NeRF基础代码解析
embedders
对position和view direction做embedding。
class FreqEmbedder(nn.Module):def __init__(self, in_dim=3, multi_res=10, use_log_bands=True, include_input=True):super().__init__()self.in_dim = in_dimself.num_freqs = multi_resself.max_freq_log2 = multi_resself.use_log_bands = use_log_bandsself.periodic_fns = [torch.sin, torch.cos]self.include_input = include_inputself.embed_fns = Noneself.out_dim = Noneself.num_embed_fns = Noneself.create_embedding_fn()def create_embedding_fn(self):self.embed_fns = []# 10 * 2 * 3 = 60self.out_dim = self.num_freqs * len(self.periodic_fns) * self.in_dim)if self.include_input:self.embed_fns.append(lambda x: x)self.out_dim += self.in_dim # 63if self.use_log_lands:freq_bands = 2. ** torch.linspace(0., self.max_freq_log2, steps=self.num_freqs)else:freq_bands = torch.linspace(2.**0, 2.**self.max_freq_log2, steps=self.num_freqs)for freq in freq_bands:for p_fn in self.periodic_fns:self.embed_fns.append(lambda x, p_fn=p_fn, freq=freq: p_fn(x*freq))self.num_embed_fns = len(self.embed_fns)def forward(self, x):"""x: [..., in_dim], xyz or view direction.embedding: [..., out_dim], corresponding frequency encoding."""embed_lst = [embed_fn(x) for embed_fn in self.embed_fns]# [[x, sin(x), cos(x), sin(2x), cos(2x),...,sin(512x), cos(512x)]]embedding = torch.cat(embed_lst, dim=-1)return embedding
NeRFBackbone
position和view经过embedding后,得到特征向量。再输入到NeRFBackbone网络中,得到sigma和color输出。
class NeRFBackbone(nn.Module):def __init__(self, pos_dim=3, cond_dim=64, view_dim=3, hid_dim=128, num_density_linears=8, num_color_linears=3, skip_layer_indices=[4]):self.pos_dim = pos_dimself.cond_dim = cond_dimself.view_dim = view_dimself.hid_dim = hid_dimself.out_dim = 4 # rgb + sigmaself.num_density_linears = num_density_linearsself.num_color_linears = num_color_linearsself.skip_layer_indices = skip_layer_indicesdensity_input_dim = pos_dim + cond_dimself.density_linears = nn.ModuleList([nn.Linear(density_input_dim, hid_dim)] +[nn.Linear(hid_dim, hid_dim) if i not in self.skip_layer_indices else nn.Linear(hid_dim + density_input_dim, hid_dim) for i in range(num_density_linears - 1)])self.density_out_linear = nn.Linear(hid_dim, 1)color_input_dim = view_dim + hid_dimself.color_linears = nn.ModuleList([nn.Linear(color_input_dim, hid_dim//2)] +[nn.Linear(hid_dim//2, hid_dim//2) for _ in range(num_color_linears - 1)])self.color_out_linear = nn.Linear(hid_dim//2, 3)def forward(self, pos, view, view):"""pos: [bs, n_sample, pos_dim], encoding of position.cond: [cond_dim,], condition features.view: [bs, view_dim], encoding of view direction."""bs, n_sample, _ = pos.shapeif cond.dim == 1: # [cond_dim]cond = cond.squeeze()[None, None, :].expand([bs, n_sample, self.cond_dim])elif cond_dim == 2: # [batch, cond_dim]cond = cond[:, None, :].expand([bs, n_sample, self.cond_dim])view = view[:, None, :].expand([bs, n_sample, self.view_dim])density_linear_input = torch.cat([pos, cond], dim=-1)h = density_linear_inputfor i in range(len(self.density_linears)):h = self.density_linears[i](h)h = F.relu(h)if i in self.skip_layer_indices:h = torch.cat([density_linear_input, h], -1)sigma = self.density_out_linear(h)h = torch.cat([h, view], -1)for i in range(len(self.color_linears)):h = self.color_linears[i](h)h = F.relu(h)rgb = self.color_out_linear(h)outputs = torch.cat([rgb, sigma], -1)return outputs
Ray Sampler
一张图的height = 1280, width = 720, 对这张图采样4096条从相机原点发出的光线ray。
def get_rays(H, W, focal, c2w, cx=None, cy=None):"""Get the rays emitted from camera to all pixels.The ray is represented in world coordinate.input:H: height of the image in pixel.W: width of the image in pixel.focal: focal length of the camera in pixel.c2w: 3x4 camera-to-world matrix, it should be something like this:[[r11, r12, r13, t1],[r21, r22, r23, t2],[r31, r32, r33, t3]]cx: center of camera in width axis.cy: center of camera in height axis.return:rays_o: start point of the ray.rays_d: direction of the ray. so you can sample the point in the ray with: xyz = rays_o + rays_d * z_val, where z_val is the distance."""j_pixels, i_pixels = torch.meshgrid(torch.linspace(0, H-1, H), torch.linspace(0, W-1, W))if cx is None:cx = W * 0.5if cy is None:cy = H * 0.5directions = torch.stack([(i_pixels - cx)/focal, -(j_pixels - cy)/focal, -torch.ones_like(i_pixels)], dim=-1) # [W, H, 3]# Rotate ray directions from camera to the world frame.rays_d = torch.sum(directions[..., None, :] * c2w[:3, :3], dim=-1)# origin point of all ray, camera center in world coodinate.rays_o = c2w[:3, -1].expand(rays_d.shape)return rays_o, rays_dclass BaseRaySampler:def __init__(self, N_rays):super(BaseRaySampler, self).__init__()self.N_rays = N_raysdef __call__(self, H, W, focal, c2w):rays_o, rays_d = get_rays(H, W, focal, c2w)selected_coords = self.sample_rays(H, W)rays_o = rays_o[select_coords[:, 0], select_coords[:, 1]] # [N_rand, 3]rays_d = rays_d[select_coords[:, 0], select_coords[:, 1]] # [N_rand, 3]return rays_o, rays_d, select_coordsdef sample_rays(self, H, W, **kwargs):raise NotImplementedErrorclass UniformRaySampler(BaseRaySampler):def __init__(self, N_rays=None):super().__init__(N_rays=N_rays)def sample_ray(self, H, W, n_rays=None, rect=None, in_rect_percent=0.9, **kwargs):if n_rays is None:n_rays = self.N_rayscoords = torch.stack(torch.meshgrid(torch.linspace(0, H-1, H), torch.linspace(0, W-1, W)), -1) # [H, W, 2]coords = torch.reshape(coords, [-1, 2]) # [H * W, 2]if rect is None:# uniformly sample the whole imageselected_inds = np.random.choice(coords.shape[0], size=[n_rays], replace=False)selected_coords = coords[selected_inds].long()else:# uniformly sample from rect region and out-rect, respectively.......return seleced_coordsdef __call__(self, H, W, focal, c2w, n_rays=None, selected_coords=None, rect=None, in_rect_percent=0.9, **kwargs):rays_o, rays_d = get_rays(H, W, focal, c2w)if select_coords s None:select_coords = self.sample_rays(H, W, n_rays, rect, in_rect_percent)rays_o = rays_o[selected_coords[:, 0], selected_coords[:, 1]]rays_d = rays_d[selected_coords[:, 0], selected_coords[:, 1]]return rays_o, rays_d, selected_coordsdef sample_pixels_from_img_with_select_coords(self, img, select_coords):return img[selected_coords[:, 0], select_coords[:, 1]]
相关文章:
NeRF基础代码解析
embedders 对position和view direction做embedding。 class FreqEmbedder(nn.Module):def __init__(self, in_dim3, multi_res10, use_log_bandsTrue, include_inputTrue):super().__init__()self.in_dim in_dimself.num_freqs multi_resself.max_freq_log2 multi_resself…...
职场新星:Java面试干货让你笑傲求职路(三)
职场新星:Java面试干货让你笑傲求职路 1、token 为什么存放在 redis 中?2、索引的底层原理是什么?3、Spring IOC和AOP的原理4、接口和抽象类有什么共同点和区别?5、为什么要使用线程池?直接new个线程不好吗?…...
获取指定收获地址的信息
目录 1 /// 获取指定收获地址的信息 2 /// 删除指定的收获地址信息 3 /// 取消订单 4 /// 确认订单收货 /// <summary> /// 获取指定收获地址的信息</...
突破笔试:力扣全排列(medium)
1. 题目链接:46. 全排列 2. 题目描述:给定一个不含重复数字的数组 nums ,返回其 所有可能的全排列 。你可以 按任意顺序 返回答案。 示例 1: 输入:nums [1,2,3] 输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[…...
gitlab 503 错误的解决方案
首先使用 sudo gitlab-ctl status 命令查看哪些服务没用启动 sudo gitlab-ctl status 再用 gitlab-rake gitlab:check 命令检查 gitlab。根据发生的错误一步一步纠正。 gitlab-rake gitlab:check 查看日志 tail /var/log/gitlab/gitaly/current删除gitaly.pid rm /var/opt…...
智能离子风棒联网监控静电消除器的主要功能和特点
智能离子风棒联网监控静电消除器是一种集成了智能化和网络化监控功能的设备,用于监测和消除静电现象。它的工作原理是通过产生大量的正负离子,将空气中的静电中和和消除,从而达到防止静电积累和放电的目的。 智能离子风棒联网监控静电消除器的…...
matplotlib 设置legend的位置在轴最上方,长度与图的长度相同
import matplotlib.pyplot as plt import numpy as npx1 np.linspace(0, 10, 50) x2 [6,4,3]ax plt.subplot() ax.plot(x1, label"test1") ax.plot(x2, label"test2") # 设置图例的位置 # 将左下角放置在【0, 1.02】位置处,横为1,…...
Docker-Compose 安装rabbitmq
【编写:docker-compose-rabbitmq.yml】创建数据目录: mkdir -p /opt/rabbitmq/data cd /opt/rabbitmq# 创建 docker-compose-rabbitmq.yml vim docker-compose-rabbitmq.yml 输入: version: "3.1" services:rabbitmq:image: rabbit…...
leetcode357- 2812. 找出最安全路径
这个题比较经典,可以用多个算法来求解,分别给出各个算法的求解方法,主要是分为第一部分的多源BFS求每个位置的距离和第二部分求(0,0)到(n-1,n-1)的最短路径(可以用多种方法求) 目录 多源BFS求最短路径枚举安全系数判断…...
Oracle连接数据库提示 ORA-12638:身份证明检索失败
ORA-12638 是一个 Oracle 数据库的错误代码,它表示身份验证(认证)检索失败。这通常与数据库连接相关,可能由于以下几个原因之一引起: 错误的用户名或密码: 提供的数据库用户名或密码不正确,导致…...
在 Linux 中使用 systemd 注册服务
Systemd 是一种现代的 Linux 系统初始化系统和服务管理器。它旨在管理系统服务的初始化、配置和控制。Systemd 的一个关键特性是它可以管理服务,这些服务是为系统提供特定功能的后台进程。在本指南中,我们将探讨如何使用 systemd 在 Linux 中注册服务。 …...
(03)Unity HTC VRTK 基于 URP 开发记录
1.简介 本篇主要内容为:URP如何与VRTK结合、URP需要注意的地方、VRTK的功能进行阐述。 因项目本身要求要渲染出比较好的画质,所以抛弃了Unity默认渲染管线Built-in,使用URP进行渲染,当然也可以选HDRP,但考虑到后期项目…...
.bit域名调研
.bit域名研究 问题: .bit域名和ENS域名的相同点?不同点?有什么关系? .bit的定义 .bit 是基于区块链的,开源的,跨链去中心化账户系统.bit 提供了以 .bit 为后缀的全局唯一的命名体系,可用于加密…...
Vue数组变更方法和替换方法
一、可以引起UI界面变化 Vue 将被侦听的数组的变更方法进行了包裹,所以它们也将会触发视图更新。这些被包裹过的方法包括: push()pop()shift()unshift()splice()sort()reverse() 以上七个数组都会改变原数组,下面来分别讲解它们的区别&…...
Centos-6.3安装使用MongoDB
安装说明 系统环境:Centos-6.3 安装软件:mongodb-linux-x86_64-2.2.2.tgz 下载地址:http://www.mongodb.org/downloads 安装机器:192.168.15.237 上传位置:/usr/local/ 软件安装位置:/usr/local/mongodb 数…...
Mysql 复杂查询丨联表查询
💗wei_shuo的个人主页 💫wei_shuo的学习社区 🌐Hello World ! JOIN(联表查询) 联表查询(Join)是一种在数据库中使用多个表进行关联查询的操作。它通过使用 JOIN 关键字将多个表连接在…...
C语言进阶第二课-----------指针的进阶----------升级版
作者前言 🎂 ✨✨✨✨✨✨🍧🍧🍧🍧🍧🍧🍧🎂 🎂 作者介绍: 🎂🎂 🎂 🎉🎉🎉…...
若依vue -【 111 ~ 更 ~ 127 完 】
【更】111 3.5.0版本更新介绍 112 使用docker实现一键部署 1、安装docker yum install https://download.docker.com/linux/fedora/30/x86_64/stable/Packages/containerd.io-1.2.6-3.3.fc30.x86_64.rpm yum install -y yum-utils device-mapper-persistent-data lvm2 yum-c…...
vue-pc端实现按钮防抖处理-自定义指令
前言 我们经常在移动端会处理按钮和输入框的防抖和节流处理,在pc端很少进行这样的操作 但是在pc端也是可以进行按钮的防抖操作,这样也是比较合理,可以不用但不可以不会 我们只要配合vue项目自定义指令加上全局注册,就可以实现按…...
python解决8皇后问题
def is_valid(queens, row, col):for i in range(row):if queens[i] == col or abs(queens[i] - col) == abs(i - row):return Falsereturn Truedef solve_n_queens(n, row, queens, result):if row == n:result.append(queens[:]) # 将当前解添加到结果中returnfor col in ra…...
Android Wi-Fi 连接失败日志分析
1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分: 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析: CTR…...
突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
【力扣数据库知识手册笔记】索引
索引 索引的优缺点 优点1. 通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度(创建索引的主要原因)。3. 可以加速表和表之间的连接,实现数据的参考完整性。4. 可以在查询过程中,…...
dedecms 织梦自定义表单留言增加ajax验证码功能
增加ajax功能模块,用户不点击提交按钮,只要输入框失去焦点,就会提前提示验证码是否正确。 一,模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...
离线语音识别方案分析
随着人工智能技术的不断发展,语音识别技术也得到了广泛的应用,从智能家居到车载系统,语音识别正在改变我们与设备的交互方式。尤其是离线语音识别,由于其在没有网络连接的情况下仍然能提供稳定、准确的语音处理能力,广…...
水泥厂自动化升级利器:Devicenet转Modbus rtu协议转换网关
在水泥厂的生产流程中,工业自动化网关起着至关重要的作用,尤其是JH-DVN-RTU疆鸿智能Devicenet转Modbus rtu协议转换网关,为水泥厂实现高效生产与精准控制提供了有力支持。 水泥厂设备众多,其中不少设备采用Devicenet协议。Devicen…...
图解JavaScript原型:原型链及其分析 | JavaScript图解
忽略该图的细节(如内存地址值没有用二进制) 以下是对该图进一步的理解和总结 1. JS 对象概念的辨析 对象是什么:保存在堆中一块区域,同时在栈中有一块区域保存其在堆中的地址(也就是我们通常说的该变量指向谁&…...
多元隐函数 偏导公式
我们来推导隐函数 z z ( x , y ) z z(x, y) zz(x,y) 的偏导公式,给定一个隐函数关系: F ( x , y , z ( x , y ) ) 0 F(x, y, z(x, y)) 0 F(x,y,z(x,y))0 🧠 目标: 求 ∂ z ∂ x \frac{\partial z}{\partial x} ∂x∂z、 …...
对象回调初步研究
_OBJECT_TYPE结构分析 在介绍什么是对象回调前,首先要熟悉下结构 以我们上篇线程回调介绍过的导出的PsProcessType 结构为例,用_OBJECT_TYPE这个结构来解析它,0x80处就是今天要介绍的回调链表,但是先不着急,先把目光…...
MySQL体系架构解析(三):MySQL目录与启动配置全解析
MySQL中的目录和文件 bin目录 在 MySQL 的安装目录下有一个特别重要的 bin 目录,这个目录下存放着许多可执行文件。与其他系统的可执行文件类似,这些可执行文件都是与服务器和客户端程序相关的。 启动MySQL服务器程序 在 UNIX 系统中,用…...
