【每日一题Day122】LC1237找出给定方程的正整数解 | 双指针 二分查找
找出给定方程的正整数解【LC1237】
给你一个函数
f(x, y)
和一个目标结果z
,函数公式未知,请你计算方程f(x,y) == z
所有可能的正整数 数对x
和y
。满足条件的结果数对可以按任意顺序返回。尽管函数的具体式子未知,但它是单调递增函数,也就是说:
f(x, y) < f(x + 1, y)
f(x, y) < f(x, y + 1)
函数接口定义如下:
interface CustomFunction { public:// Returns some positive integer f(x, y) for two positive integers x and y based on a formula.int f(int x, int y); };
你的解决方案将按如下规则进行评判:
- 判题程序有一个由
CustomFunction
的9
种实现组成的列表,以及一种为特定的z
生成所有有效数对的答案的方法。- 判题程序接受两个输入:
function_id
(决定使用哪种实现测试你的代码)以及目标结果z
。- 判题程序将会调用你实现的
findSolution
并将你的结果与答案进行比较。- 如果你的结果与答案相符,那么解决方案将被视作正确答案,即
Accepted
。
说真的 我看了评论区才看懂题目的
暴力
-
思路:双重循环枚举每个可能的xxx和yyy,通过
customfunction.f(x, y)
求出运算结果,如果结果等于zzz,那么加入结果集中;由于函数是单调递增函数,因此如果结果大于zzz时,退出循环。 -
实现
class Solution {public List<List<Integer>> findSolution(CustomFunction customfunction, int z) {List<List<Integer>> res = new ArrayList<>();for (int i = 1; i <= 1000; i++){for (int j = 1; j <= 1000; j++){int num = customfunction.f(i, j);if (num == z){res.add(Arrays.asList(i, j));}else if (num > z){break;}}}return res;} }
-
复杂度
- 时间复杂度:O(C2)O(C^2)O(C2),CCC为x和y的取值范围,本题中为100010001000
- 空间复杂度:O(1)O(1)O(1)
-
二分查找
-
思路:由于函数为单调递增函数,因此可以固定xxx,二分查找yyy,二分查找的上限为1,下限为1000,假定运算结果为numnumnum
- 如果num==znum==znum==z,那么将结果添加至结果集
- 如果num>znum>znum>z,那么yyy向左边查询,right = mid - 1
- 如果num==znum==znum==z,那么yyy向右边查询,left = mid + 1
-
实现
/** // This is the custom function interface.* // You should not implement it, or speculate about its implementation* class CustomFunction {* // Returns f(x, y) for any given positive integers x and y.* // Note that f(x, y) is increasing with respect to both x and y.* // i.e. f(x, y) < f(x + 1, y), f(x, y) < f(x, y + 1)* public int f(int x, int y);* };*/class Solution {public List<List<Integer>> findSolution(CustomFunction customfunction, int z) {List<List<Integer>> res = new ArrayList<>();for (int i = 1; i <= 1000; i++){int jL = 1, jR = 1000;while (jL <= jR){int mid = (jL + jR) / 2;int num = customfunction.f(i, mid);if (num == z){res.add(Arrays.asList(i, mid));break;}else if (num > z){jR = mid - 1;}else{jL = mid + 1;}}}return res;} }
-
复杂度
- 时间复杂度:O(ClogC)O(ClogC)O(ClogC),CCC为x和y的取值范围,本题中为100010001000
- 空间复杂度:$O(1) $
-
双指针
-
思路:当x1<x2x_1<x_2x1<x2时,如果f(x1,y1)=f(x2,y2)=zf(x_1,y_1)=f(x_2,y_2)=zf(x1,y1)=f(x2,y2)=z,那么此时y1>y2y_1>y_2y1>y2,因此可以从小到大枚举xxx,从大到小枚举yyy,那么可以固定xxx,在上次循环的yyy值作为起始值,找到本次的yyy。
-
实现
class Solution {public List<List<Integer>> findSolution(CustomFunction customfunction, int z) {List<List<Integer>> res = new ArrayList<>();int j = 1000;for (int i = 1; i <= 1000; i++){while (j >= 1 && customfunction.f(i, j) > z){j--;}if (j >= 1 && customfunction.f(i, j) == z){res.add(Arrays.asList(i, j));}}return res;} }
-
复杂度
- 时间复杂度:O(C)O(C)O(C),CCC为x和y的取值范围,本题中为100010001000
- 空间复杂度:$O(1) $
-
相关文章:
【每日一题Day122】LC1237找出给定方程的正整数解 | 双指针 二分查找
找出给定方程的正整数解【LC1237】 给你一个函数 f(x, y) 和一个目标结果 z,函数公式未知,请你计算方程 f(x,y) z 所有可能的正整数 数对 x 和 y。满足条件的结果数对可以按任意顺序返回。 尽管函数的具体式子未知,但它是单调递增函数&#…...
笔记本加装固态和内存条教程(超详细)
由于笔记本是几年前买的了,当时是4000,现在用起来感到卡顿,启动、运行速度特别慢,就决定换个固态硬盘,加个内存条,再给笔记本续命几年。先说一下加固态硬盘SSD的好处:1.启动快 2.读取延迟小 3.写…...
【Python】字典 - Dictionary
字典 - Dictionarykeys()values()items()get()获取文件中指定字符的个数进阶版:获取所有单词的频数进阶版:获取所有字符的频数函数内容keys()输出字典中的所有键values()输出字典中的所有值items()以元组的形式输出键值对get()获取字典中指定键的值 keys…...
LeetCode分类刷题----二叉树
二叉树1.二叉树的递归遍历144.二叉树的前序遍历145.二叉树的后序遍历94.二叉树的中序遍历2.二叉树的迭代遍历144.二叉树的前序遍历145.二叉树的后序遍历94.二叉树的中序遍历3.二叉树的层序遍历102.二叉树的层序遍历107.二叉树的层序遍历||199.二叉树的右视图637.二叉树的层平均…...
Zipkin : Golang 微服务全链路监控(三)
Zipkin : Golang 微服务全链路监控(三) Golang 微服务全链路监控实现 broker-service -> auth-service -> postgres dbzipkin 监控:需代码入侵 使用 zipkin 库的 serverMiddleware,其通过 Http 跟踪(trace&am…...
5.3 BGP路由黑洞
5.2.3实验3:BGP路由黑洞 1. 实验目的 熟悉BGP路由黑洞的应用场景掌握BGP水平分割的配置方法2. 实验拓扑 实验拓扑如图5-3所示: 图5-3:BGP路由黑洞 3. 实验步骤 配置IP地址 R1的配置 <Huawei>syst...
STM32 DFU模式烧录代码
什么是DFU? dfu的本质是isp,usb接口的isp,在系统编程,进入isp的方式我们先了解 如下图 boot0为高电平 boot1为低电平即可进入isp模式。 熟悉的场景 在我们使用flymcu软件下载代码时,本质也是isp 串口接口的isp。 傻瓜使用方式…...
松下PLC通过fpwin上传写入MRTC模块方法
目录 PLC程序上传方法 加密模块使用 PLC程序上传方法 手动将PLC模式设置为prog模式查看PLC是否设置为禁止上传查询指示灯是否变蓝,变蓝则需要将PLC禁止上传功能取消。 3.当上述动作操作完成后,将PLC程序导入到PLC中。为了配合加密程序使用,…...
就业大山之下的网络安全:安逸的安服仔
从去年开始,各个互联网大厂就接二连三的放出了裁员消息,整个互联网行业好像都处于寒冬状态。微博、小米、滴滴、知乎、拼多多等在内的一大批互联网知名企业,也相继传出“人员优化”的消息。 除了国内市场的萧条,国外市场也是不容…...
JavaWeb3-线程的3种创建方式7种写法
目录 1.方式一:继承Thread(2种写法) 写法①(常规): a.使用jconsole观察线程 b.启动线程——start方法 PS:(常见面试题)start 方法与 run 方法的区别: 写…...
驱动调试手段
文章目录 前言一、通过sysfs调试LCD查看电源:查看 pwm 信息查看管脚信息总结前言 本文记录在驱动中常用的调试手段 提示:以下是本篇文章正文内容,下面案例可供参考 一、通过sysfs 系统起来之后可以读取 sysfs 一些信息,来协助调试 示例: 调试LCD 输入如下命令 cat /…...
[RK3568 Android12] 音频及路由
1:概述(耳机 ,hdmiin ,板载喇叭) 在开发板上面,系统注册了三个音频输出通道,如下: [ 2.280612] ALSA device list: [ 2.280622] #0: rockchip,rk809-codec [ 2.280630] #1: ROCKCHIP,SPDIF [ 2.280638] #2: rockchip,hdmi console:/proc/asound # cat pcm …...
C++——C++11 第一篇
目录 统一的列表初始化 {}初始化 decltype 编辑 nullptr STL中一些变化 右值引用和移动语义 左值引用和右值引用 总结 左值引用优缺点 右值引用(将亡值) 拷贝赋值和移动赋值 万能引用|完美转发 移动构造和移动赋值注意…...
Spring Data JPA 中 CrudRepository 和 JpaRepository 的区别
1 问题描述Spring Data JPA 中,CrudRepository 和 JpaRepository 有何区别?当我在网上找例子的时候,发现它们可以互相替换使用。它们有什么不同呢?为什么你习惯用其中的一个而不是另一个呢?2 CrudRepository 和 JpaRep…...
推荐几款好用的数据库管理工具
本文主要介绍几款常用的数据库管理软件(客户端),包括开源/免费的、商用收费的,其中有一些是专用于 MySQL 数据库的,例如 MySQL Workbench、phpMyAdmin,有一些是支持多种 SQL、NoSQL 数据库的,例…...
DPDK — 性能优化手段
目录 文章目录 目录硬件布局层面的优化操作系统层面的优化Linux 操作系统版本应用程序层面的优化Cache 优化内存对齐内存预取SIMD 报文批处理DDIO使用高级 CPU 指令集硬件布局层面的优化 DPDK 在硬件布局层面的优化,主要体现在以下几个方面: CPU 频率的高低:CPU 频率越高,…...
Fedora Linux未来五年规划
Fedora 委员会一直致力于起草战略计划,以帮助 Fedora Linux 更好地发展。近日 Fedora 委员会公布了一份 “《未来五年的 Fedora Linux 》” 战略计划草案,这份草案里面包含了他们的雄心壮志:每周将 Fedora 的活跃贡献者人数增加一倍。 Fedora…...
【C++之容器篇】map和set常见函数接口的使用与剖析
目录前言一、set1. 简介2. 成员类型3. 构造函数(1) set()(2)set(InputIterator first,InputIterator last)(3)使用4. 拷贝构造函数和赋值运算符重载5. empty()6. size()7. insert()(1)pair<iterator,bool> insert(const K& key)(2)iterator insert(iterator pos,cons…...
虚拟DOM是什么
参考文章做的总结,如有不足之处请指正! 在讲虚拟dom之前,先讲讲,为什么前端操作dom会导致页面性能降低? 先说几个概念 有助于后面的理解 什么是 JavaScript 引擎? JavaScript引擎是一个专门处理JavaScript脚…...
进程通信方式
无名管道( pipe ): 管道是一种半双工的通信方式,数据只能单向流动,而且只能在具有亲缘关系的进程间使用。进程的亲缘关系通常是指父子进程关系。高级管道(popen): 将另一个程序当做一个新的进程在当前程序进…...
强化学习基础知识
强化学习是一种机器学习方法,通过agent与environment的互动,学习适当的action policy以取得更大的奖励reward。本篇博客介绍强化学习的基础知识,与两类强化学习模型。 目录强化学习的基础设定policy based 强化学习的目标3个注意事项实际训练…...
LeetCode230218_148、654. 最大二叉树
给定一个不重复的整数数组 nums 。 最大二叉树 可以用下面的算法从 nums 递归地构建: 创建一个根节点,其值为 nums 中的最大值。 递归地在最大值 左边 的 子数组前缀上 构建左子树。 递归地在最大值 右边 的 子数组后缀上 构建右子树。 返回 nums 构建的 最大二叉树…...
WordPress 是什么?.com 和 .org 的 WordPress 有什么差异?
本篇文章会介绍这次WordPress 5.8核心版本所带来的其中一项新功能:内存块小工具(Widget)此次更新把小工具编辑设定的页面也改成用「内存块编辑」的概念,就跟内置的「古腾堡」编辑器一样,把所有元件都内存块化ÿ…...
java8新特性【2023】
Lambda表达式 新的一套语法规则 是一个匿名函数 Testpublic void test1(){Runnable r1 new Runnable(){Overridepublic void run() {System.out.println("线程A");}};r1.run();System.out.println("");Runnable r2 () -> System.out.println("…...
刷题记录:牛客NC51101Lost Cows
传送门:牛客 题目描述: (2≤N≤8,000) cows have unique brands in the range 1..N. In a spectacular display of poor judgment, they visited the neighborhood watering hole and drank a few too many beers before dinner. When it was time to line up for their ev…...
华为OD机试 - 不等式 | 备考思路,刷题要点,答疑 【新解法】
最近更新的博客 华为OD机试 - 寻找路径 | 备考思路,刷题要点,答疑 【新解法】华为OD机试 - 最小叶子节点 | 备考思路,刷题要点,答疑 【新解法】华为OD机试 - 对称美学 | 备考思路,刷题要点,答疑 【新解法】华为OD机试 - 最近的点 | 备考思路,刷题要点,答疑 【新解法】华…...
GuLi商城-SpringCloud-OpenFeign测试远程调用
1. Feign 简介 Feign 是一个声明式的 HTTP 客户端,它的目的就是让远程调用更加简单。Feign 提供了HTTP请 求的模板,通过编写简单的接口和插入注解,就可以定义好 HTTP 请求的参数、格式、地址等信 息。Feign 整合了 Ribbon(负载…...
阿里云_山东鼎信短信的使用(云市场)
目录山东鼎信API工具类随机验证码工具类进行测试Pom依赖(可以先导入依赖)创建controllerSmsServiceSmsServiceImplswagger测试(也可以使用postman)山东鼎信API工具类 山东鼎信短信官网 找到java的Api,复制下来 适当改了一下,为了调用(类名SmsUtils) p…...
基于虚拟机机的代码保护技术
虚拟机保护技术是基于x86汇编系统的可执行代码转换为字节码指令系统的代码,以达到保护原有指令不被轻易逆向和篡改的目的。 字节码(Byte-code)是一种包含执行程序,由一序列 op 代码/数据对组成的 ,是一种中间码。字节是…...
Win10耳机有声音麦不能说话怎么办?麦克风说话别人听不到解决方法
网上找了一些解决办法,一般都是重复的,几个设置调来调去也就那样,没什么用 这种问题一般是“老式”一点的台式机会出现,提供的解决办法如下: 首先下载带面板的音频管理器,如realtek高清晰音频管理器&…...
网站优化外链怎么做/网络营销好找工作吗
简介 postman是谷歌推出的一款模拟API网络请求的工具,不仅方便接口的调试,而且加快前后端开发人员沟通交流. 优点 可以配置多个API请求环境,快速切换到不同环境进行数据请求 可以设置全局宏定义 可以设置环境变量宏定义 可以通过脚本对请求前后的数据进行校验 可以对请求进行归…...
网站公司备案/手机怎么搭建属于自己的网站
通过 WCF 与页面进行 Ajax 进行数据传递非常方便,可以,遇到日期类型就不同了。 WCF 通过 JavaScriptSerializer 将日期格式化为特殊的格式:\/Date(13182876000100)\/,实际上传递到页面上的是一个字符串。而不是真正的 JavaScript …...
学院网站建设的意义/公司网络推广服务
欠拟合和过拟合出现原因及解决方案参考文章: (1)欠拟合和过拟合出现原因及解决方案 (2)https://www.cnblogs.com/zhhfan/p/10476761.html 备忘一下。...
苏州工业园区两学一做教育网站/百度推广入口官网
题目:随便输入一个数 n 作为猴子总数,当数到7的猴子就会被淘汰。 个人感觉写起来有点复杂,但还算比较好理解。。。 首先要明确这样一个道理,从1数到7,每数一轮就会淘汰一只猴子,所以要选出猴王一共要数n-…...
太原商城网站建设/网络营销策划书的结构是什么
随时随地阅读更多技术实战干货,获取项目源码、学习资料,请关注源代码社区公众号(ydmsq666) 我们都知道Node.js现在得到了所有的关注。每个人都对学习Node.js感兴趣,并希望可以工作于Node.js。在开始工作之前了解技术背后的概念总是不会错的。…...
外贸b2b选品/谷歌seo搜索引擎
IE问题解决办法文章由小编整理发出,内容真实有效,欢迎提出您的意见IE系列文章由小编在互联网中整理并且发出,内容保障真实健康.IE浏览器怎么将网页保存为pdf文档很多小伙伴们都不清楚,接下来小编带来将网页保存为pdf文档的方法说明…...