顾虑创建虚拟机了,试一下在Linux安装IRIS,适用CentOS7.6上安装Intersystem公司的IRIS数据库,资料基本是空白,分享一下。 首先安装解压软件unzip和libicu,最小化安装的缺,…...

华为OD机试真题 JavaScript 实现【最多几个直角三角形】【2023Q1 100分】
一、题目描述 有 N 条线段,长度分别为 a[1]-a[n]。 现要求你计算这 N 条线段最多可以组合成几个直角三角形,每条线段只能使用一次,每个三角形包含三条线段。 二、输入描述 第一行输入一个正整数 T (1< T< 100) ,表示有…...
vue3中的reactive、ref、toRef和toRefs
目录 reactivereactive的实现原理使用reactive的注意事项 refref的实现原理使用ref的注意事项 toRef和toRefsref和reactive的使用比较 reactive reactive用于创建响应式对象,它返回一个对象的响应式代理。即:它返回的对象以及其中嵌套的对象都会通过 Pr…...
数字图像处理与Python实现-图像增强经典算法汇总
图像增强经典算法汇总 文章目录 图像增强经典算法汇总1、像素变换2、图像逆变换3、幂律变换4、对数变换5、图像均衡化6、对比度受限自适应直方图均衡(CLAHE)7、对比度拉伸8、Sigmoid校正9、局部对比度归一化10、总结本文将对图像增强经典算法做一个简单的汇总。图像增强的经典…...
tag提示词总结
顺序的权重 越靠前的tag权重越大,越靠后的tag权重越小经验来讲,将图像质量相关的tag放在前面,例如masterpiece,best quality等;接着添加主体画风等;最后添加一些不太重要的细节 权重增减 (tag):…...

微信小程序原生开发功能合集二十:导航栏、tabbar自定义及分包功能介绍
本章实现导航栏及tabbar的自定义处理的相关方法介绍及效果展示。 另外还提供小程序开发基础知识讲解课程,包括小程序开发基础知识、组件封装、常用接口组件使用及常用功能实现等内容,具体如下: 1. CSDN课程: https://edu.csdn.net/course/detail/37977 2. 5…...

高通 Camera HAL3:项目开发技术点总结
做高通 Camera HAL3开发的一些技术点的总结、整理。 做个记录,方便后续查阅。 1.目录、so、配置文件 productName是项目名 out Target路径:\out\target\product\productName\chi-cdk:\vendor\qcom\proprietary\chi-cdk\ldc node࿱…...

chatgpt赋能python:Python怎么删除列表中的最大值和最小值
Python怎么删除列表中的最大值和最小值 在Python中,一个列表(List)是一种非常常见的数据结构,它允许我们以有序的方式存储和访问数据。但是,有时候我们需要从列表中删除最大或最小的值,以满足我们的特定需…...

简述Vue的生命周期以及每个阶段做的事情
03_简述Vue的生命周期以及每个阶段做的事情 思路 给出概念 列举出生命周期各个阶段 阐述整体流程 结合实际 扩展:vue3变化 回答范例 每个vue组件实例被创建后都会经过一系列步骤。比如它需要数据观测、模板编译、挂载实例到dom、以及数据变化的时候更新dom、…...
LeetCode-C#-0004.寻找两个正序数组的中位数
0.声明 该题目来源于LeetCode 如有侵权,立马删除。 解法不唯一,如有新解法可一同讨论。 1.题目 0004寻找两个正序数组的中位数 给定两个大小分别为m和n的正序(从小到大)数组nums1和nums2。 请你找出并返回着两个正序数组的中位…...

Vue.js 中的 $emit 和 $on 方法有什么区别?
Vue.js 中的 $emit 和 $on 方法有什么区别? 在 Vue.js 中,$emit 和 $on 方法是两个常用的方法,用于实现组件间的通信。它们可以让我们在一个组件中触发一个自定义事件,并在另一个组件中监听这个事件,从而实现组件间的…...
LAZADA平台的商品评论Python封装API接口接入文档和参数说明
LAZADA是一个位于东南亚的电商平台,成立于2012年。该平台覆盖的国家包括新加坡、马来西亚、印尼、菲律宾、泰国和越南等地。它提供了一个多样化的产品选择,包括时尚、美容、数码、母婴等商品,并且拥有许多知名品牌的官方旗舰店。同时…...

云原生Docker镜像管理
docker是什么? docker是一个go语言开发的应用容器引擎。 docker的作用? ①运行容器里的应用; ②docker是用来管理容器和镜像的一种工具。 #容器 与 虚拟机 的区别? 容器虚拟机所有容器共享宿主机内核每个虚拟机都有独立的操…...

ChatGPT+小红书的8种高级玩法
掌握了这套万能命令,让你快速做出小红书爆款文案! 一、用ChatGPT做定位 我是一个大龄的普通人,没有什么特殊的技能,接下来,请你作为一位小红书的账号定位专家,通过与我对话的方式,为我找到我的小红书账号定…...

shell脚本学习记录1(运算符)
Shell 传递参数 我们可以在执行 Shell 脚本时,向脚本传递参数,脚本内获取参数的格式为:$n。n 代表一个数字,1 为执行脚本的第一个参数,2 为执行脚本的第二个参数,以此类推…… 以下实例我们向脚本传递三个…...

vector 迭代器失效问题
vector 迭代器失效 迭代器的主要作用就是让算法能够不用关心底层数据结构,其底层实际就是一个指针,或者是对指针进行了封装,比如:vector的迭代器就是原生态指针T* 。因此迭代器失效,实际就是迭代器底层对应指针所指向…...

docker使用与服务器上的可视化(ROS rviz等)
1.安装docker 安装docker:官网教程,按照官网命令一步步来即可。 添加当前用户到docker用户组: 【docker】添加用户到docker组,这样后面运行docker的时候前面不需要加sudo命令,否则运行docker的时候一直需要在前面加su…...

最新版本Portraiture4.1中文版ps磨皮滤镜插件安装包
在Portraiture有非常强大的手动功能,可以为用户进行手动调整照片中的皮肤区域以达到更加完美的效果,软件还支持同时导入上千张照片,用户可以通过自动识别照片中的人脸从而依照自己的风格进行批量处理十分的方便快捷。 最新版本Portraiture 4…...

仓储WMS对接淘宝奇门详细说明【亲测可用】
文章目录 简介名词解释奇门对接方案前期准备系统调用流程代码实现思路关键点(个人观点)奇门对接关键代码可能遇到的问题 简介 淘宝奇门项目支持 ERP、WMS 之间的系统标准化对接,通过构建 ERP、WMS 系统之间标准通信协议来实现不同系统之间的打通;对商家…...
[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解
突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 安全措施依赖问题 GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

最新SpringBoot+SpringCloud+Nacos微服务框架分享
文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的,根据Excel列的需求预估的工时直接打骨折,不要问我为什么,主要…...

MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...

React19源码系列之 事件插件系统
事件类别 事件类型 定义 文档 Event Event 接口表示在 EventTarget 上出现的事件。 Event - Web API | MDN UIEvent UIEvent 接口表示简单的用户界面事件。 UIEvent - Web API | MDN KeyboardEvent KeyboardEvent 对象描述了用户与键盘的交互。 KeyboardEvent - Web…...

学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1
每日一言 生活的美好,总是藏在那些你咬牙坚持的日子里。 硬件:OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写,"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...

蓝桥杯3498 01串的熵
问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798, 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...

OPENCV形态学基础之二腐蚀
一.腐蚀的原理 (图1) 数学表达式:dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一,腐蚀跟膨胀属于反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...

论文笔记——相干体技术在裂缝预测中的应用研究
目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术:基于互相关的相干体技术(Correlation)第二代相干体技术:基于相似的相干体技术(Semblance)基于多道相似的相干体…...

浪潮交换机配置track检测实现高速公路收费网络主备切换NQA
浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求,本次涉及的主要是收费汇聚交换机的配置,浪潮网络设备在高速项目很少,通…...

GruntJS-前端自动化任务运行器从入门到实战
Grunt 完全指南:从入门到实战 一、Grunt 是什么? Grunt是一个基于 Node.js 的前端自动化任务运行器,主要用于自动化执行项目开发中重复性高的任务,例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...