当前位置: 首页 > news >正文

数据分析| Pandas200道练习题,使用Pandas连接MySQL数据库

文章目录

  • 使用Pandas连接数据库
    • 编码环境
    • 依赖包
    • read_sql_query()的使用
    • read_sql_table()的使用
    • read_sql() 函数的使用
    • to_sql()写入数据库的操作
    • 删除操作
    • 更新操作
    • 总结:

在这里插入图片描述


使用Pandas连接数据库

通过pandas实现数据库的读,写操作时,首先需要进行数据库的连接,然后通过调用pandas所提供的数据库读写函数与方法来实现数据库的读写操作。

Pandas提供了3个函数用于数据库的读操作

  • read_sql_query() 可以实现对数据库的查询操作,但是不能直接读取数据库中的某个表,需要在sql语句中指定查询命令与数据表的名称
  • read_sql_table() 只能读取数据库某一个表的内的数据,并且该函数需要sqlalchemy 模块的支持才能使用
  • read_sql()函数,既可以读取数据库中某一个表的数据,也可以进行执行具体的查询操作。

Pandas提供了1个函数用于数据库的写操作

  • to_sql()该函数用户实现数据的写入操作,通过DataFrame对象直接调用,和将DataFrame对象保存为其他类型的文件类似。

编码环境

Jupyter Notebook

依赖包

  • pymysql
  • sqlalchemy 该模块 是在使用read_sql_table() 函数时必须要用的模块

安装包

pip install pymysql
pip install sqlalchemy

read_sql_query()的使用

参数

pd.read_sql_query(sql,  # 需要执行查询的sql语句con,  # 数据库的连接index_col=None, 字符串或字符串列表,可选,默认值:无coerce_float: 'bool' = True, 尝试将非字符串,非数字对象(如decimal.Decimal)的值转换为浮点值params=None,parse_dates=None,chunksize: 'int | None' = None,dtype: 'DtypeArg | None' = None,
)

pd.read_sql_query() 函数返回的数据类型时DataFrame

案例与使用

import pandas as pd 
import pymysql  # 导入操作mysql的数据包
import sqlalchemy # 使用pymysql进行连接数据库
db = pymysql.connect(host='127.0.0.1',user='root',passwd='123456',port=3306,charset='utf8',database='comment_v1')
# user   用户名
# password 密码
# host 端口号
# database 数据库名
# charset 编码格式# 编写sql语句
sql = 'select * from user_comment'
# 通过read_sql_query函数进行查询
sql_query_data = pd.read_sql_query(sql=sql,con=db)
sql_query_data

在这里插入图片描述

read_sql_table()的使用

使用read_sql_table() 函数我们需要使用sqlalchemy 模块进行连接数据库,通过这个模块我们才可以对某一个表进行查询。

在使用其他的驱动程序的时候,会报NotImplementedError错误。

NotImplementedError: read_sql_table only supported for SQLAlchemy connectable.

参数

pd.read_sql_table(table_name: 'str', # 数据库名称con,               # 数据库连接schema: 'str | None' = None,index_col: 'str | Sequence[str] | None' = None,coerce_float: 'bool' = True,parse_dates=None,columns=None,chunksize: 'int | None' = None,
)

read_sql_table() 函数返回DataFrame类型
案例与使用

# 使用sqlalchemy连接数据库,依次设置
sql_query_db = sqlalchemy.create_engine("mysql+pymysql://root:123456@127.0.0.1:3306/comment_v1")
# mysql+pymysql://root:123456@127.0.0.1:3306/comment_v1"
# mysql 连接的数据库类型
# pymysql 连接数据库的驱动
# root 用户名
# 123456 密码
# 127.0.0.1 数据库地址
# 3306端口号 
# comment_v1连接的数据库名称# 通过read_sql_table 
table = pd.read_sql_table(table_name='user_comment',con=sql_query_db)
table

在这里插入图片描述

read_sql() 函数的使用

read_sql()使用pymysql或者sqlalchemy对象都可以

参数

pd.read_sql(sql, # sql语句con, # 连接对象index_col: 'str | Sequence[str] | None' = None,coerce_float: 'bool' = True,params=None, parse_dates=None,columns=None,chunksize: 'int | None' = None,
)

案例与使用

# 通过read_sql函数读取数据库的信息
# 使用pymysql进行连接数据库
db = pymysql.connect(host='127.0.0.1',user='root',passwd='123456',port=3306,charset='utf8',database='comment_v1')
sql = 'select * from user_comment'
read_sql = pd.read_sql(sql=sql,con=db)
read_sql
# 通过read_sql函数读取数据库的信息
# 使用pymysql进行连接数据库
sql_query_db = sqlalchemy.create_engine("mysql+pymysql://root:123456@127.0.0.1:3306/comment_v1")
sql = 'select * from user_comment'
read_sql = pd.read_sql(sql=sql,con=sql_query_db )
read_sql

在这里插入图片描述

to_sql()写入数据库的操作

to_sql方法同样需要使用SQLAlchemy模块的支持
参数

df.to_sql(name: 'str', # 表名称con, # 数据库连接schema=None, if_exists: 'str' = 'fail',  # fail如果表已经存在就不执行写入,replace 如果表存在就删除原来的表,再进行写入,append代表在原有数据表中添加数据index: 'bool_t' = True,  # 是否将行索引写入数据库中index_label=None,chunksize=None,dtype: 'DtypeArg | None' = None,method=None,
)

案例与使用

# 使用sqlalchemy模块进行连接
sql_query_db = sqlalchemy.create_engine("mysql+pymysql://root:123456@127.0.0.1:3306/atguigudb")
data = {"A":[1,2,3,4],"B":[6,7,8,9],"C":[4,3,2,1]
}
df = pd.DataFrame(data)
df.to_sql('to_sql_dome',con=sql_query_db,if_exists='append')
# 测试,查询
sql = "select * from to_sql_dome"
read_df = pd.read_sql(sql=sql,con=sql_query_db)
read_df

结果
在这里插入图片描述


如和删除和更新数据库中的数据,pandas官方并没有提供相应的函数,但是我们同样可以使用read_sql和read_sql_query来进行实现对数据的删除和修改(sql语句会执行,但是程序会报错),还可以通过原生python利用哦个pymysql中的execute()方法来执行对数据的删除和修改。
在实际生产过程中并不建议这样操作,因为在实际过程中数据对公司是非常重要的,作为一个数据分析师我们并不会拿到删除和更新操作的权限,数据分析也不会修改原数据,在进行分析和建模的所拿到的数据都是复制数据库的数据。

删除操作

删除to_sql_dome 表中A = 1的一行数据

sql = "DELETE FROM to_sql_dome WHERE A = 1;"
read_df = pd.read_sql(sql=sql,con=sql_query_db)

执行上面的代码以后会报错 使用pymsql和sqlalchemy两种的报错不一样

sqlalchemy:ResourceClosedError: This result object does not return rows. It has been closed automatically.
pymsql:TypeError: 'NoneType' object is not iterable

在这里插入图片描述

更新操作

sql = "update to_sql_dome set B=2 where A = 4"
read_df = pd.read_sql(sql=sql,con=db)

执行后同样也会报错,使用pymsql和sqlalchemy两种的报错不一样

sqlalchemy:ResourceClosedError: This result object does not return rows. It has been closed automatically.
pymsql:TypeError: 'NoneType' object is not iterable
```rceClosedError: This result object does not return rows. It has been closed automatically.

在这里插入图片描述

最后在强调一下,pandas并不推荐使用read_sql和read_sql_query来进行实现对数据的删除和更新,如果想对数据进行操作,可以使用原生的python利用pymysql进行操作。

总结:

通过上面的四个方法我们发现Pandas操作数据库还是很方便的:

  • read_sql()和read_sql_query()都是通过执行sql来进行查询的操作,在查询数据时更重要的是对sql语句的掌握。
  • read_sql_table() 是通过指定表名进行查询整个表的数据
  • to_sql()写入数据库,可以根据if_exists三个参数的不同来控制保存的数据表是删除重新保存还是追加或者是不进行操作。

在这里插入图片描述

相关文章:

数据分析| Pandas200道练习题,使用Pandas连接MySQL数据库

文章目录使用Pandas连接数据库编码环境依赖包read_sql_query()的使用read_sql_table()的使用read_sql() 函数的使用to_sql()写入数据库的操作删除操作更新操作总结:使用Pandas连接数据库 通过pandas实现数据库的读,写操作时,首先需要进行数据…...

【Node.js】全局可用变量、函数和对象

文章目录前言_dirname和_filename变量全局函数setTimeout(cb,ms)clearTimeout(t)setInterval(cb,ms)clearInterval(t)setImmediate(cb)clearImmediate()console对象console.info([data][,...])console.error([data][,...])console.warn([data][,...])console.dir(obj[,options]…...

package.json 开发依赖与运行时依赖

文章目录前言一、生产环境与开发环境二、dependencies二、devDependencies总结前言 我已经使用npm接近两年了, 但对于package.json内的dependencies 和devDependencies也只是知道什么依赖该放什么部分, 至于为什么放到这个部分, 我不是很了解… 呃, 还是去了解一下. 一、生产环…...

关于最短路径算法中边的权值的思考

关于最短路径算法中边的权值的思考 不管是单源最短路径算法:Dijkstra Bellman-ford 还是多源最短路径算法:floyed Johnson 我们都绕不开的一件事就是,边的权值wi,jw_{i,j}wi,j​ 下面我们从多个角度谈边的权值 1.权值恒定 它是指对于每条边…...

LVGL开发教程:二、ESP-IDF 使用CmakeList管理自己的文件以及文件夹

本文需要已经安装了Vscode+IDF插件没有安装的请提前安装一下,IDF插件为乐鑫的插件不需要翻墙。需要环境搭建请看下面链接。 环境搭建: VScode+platformIO和Vscode+ESP-IDF两种开发环境搭建 项目例程下载地址: IDF-CmakeTes,密码:8888 另外,由于你和我的路径不一致,下载的工…...

与感受野相关的几种网络结构

一、Inception 1. Inception v1 目的 通过设计一个稀疏网络结构,但是能够产生稠密的数据,既能增加神经网络表现,又能保证计算资源的使用效率。 结构 图1-1 Inception v1结构图 特点 共4个通道,其中3个卷积通道分别使用111111…...

day19_抽象类丶接口

由来 当我们声明一个几何图形类:圆、矩形、三角形类等,发现这些类都有共同特征:求面积、求周长、获取图形详细信息。那么这些共同特征应该抽取到一个公共父类中。但是这些方法在父类中又无法给出具体的实现,而是应该交给子类各自…...

【网安神器篇】——系统指纹探测工具finger

作者名:白昼安全主页面链接: 主页传送门创作初心: 以后赚大钱座右铭: 不要让时代的悲哀成为你的悲哀专研方向: web安全,后渗透技术每日鸡汤: 我不想停下,因为这次出发的感觉太好了一…...

Prometheus离线tar包安装

Prometheus离线tar包安装实验环境一、部署前操作二、Master2.1下载2.2解压2.3更改服务目录名称2.4创建系统服务启动文件2.5配置修改2.6启动并设置开机自启2.7访问2.8添加node节点2.8.1 添加方法2.8.2修改Prometheus配置(Master)————————————…...

PostgreSQL查询引擎——SELECT STATEMENTS SelectStmt

SelectStmt: select_no_parens %prec UMINUS| select_with_parens %prec UMINUS select_with_parens:( select_no_parens ) { $$ $2; }| ( select_with_parens ) { $$ $2; } 该规则返回单个SelectStmt节点或它们的树,表示集合操作树(set-operation tree…...

零信任-易安联零信任介绍(11)

​目录 ​易安联零信任公司介绍 易安联零信任发展路线 易安联零信任产品介绍 易安联零信任架构 易安联零信任解决方案 易安联零信任发展展望 易安联零信任公司介绍 易安联是一家专业从事网络信息安全产品研发与销售,是行业内领先的“零信任”解决方案提供商&…...

C++ STL——map和set的使用

文章目录1. 关联式容器1.1 键值对1.2 树形结构的关联式容器2. set2.1 set的介绍2.2 set的插入2.3 set的删除和查找2.4 lower_bound和upper_bound3. multiset3.1 count4. map4.1 map的介绍4.2 map的插入4.3 map的遍历4.4 map的[ ]5. multimap1. 关联式容器 我们之前学的vector、…...

【Python】thread使用

目录1、Condition条件变量使用2、event通信3、Semaphore信号量使用4、setDaemon设置守护线程5、threadPool_map使用6、threadPool使用7、threadingTimer1、Condition条件变量使用 # encoding:utf-8 Condition 提供了一种多线程通信机制, 假如线程 1 需要数据&#…...

计网传输层协议:UDP和TCP

文章目录一. 应用层和传输层的联系二. UDP协议三. TCP协议1. TCP报头介绍2. TCP实现可靠传输的核心机制2.1 确认应答2.2 超时重传3. 连接管理(三次握手, 四次挥手)3.1 建立连接(三次握手)3.2 断开连接(四次挥手)4. 滑动窗口5. 流量控制6.拥塞控制7. 延时应答8. 捎带应答9. 面向…...

一文讲明TCP网络编程、Socket套接字的讲解使用、网络编程案例

文章目录1 Socket讲解2 基于Socket的TCP编程3 客户端Socket的工作过程包含以下四个基本的步骤3.1 客户端创建Socket对象4 服务器程序的工作过程包含以下四个基本的步骤:4.1 服务器建立ServerSocket对象5 案例实现 客户端和服务端通信5.1 代码实现5.2 实现结果6 更多…...

Java中print和println的区别

1 问题在最开始学习Java的时候学到soutenter键可以输出结果,显示的是System.out.println();而在Python中是直接使用print。那么在Java中print和println有什么区别?2 方法Print输出会自动将括号中的内容转换成字符串输出,如果括号中…...

RocketMq使用规范(纯技术和实战建议)

概述: 使用规范主要从,生产、可靠性、和消费为轴线定义使用规范;kafka使用核心:削峰、解耦、向下游并行广播通知(无可靠性保证)和分布式事务,本规范仅从削峰、解耦、向下游并行广播通知论述&am…...

matlab离散系统仿真分析——电机

目录 1.电机模型 2.数字PID控制 3.MATLAB数字仿真分析 3.1matlab程序 3.2 仿真结果 4. SIMULINK仿真分析 4.1simulink模型 4.2仿真结果 1.电机模型 即: 其中:J 0.0067;B 0.10 2.数字PID控制 首先我们来看一下连续PID&#xff1…...

一文学会进程控制

目录进程的诞生fork函数fork的本质fork的常规用法fork调用失败的原因进程的死亡进程退出的场景常见的进程退出方法正常终止(代码跑完)echo $?main函数返回调用exit调用_exitexit和_exit的区别进程等待进程等待的重要性进程等待的函数waitwaitpid进程退出…...

5.2 BGP水平分割

5.2.2实验2&#xff1a;BGP水平分割 1. 实验目的 熟悉BGP水平分割的应用场景掌握BGP水平分割的配置方法 2. 实验拓扑 实验拓扑如图5-2所示&#xff1a; 图5-2&#xff1a;BGP水平分割 3. 实验步骤 &#xff08;1&#xff09;配置IP地址 R1的配置 <Huawei>…...

接口测试中缓存处理策略

在接口测试中&#xff0c;缓存处理策略是一个关键环节&#xff0c;直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性&#xff0c;避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明&#xff1a; 一、缓存处理的核…...

Flask RESTful 示例

目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题&#xff1a; 下面创建一个简单的Flask RESTful API示例。首先&#xff0c;我们需要创建环境&#xff0c;安装必要的依赖&#xff0c;然后…...

CTF show Web 红包题第六弹

提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框&#xff0c;很难让人不联想到SQL注入&#xff0c;但提示都说了不是SQL注入&#xff0c;所以就不往这方面想了 ​ 先查看一下网页源码&#xff0c;发现一段JavaScript代码&#xff0c;有一个关键类ctfs…...

电脑插入多块移动硬盘后经常出现卡顿和蓝屏

当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时&#xff0c;可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案&#xff1a; 1. 检查电源供电问题 问题原因&#xff1a;多块移动硬盘同时运行可能导致USB接口供电不足&#x…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”

2025年#高考 将在近日拉开帷幕&#xff0c;#AI 监考一度冲上热搜。当AI深度融入高考&#xff0c;#时间同步 不再是辅助功能&#xff0c;而是决定AI监考系统成败的“生命线”。 AI亮相2025高考&#xff0c;40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕&#xff0c;江西、…...

R语言速释制剂QBD解决方案之三

本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...

C语言中提供的第三方库之哈希表实现

一. 简介 前面一篇文章简单学习了C语言中第三方库&#xff08;uthash库&#xff09;提供对哈希表的操作&#xff0c;文章如下&#xff1a; C语言中提供的第三方库uthash常用接口-CSDN博客 本文简单学习一下第三方库 uthash库对哈希表的操作。 二. uthash库哈希表操作示例 u…...

从“安全密码”到测试体系:Gitee Test 赋能关键领域软件质量保障

关键领域软件测试的"安全密码"&#xff1a;Gitee Test如何破解行业痛点 在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的"神经中枢"。从国防军工到能源电力&#xff0c;从金融交易到交通管控&#xff0c;这些关乎国计民生的关键领域…...

LangFlow技术架构分析

&#x1f527; LangFlow 的可视化技术栈 前端节点编辑器 底层框架&#xff1a;基于 &#xff08;一个现代化的 React 节点绘图库&#xff09; 功能&#xff1a; 拖拽式构建 LangGraph 状态机 实时连线定义节点依赖关系 可视化调试循环和分支逻辑 与 LangGraph 的深…...

AI语音助手的Python实现

引言 语音助手(如小爱同学、Siri)通过语音识别、自然语言处理(NLP)和语音合成技术,为用户提供直观、高效的交互体验。随着人工智能的普及,Python开发者可以利用开源库和AI模型,快速构建自定义语音助手。本文由浅入深,详细介绍如何使用Python开发AI语音助手,涵盖基础功…...