当前位置: 首页 > news >正文

空间复杂度与时间复杂度

1、时间复杂度和空间复杂度

(1)时间复杂度、空间复杂度是什么?

  • 算法效率分析分为两种:第一种是时间效率,第二种是空间效率。
  • 时间效率被称为时间复杂度,空间效率被称作空间复杂度
  • 时间复杂度主要衡量的是一个算法的运行速度,而空间复杂度主要衡量一个算法所需要的额外空间
  • 在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度,如今更加考虑时间复杂度

(2)时间复杂度的计算

void Func1(int N)
{int count = 0;for (int i = 0; i < N ; ++ i){for (int j = 0; j < N ; ++ j){++count;}}for (int k = 0; k < 2 * N ; ++ k){++count;}int M = 10;while (M--){++count;}printf("%d\n", count);
}//实际执行N * N + 2 * N + 10

①代码解析

实际的们计算时间复杂度的时候,不用计算如此精确的执行次数,于是这里我们使用大O渐进表示法,时间复杂度不算时间,算次数

②大O表示法

是用于描述函数渐进行为的数学符号

③推导方法

  • 用常数1取代运行时间中的所有加法常数
  • 在修改后的运行函数中,只保留最高阶项
  • 如果高阶项存在且不是1,则去除于这个项目相乘的常数

④最好、平均、最坏情况:

  • 最好情况:任意输入规模的最大运行次数(上界)
  • 平均情况:任意输入规模的期望运行次数
  • 最好情况:任意输入规模的最小运行次数(下界)

⑤推导例子

void Func2(int N)
{int count = 0;for (int k = 0; k < 2 * N ; ++ k){++count;}int M = 10;while (M--){++count;}printf("%d\n", count);
}
//2 * N + 10 ====> O(N)
void Func3(int N, int M)
{int count = 0;for (int k = 0; k < M; ++ k){++count;}for (int k = 0; k < N ; ++ k){++count;    }printf("%d\n", count);
}
//M + N====>O(M + N)
//如果M远大于N====>O(M)
//如果M、N相差不大====>O(2 * M)/O(2 * N)====>O(M)/O(N)
void Func4(int N)//N没有用到,时间复杂度与N无关
{int count = 0;for (int k = 0; k < 100; ++ k){++count;}printf("%d\n", count);
}
//100====>O(1),反过来就说明输入数据了常数次
//计算strchr的时间复杂度?
const char * strchr ( const char * str, char character )
{while(*str != '\0'){if(*str == character)return str;++str;}return NULL;
}
//需要分情况:最坏、平均、最好,假设字符串长度为N
//最坏的没有找到或者在最后找到====>O(N)
//平均就是O(N / 2)
//最坏就是O(1)
//当要分情况的时候要用最坏的情况表示,因此最终结果就是O(N)  
// 计算BubbleSort的时间复杂度?(冒泡排序)
void BubbleSort(int* a, int n)
{assert(a);//断言for (size_t end = n; end > 0; --end){int exchange = 0;for (size_t i = 1; i < end; ++i){if (a[i-1] > a[i]){Swap(&a[i-1], &a[i]);//调换两个元素exchange = 1;}}if (exchange == 0)break;}
}
//这个也要分情况
//第一次冒泡N次(也可以理解为N - 1的)
//第二次冒泡N - 1次
//……
//第N次冒泡1次
//和为((1 + N) * N) / 2
//因此最坏情况O(N^2)
// 计算BinarySearch的时间复杂度?(二分查找法)
int BinarySearch(int* a, int n, int x)
{assert(a);int begin = 0;int end = n;while (begin < end){int mid = begin + ((end-begin) >> 1);//求平均值if (a[mid] < x){    begin = mid+1;}else if (a[mid] > x){end = mid;}else{return mid;}}return -1;
}
//这个也要分情况
//O(log(2)N)简写为log(N),最好不要写lg(N)尽管有的地方会这样写,详细解说在下面

在这里插入图片描述

// 计算阶乘递归Factorial的时间复杂度?
long long Factorial(size_t N)
{return N < 2 ? N : Factorial(N-1) * N;
}
//Factorial(10)
//Factorial(9) * 10
//Factorial(8) * 9
//……
//Factorial(1) * 2
递归了N次,每次就是O(1),整体就是O(N)
//如果假设递归内用的是循环语句for(int i = 0; i < N; ++i);则每次是O(N),整体就是O(N^2)

⑥常见的时间复杂度对比

O(1) < O(logN) < O(N) < O(N^2)

(3)空间复杂度的计算

// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{assert(a);for (size_t end = n; end > 0; --end){int exchange = 0;for (size_t i = 1; i < end; ++i){if (a[i-1] > a[i]){Swap(&a[i-1], &a[i]);exchange = 1;}}if (exchange == 0)break;}
}
//标粗的地方占用了变量,即5====>O(1)
//注意时间是累积的,空间是不累积的(因为重复利用了一个空间)

①代码解析

实际的们计算空间复杂度的时候,也不用计算如此精确的空间,只需要知道大概的执行次数即可,于是这里我们也同样使用大O渐进表示法,空间复杂度不算空间,算变量个数

②大O表示法

是用于描述函数渐进行为的数学符号

③推导方法

  • 用常数1取代运行时间中的所有加法常数
  • 在修改后的运行函数中,只保留最高阶项
  • 如果高阶项存在且不是1,则去除于这个项目相乘的常数

④推导例子

// 计算Fibonacci的空间复杂度?(斐波那契数列)
long long* Fibonacci(size_t n)
{if(n==0){return NULL;}long long* fibArray = (long long*)malloc((n+1) * sizeof(long long));fibArray[0] = 0;fibArray[1] = 1;for (int i = 2; i <= n ; ++i){fibArray[i] = fibArray[i - 1] + fibArray [i - 2];}return fibArray;
}
//O(N + 6)====>O(N)
//虽然大部分算法的空间复杂度都是O(1)
// 计算阶乘递归Factorial的空间复杂度?
long long Factorial(size_t N)
{return N < 2 ? N : Factorial(N - 1) * N;
}
//递归调用了n层,每次调用建立一个栈帧,每次使用了常数O(1),整体就是O(N)

2、有关的练习题目

(1)面试题 17.04. 消失的数字 - 力扣(LeetCode)

//思路一:
int missingNumber(int* nums, int numsSize)
{int add_1 = 0;int add_2 = 0;add_1 = ( (0 + numsSize) * (numsSize + 1) ) / 2;for(int i = 0; i < numsSize; i++){add_2 += nums[i];}return add_1 - add_2;
}
//思路二:
int missingNumber(int* nums, int numsSize)
{int x = 0;int i = 0;for(i = 0; i < numsSize; i++)//用for循环求出数组nums元素的异或和{x ^= nums[i];}for(i = 0; i < numsSize + 1; i++)//运用异或的性质a^a=0来找出消失的数字{x ^= i;}return x;
}

(2)189. 轮转数组 - 力扣(LeetCode)

//思路一:
void rotate(int* nums, int numsSize, int k)
{while(k--){int tmp = nums[numsSize - 1];//保留最后一个数字for(int end = numsSize - 2; end >= 0; --end)//开始将最后一个数字前面的所有数字后移{nums[end + 1] = nums[end];}nums[0] = tmp;}
}
//但是超出了时间限制
//思路二:
void Reverse(int* nums, int left, int right)
{while(left < right)//奇数个会相等,偶数个会错开{int tmp = nums[left];nums[left] = nums[right];nums[right] = tmp;++left;--right;}
}
void rotate(int* nums, int numsSize, int k)
{if(k >= numsSize)//防止k大于数组大小,例如7个元素旋转13次和6次等价{k %= numsSize;}Reverse(nums, numsSize - k, numsSize - 1);//后半部分Reverse(nums, 0, numsSize - k - 1);//前半部分Reverse(nums, 0, numsSize - 1);
}

相关文章:

空间复杂度与时间复杂度

1、时间复杂度和空间复杂度 &#xff08;1&#xff09;时间复杂度、空间复杂度是什么&#xff1f; 算法效率分析分为两种&#xff1a;第一种是时间效率&#xff0c;第二种是空间效率。时间效率被称为时间复杂度&#xff0c;空间效率被称作空间复杂度时间复杂度主要衡量的是一…...

javaEE 初阶 — 延迟应答与捎带应答

文章目录1. 延迟应答2. 捎带应答TCP 工作机制&#xff1a;确认应答机制 超时重传机制 连接管理机制 滑动窗口 流量控制与拥塞控制 1. 延迟应答 延时应答 也是提升效率的机制&#xff0c;也是在滑动窗口基础上搞点事情。 滑动窗口的关键是让窗口大小大一点&#xff0c;传输…...

Twitter账号老被封?一文教会你怎么养号

昨天龙哥给大家科普完要怎么批量注册Twitter账号&#xff0c;立刻有朋友来私信龙哥说里面提到的这个养号和防关联具体是个怎么样的做法。由于Twitter检测机制还是比较敏感的&#xff0c;账号很容易被冻结&#xff0c;所以养号是非常重要的步骤。其实要养好Twitter账号其实并不难…...

当遇到国外客户的问题,你解决不了的时候怎么办

对我来说&#xff0c;今年的这个春节假期有点长&#xff0c;差不多休了一个月。复工之后&#xff0c;截止目前做到了60万RMB的业绩&#xff0c;但是相较于往年&#xff0c;整体状态还是差了些。往年的春节&#xff0c;我都是随时待命的状态&#xff0c;整个春节天天坐于电脑前&…...

算法刷题打卡第93天: 最大的以 1 为边界的正方形

最大的以 1 为边界的正方形 难度&#xff1a;中等 给你一个由若干 0 和 1 组成的二维网格 grid&#xff0c;请你找出边界全部由 1 组成的最大 正方形 子网格&#xff0c;并返回该子网格中的元素数量。如果不存在&#xff0c;则返回 0。 示例 1&#xff1a; 输入&#xff1a…...

python语言基础(最详细版)

文章目录一、程序的格式框架缩进1、定义2、这里就简单的举几个例子注释二、语法元素的名称三、数据类型四、数值运算符五、关系运算六、逻辑运算七、运算符的结合性八、字符串一、程序的格式框架 缩进 1、定义 &#xff08;1&#xff09;python中通常用缩进来表示代码包含和…...

Java小技能:字符串

文章目录 引言I 预备知识1.1 Object类1.2 重写的规则1.3 hashCode方法II String2.1 String的特性2.2 字符串和正则2.3 StringBuilder,StringBuffer引言 String,StringBuffer,StringBuilder,char[],用来表示字符串。 ​ I 预备知识 1.1 Object类 是所有类的根类 toString…...

2023美赛D题:可持续发展目标

以下内容全部来自人工翻译&#xff0c;仅供参考。 文章目录背景要求术语表文献服务背景 联合国制定了17个可持续发展目标&#xff08;SDGs&#xff09;。实现这些目标最终将改善世界上许多人的生活。这些目标并不相互独立&#xff0c;因此&#xff0c;一些目标的积极进展常常…...

openwrt开发板与ubuntu nfs挂载

1.ubuntu需要安装nfs服务 sudo apt-get install nfs-common nfs-kernel-server2.修改 /etc/exports文件&#xff1a; /home/test *(rw,nohide,insecure,no_subtree_check,async,no_root_squash) 前面是挂载的目录&#xff0c;后边是相应权限 rw&#xff1a;读写 insecure&am…...

【Redis】Redis持久化之AOF详解(Redis专栏启动)

&#x1f4eb;作者简介&#xff1a;小明java问道之路&#xff0c;2022年度博客之星全国TOP3&#xff0c;专注于后端、中间件、计算机底层、架构设计演进与稳定性建工设优化。文章内容兼具广度深度、大厂技术方案&#xff0c;对待技术喜欢推理加验证&#xff0c;就职于知名金融公…...

Git小乌龟每次推送拉取都弹窗和用户名密码报错(解决办法)

目录 一、小乌龟推送代码到云端用户名和密码报错 &#xff08;一&#xff09; 遇到问题 &#xff08;二&#xff09;解决办法 二、小乌龟每次推送拉取都要输入账号和密码 &#xff08;一&#xff09;遇到问题 &#xff08;二&#xff09;解决办法 一、小乌龟推送代码到云…...

emacs 使用集锦

emacs 使用集锦 声明, 主要在c/c环境中使用! ---------------------------------------- 1. emacs 中 TAGS 位置设置 ---------------------------------------- a&#xff09;临时使用方式&#xff1a; M-x visit-tags-table b&#xff09;启动Emacs时自动加载方式&#xff…...

蓝牙 - 如何实现安全性

蓝牙技术在加密上做了很多工作&#xff0c;来保证你的数据安全。 这些年来&#xff0c;我们的许多电子设备都转向了使用无线技术进行连接。我们的鼠标、键盘、耳机和扬声器上不再有长长的纠缠的电线&#xff0c;而使用了简单方便的无线技术&#xff0c;科技进步改善了我们的生活…...

深入理解顺序io和随机io(全网最详细篇)

MySql系列整体栏目 内容链接地址【一】深入理解mysql索引本质https://blog.csdn.net/zhenghuishengq/article/details/121027025【二】深入理解mysql索引优化以及explain关键字https://blog.csdn.net/zhenghuishengq/article/details/124552080【三】深入理解mysql的索引分类&a…...

面试准备知识点与总结——(基础篇)

目录Java基础Java面向对象有哪些特征ArrayList和LinkedList有什么区别高并发的集合有哪些问题迭代器的fail-fast和fail-safeArrayList底层扩容机制HashMap面试合集解答设计模式单例设计模式哪些地方体现了单例模式Java基础 Java面向对象有哪些特征 Java面向对象有三大特征&am…...

Linux共享库,静态库与相关系统调用,工具的使用总结

tags: Linux C Syscall 写在前面 总结Unix/Linux操作系统的共享库/静态库部分, 以及一些系统调用. 参考Linux/UNIX系统编程手册41-42章. 测试程序均在Ubuntu下使用cc(gcc-9)运行成功. $ gcc -v Using built-in specs. COLLECT_GCCgcc COLLECT_LTO_WRAPPER/usr/lib/gcc/x86_64…...

「JVM 编译优化」javac 编译器源码解读

Java 的编译过程 前端编译: 编译器的前端&#xff0c;将 Java 文件转变成 Class 文件的过程&#xff1b;如 JDK 的 javac、Eclipse JDT 中的增量式编译器 ECJ&#xff1b;即使编译: JIT&#xff0c;Just In Time Compiler&#xff0c;在运行期将字节码转变成本地机器码的过程&…...

Leetcode DAY 34: K次取反后最大化的数组和 and 加油站 and 分发糖果

1005.K次取反后最大化的数组和 class Solution:def largestSumAfterKNegations(self, nums: List[int], k: int) -> int:nums sorted(nums, key abs, reverse True)for i in range(len(nums)):if nums[i] < 0:nums[i] -nums[i]k - 1else:continueif k 0:return sum(…...

2023美赛A题思路

在线解析 https://kdocs.cn/l/ccNGjN9sGugL​kdocs.cn/l/ccNGjN9sGugL A题思路&#xff1a;&#xff08;具体以题目解决问题顺序为主&#xff09; 这道题分析植被就行&#xff0c;主要涉及不同植被间的相互作用&#xff0c;有竞争有相互促进&#xff0c;我查了下“植物科学数…...

前端上传文件

前言 以 vue 举例&#xff0c;原生 html css js 现在应该很少有人去写了 一、绘制样式 绘制两个标签&#xff0c;一个 <div></div> &#xff0c;一个 <input type"file" />&#xff1b; 为 <div></div>添加 css 样式&#xff0c…...

【根据当天日期输出明天的日期(需对闰年做判定)。】2022-5-15

缘由根据当天日期输出明天的日期(需对闰年做判定)。日期类型结构体如下&#xff1a; struct data{ int year; int month; int day;};-编程语言-CSDN问答 struct mdata{ int year; int month; int day; }mdata; int 天数(int year, int month) {switch (month){case 1: case 3:…...

CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型

CVPR 2025 | MIMO&#xff1a;支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题&#xff1a;MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者&#xff1a;Yanyuan Chen, Dexuan Xu, Yu Hu…...

mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包

文章目录 现象&#xff1a;mysql已经安装&#xff0c;但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时&#xff0c;可能是因为以下几个原因&#xff1a;1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...

CSS设置元素的宽度根据其内容自动调整

width: fit-content 是 CSS 中的一个属性值&#xff0c;用于设置元素的宽度根据其内容自动调整&#xff0c;确保宽度刚好容纳内容而不会超出。 效果对比 默认情况&#xff08;width: auto&#xff09;&#xff1a; 块级元素&#xff08;如 <div>&#xff09;会占满父容器…...

【JVM面试篇】高频八股汇总——类加载和类加载器

目录 1. 讲一下类加载过程&#xff1f; 2. Java创建对象的过程&#xff1f; 3. 对象的生命周期&#xff1f; 4. 类加载器有哪些&#xff1f; 5. 双亲委派模型的作用&#xff08;好处&#xff09;&#xff1f; 6. 讲一下类的加载和双亲委派原则&#xff1f; 7. 双亲委派模…...

HybridVLA——让单一LLM同时具备扩散和自回归动作预测能力:训练时既扩散也回归,但推理时则扩散

前言 如上一篇文章《dexcap升级版之DexWild》中的前言部分所说&#xff0c;在叠衣服的过程中&#xff0c;我会带着团队对比各种模型、方法、策略&#xff0c;毕竟针对各个场景始终寻找更优的解决方案&#xff0c;是我个人和我司「七月在线」的职责之一 且个人认为&#xff0c…...

消息队列系统设计与实践全解析

文章目录 &#x1f680; 消息队列系统设计与实践全解析&#x1f50d; 一、消息队列选型1.1 业务场景匹配矩阵1.2 吞吐量/延迟/可靠性权衡&#x1f4a1; 权衡决策框架 1.3 运维复杂度评估&#x1f527; 运维成本降低策略 &#x1f3d7;️ 二、典型架构设计2.1 分布式事务最终一致…...

LangChain 中的文档加载器(Loader)与文本切分器(Splitter)详解《二》

&#x1f9e0; LangChain 中 TextSplitter 的使用详解&#xff1a;从基础到进阶&#xff08;附代码&#xff09; 一、前言 在处理大规模文本数据时&#xff0c;特别是在构建知识库或进行大模型训练与推理时&#xff0c;文本切分&#xff08;Text Splitting&#xff09; 是一个…...

java高级——高阶函数、如何定义一个函数式接口类似stream流的filter

java高级——高阶函数、stream流 前情提要文章介绍一、函数伊始1.1 合格的函数1.2 有形的函数2. 函数对象2.1 函数对象——行为参数化2.2 函数对象——延迟执行 二、 函数编程语法1. 函数对象表现形式1.1 Lambda表达式1.2 方法引用&#xff08;Math::max&#xff09; 2 函数接口…...

Mysql故障排插与环境优化

前置知识点 最上层是一些客户端和连接服务&#xff0c;包含本 sock 通信和大多数jiyukehuduan/服务端工具实现的TCP/IP通信。主要完成一些简介处理、授权认证、及相关的安全方案等。在该层上引入了线程池的概念&#xff0c;为通过安全认证接入的客户端提供线程。同样在该层上可…...