当前位置: 首页 > news >正文

深度学习入门(二):神经网络整体架构

一、前向传播

作用于每一层的输入,通过逐层计算得到输出结果

二、反向传播

作用于网络输出,通过计算梯度由深到浅更新网络参数
在这里插入图片描述

三、整体架构

层次结构:逐层变换数据
神经元:数据量、矩阵大小(代表输入特征的数量)

x : [ 1 , 3 ] x:[1,3] x[1,3]
w 1 : [ 3 , 4 ] w_1:[3,4] w1[3,4]
h i d d e n l a y e r 1 : [ 1 , 4 ] hidden layer1:[1,4] hiddenlayer1[1,4]
w 2 : [ 4 , 4 ] w_2:[4,4] w2[4,4]
h i d d e n l a y e r 2 : [ 1 , 4 ] hidden layer2:[1,4] hiddenlayer2[1,4]
w 3 : [ 4 , 1 ] w_3:[4,1] w3[4,1]
在这里插入图片描述

非线性操作加在每一步矩阵计算之后,增加神经网络的非线性。没有激活函数的每层都相当于矩阵相乘。就算你叠加了若干层之后,无非还是个矩阵相乘罢了。

在这里插入图片描述

四、神经元个数对结果的影响(Stanford例子)

Stanford可视化的神经网络,可以自行调参数试试

1、 num_neurons:1

将神经元设置为1,查看效果

layer_defs = [];
layer_defs.push({type:'input', out_sx:1, out_sy:1, out_depth:2});
layer_defs.push({type:'fc',  num_neurons:1, activation: 'tanh'});
layer_defs.push({type:'fc', num_neurons:1, activation: 'tanh'});
layer_defs.push({type:'softmax', num_classes:2});net = new convnetjs.Net();
net.makeLayers(layer_defs);trainer = new convnetjs.SGDTrainer(net, {learning_rate:0.01, momentum:0.1, batch_size:10, l2_decay:0.001});

查看circle data,可以看出效果不佳,看上去像切了一刀。
在这里插入图片描述

2、 num_neurons:2

将神经元设置为2,查看效果

layer_defs = [];
layer_defs.push({type:'input', out_sx:1, out_sy:1, out_depth:2});
layer_defs.push({type:'fc', num_neurons:2, activation: 'tanh'});
layer_defs.push({type:'fc', num_neurons:2, activation: 'tanh'});
layer_defs.push({type:'softmax', num_classes:2});net = new convnetjs.Net();
net.makeLayers(layer_defs);trainer = new convnetjs.SGDTrainer(net, {learning_rate:0.01, momentum:0.1, batch_size:10, l2_decay:0.001});

查看circle data,可以看出效果一般,看上去像切了两刀,抛物线状。
在这里插入图片描述

3、 num_neurons:3

将神经元设置为3,查看效果

layer_defs = [];
layer_defs.push({type:'input', out_sx:1, out_sy:1, out_depth:2});
layer_defs.push({type:'fc', num_neurons:3, activation: 'tanh'});
layer_defs.push({type:'fc', num_neurons:3, activation: 'tanh'});
layer_defs.push({type:'softmax', num_classes:2});net = new convnetjs.Net();
net.makeLayers(layer_defs);trainer = new convnetjs.SGDTrainer(net, {learning_rate:0.01, momentum:0.1, batch_size:10, l2_decay:0.001});

查看circle data,可以看出效果较好。
在这里插入图片描述

五、正则化

正则化 R ( w ) R(w) R(w)的作用:稳定时出现平滑边界
在这里插入图片描述

六、参数个数对结果的影响

在这里插入图片描述

七、激活函数

S i g m i o d Sigmiod Sigmiod:数值较大或较小时,梯度约为0,出现梯度消失问题
R e l u Relu Relu:当前主要使用的激活函数
在这里插入图片描述

八、数据预处理

在这里插入图片描述

九、参数初始化

通常我们都使用随机策略来进行参数初始化

十、DROP-OUT(传说中的七伤拳)

过拟合是神经网络非常头疼的一个问题!
左图是全连接神经网络,右图在神经网络训练过程中,每一层随机杀死部分神经元。DROP-OUT是防止神经网络过于复杂,进行随机杀死神经元的一种方法。
在这里插入图片描述

相关文章:

深度学习入门(二):神经网络整体架构

一、前向传播 作用于每一层的输入,通过逐层计算得到输出结果 二、反向传播 作用于网络输出,通过计算梯度由深到浅更新网络参数 三、整体架构 层次结构:逐层变换数据 神经元:数据量、矩阵大小(代表输入特征的数量…...

rust 配置

rustup 镜像 在 cmd 中输入以下代码,设置环境变量 setx RUSTUP_UPDATE_ROOT https://mirrors.tuna.tsinghua.edu.cn/rustup/rustup setx RUSTUP_DIST_SERVER https://mirrors.tuna.tsinghua.edu.cn/rustupcrates.io 索引镜像 在 C:\Users\用户名\.cargo\config 文…...

文心一言 VS 讯飞星火 VS chatgpt (67)-- 算法导论6.5 6题

文心一言 VS 讯飞星火 VS chatgpt (67)-- 算法导论6.5 6题 六、在 HEAP-INCREASE-KEY 的第 5 行的交换操作中,一般需要通过三次赋值来完成。想一想如何利用INSERTION-SORT 内循环部分的思想,只用一次赋值就完成这一交换操作? 文…...

6、Kubernetes核心技术 - Pod

目录 一、概述 二、Pod机制 2.1、共享网络 2.2、共享存储 三、Pod资源清单 四、 Pod 的分类 五、Pod阶段 六、Pod 镜像拉取策略 ImagePullBackOff 七、Pod 资源限制 八、容器重启策略 一、概述 Pod 是可以在 Kubernetes 中创建和管理的、最小的可部署的计算单元。P…...

VlanIf虚拟接口 通信技术(二十三课)

一 Vlan技术之间的通信 单臂路由(One-Arm Routing)是一种网络架构设计方式,通常用于部署网络设备(如防火墙、负载均衡器等)实现网络流量控制和安全策略。在单臂路由中,网络设备只有一个物理接口与局域网(LAN)或广域网(WAN)相连。 1.2 交换机 数据链路层 (第二层)…...

图神经网络(GNN)入门学习笔记(直观且简单)

文章目录 图的定义和表示可以使用图数据结构的问题将图结构用于机器学习的挑战最基本的图神经网络概述汇聚操作基于信息传递的改进图神经网络全局向量信息的利用 本篇文章参考发表于Distill上的图神经网络入门博客: A Gentle Introduction to Graph Neural Network…...

【Java开发】 Mybatis-Flex 01:快速入门

Mybatis 作为头部的 ORM 框架,他的增强工具可谓层出不穷,比如出名的 Mybatis-Plus 和 阿里云开源的 Fluent-MyBatis,如今出了一款 Mybatis-Flex ,相比前两款功能更为强大、性能更为强悍,不妨来了解一下。 目录 1 Myba…...

企业级业务架构学习笔记<二>

一.业务架构基础 业务架构的定义 以实现企业战略为目标,构建企业整体业务能力规划并将其传导给技术实现端的结构化企业能力分析方法 (业务架构可以从企业战略触发,按照企业战略设计业务及业务过程,业务过程时需要业务能力支撑的&#xff0…...

Minio在windows环境配置https访问

minio启动后,默认访问方式为http,但是有的时候我们的访问场景必须是https,浏览器有的会默认以https进行访问,这个时候就需要我们进行配置上的调整,将minio从http访问升级到https。而查看minio的官方文档,并…...

安装JDK环境(Windows+Linux双教程)

今日一语:今天的事情不去做,到了明天就成了麻烦,到了下个月就成了隐患,到了明年只剩下悔恨和惋惜 Linux 从Oracle网站下载linux的rpm包java -version 查询java环境是否已经安装 如果已经安装,可以选择卸载重装或者直接…...

SVG图标,SVG symbols,SVG use标签

SVG图标,SVG symbols 项目中图标的使用,趋势是使用svg作图标的,优点如下 兼容现有图片能力前提还支持矢量 可读性好,有利于SEO与无障碍 在性能和维护性方面也比iconfont要强很多 怎么在项目中优雅的使用svg图标,下面…...

常用css 笔记

0、定义变量 :root { --primary-color: #007bff;} .button { background-color: var(--primary-color);} 1、水平垂直居中 div {width: 100px;height: 100px;position: absolute;top: 0;right: 0;bottom: 0;left: 0;margin: auto; }父级控制子集居中 .parent {display: fle…...

git的ssh方式对接码云

一、环境准备: 1、git下载,360管家或是百度。 2、vs2022,百度下载。 二、配置git: 1、打开准备存放文件的文件夹,右键,选择“Git Bash here”,弹出命令窗口, 输入:ss…...

Golang之路---02 基础语法——变量

Golang变量 变量的声明 声明变量的一般形式是使用 var 关键字 Go 语言是静态类型语言,编译时,编译器会检查变量的类型,所以要求所有的变量都要有明确的类型。 1 :一个变量单行声明 语法格式: var name type var是关…...

Webpack5 DefinePlugin的作用

在Webpack 5中,DefinePlugin是一个插件,用于创建全局常量,这些常量可以在编译过程中被引用。它的作用是允许开发人员在代码中定义全局变量,这些变量在构建过程中将被替换为其对应的值。 DefinePlugin并不是必须的,但它…...

Verilog语法学习——LV7_求两个数的差值

LV7_求两个数的差值 题目来源于牛客网 [牛客网在线编程_Verilog篇_Verilog快速入门 (nowcoder.com)](https://www.nowcoder.com/exam/oj?page1&tabVerilog篇&topicId301) 题目 描述 根据输入信号a,b的大小关系,求解两个数的差值:输入信号a,b…...

C#匿名函数,lambda表达式笔记

一.匿名函数 匿名函数是一种定义时不起函数名的技术,因此无法直接调用,通常用来赋值给委托后被委托调用。在匿名方法中您不需要指定返回类型,它是从方法主体内的 return 语句推断的 它的语法形式为:delegate (input-parameters)…...

【图论】LCA(倍增)

一.LCA介绍 LCA通常指的是“最近共同祖先”(Lowest Common Ancestor)。LCA是一种用于解决树或图结构中两个节点的最低共同祖先的问题的算法。 在树结构中,LCA是指两个节点的最近层级的共同祖先节点。例如,考虑一棵树,…...

QT 使用串口

目录 1.1.1 添加库,添加类 1.1.2 定义串口 1.1.3 搜索串口 1.1.4 设置和打开串口 1.1.5 读取数据 1.1.6 发送数据 1.1.7 关闭串口 1.1.1 添加库,添加类 首先,QT5 是自带 QSerialPort(Qt5 封装的串口类)这个类的,使用时…...

GitHub上怎么寻找项目?

前言 下面由我精心整理的关于github项目资源搜索的一些方法,这些方法可以帮助你更快更精确的搜寻到你需要的符合你要求的项目。 写文章不易,如果这一篇问文章对你有帮助,求点赞求收藏~ 好,下面我们直接进入正题——> 首先我…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度​

一、引言:多云环境的技术复杂性本质​​ 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时,​​基础设施的技术债呈现指数级积累​​。网络连接、身份认证、成本管理这三大核心挑战相互嵌套:跨云网络构建数据…...

大数据学习栈记——Neo4j的安装与使用

本文介绍图数据库Neofj的安装与使用,操作系统:Ubuntu24.04,Neofj版本:2025.04.0。 Apt安装 Neofj可以进行官网安装:Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...

大型活动交通拥堵治理的视觉算法应用

大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动(如演唱会、马拉松赛事、高考中考等)期间,城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例,暖城商圈曾因观众集中离场导致周边…...

【位运算】消失的两个数字(hard)

消失的两个数字(hard) 题⽬描述:解法(位运算):Java 算法代码:更简便代码 题⽬链接:⾯试题 17.19. 消失的两个数字 题⽬描述: 给定⼀个数组,包含从 1 到 N 所有…...

【机器视觉】单目测距——运动结构恢复

ps:图是随便找的,为了凑个封面 前言 在前面对光流法进行进一步改进,希望将2D光流推广至3D场景流时,发现2D转3D过程中存在尺度歧义问题,需要补全摄像头拍摄图像中缺失的深度信息,否则解空间不收敛&#xf…...

Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析

Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析 一、第一轮提问(基础概念问题) 1. 请解释Spring框架的核心容器是什么?它在Spring中起到什么作用? Spring框架的核心容器是IoC容器&#…...

CSS | transition 和 transform的用处和区别

省流总结: transform用于变换/变形,transition是动画控制器 transform 用来对元素进行变形,常见的操作如下,它是立即生效的样式变形属性。 旋转 rotate(角度deg)、平移 translateX(像素px)、缩放 scale(倍数)、倾斜 skewX(角度…...

Chrome 浏览器前端与客户端双向通信实战

Chrome 前端(即页面 JS / Web UI)与客户端(C 后端)的交互机制,是 Chromium 架构中非常核心的一环。下面我将按常见场景,从通道、流程、技术栈几个角度做一套完整的分析,特别适合你这种在分析和改…...

ubuntu22.04有线网络无法连接,图标也没了

今天突然无法有线网络无法连接任何设备,并且图标都没了 错误案例 往上一顿搜索,试了很多博客都不行,比如 Ubuntu22.04右上角网络图标消失 最后解决的办法 下载网卡驱动,重新安装 操作步骤 查看自己网卡的型号 lspci | gre…...

对象回调初步研究

_OBJECT_TYPE结构分析 在介绍什么是对象回调前,首先要熟悉下结构 以我们上篇线程回调介绍过的导出的PsProcessType 结构为例,用_OBJECT_TYPE这个结构来解析它,0x80处就是今天要介绍的回调链表,但是先不着急,先把目光…...