【速通版】吴恩达机器学习笔记Part3
目录
1.多元线性回归
a.特征缩放
可行的缩放方式:
1.除以最大值:
2.mean normalization:
3.Z-score normalization
b.learning curve:
c.learning rate:
2.多项式回归
3.classification
logistics regression
1.多元线性回归
其意义很清晰了,多维更准确。很有意思也是我之前没关注的点是,一般下标表示分量、上标表示不同的inputs、又为了区分次数加了括号。

点乘是np.dot

用向量化的函数而不是分量循环,可以提高效率。
讲真矢量化和parallel真的好酷呀……作为数学专业我理解是从notation的角度,很清晰很明确,但是从算法编程的角度也有其优势、而这样的优势是由底层代码包的编写者、底层(非judge义)工程师实现的。这也算是某种意义下的殊途同归吧。
a.特征缩放
以房价为例,相关因素考虑大小和卧室数量,可以看到大小数值非常大,那么调整w的时候可能会很困难,因为w可能只是变了一点点,wx就变了非常大,因此考虑调整范围差不多

可行的缩放方式:
1.除以最大值:

2.mean normalization:

3.Z-score normalization


霍,还需要多次缩放呢。。。。
b.learning curve:
标注了随着迭代次数的增加目标函数的变化,(比设置\epsilon更直观)

c.learning rate:
通常来说,在learning curve里可能出现随着迭代次数的增加,loss function震荡甚至上升,这可能由于 1.BUG 2.学习率过大,因此可调试中尝试设置很小的学习率,如果正常会下降的。但是,实际学习的过程中学习率不能太小,这样效率太低。

大佬常用方法:先设置很小的学习率跑几个epoch,,然后3倍3倍增加,保证找到过小(下降很慢)和过大(震荡或者上升),然后在合适范围内找尽量大的。
2.多项式回归
简单来说,就是线性不合适啦,我们想自己选选用高次、乘积、开根等不同方法~不赘述
3.classification

正如以下例子可以看到,拟合有时候很差:本来考虑左侧的四个negative class和positive class,设置阈值threshold为0.5,效果就很好了,但是当我们加入最右的例子,本来是一个一看就是positive sample的例子,但是却导致预测结果出现偏差。因此我们考虑classification。
logistics regression

可以看出,非常满足的例子在逻辑斯蒂回归里尽量不重视,而在中间的样本更加强调。怎么强调呢,也就是说,当我们多发现中部模糊地带的样本,对threshold的影响很剧烈、也就是拟合函数中斜率很大。
重述一下,我们在线性之外拟合一个逻辑斯蒂回归来做分类,就是为了防止【本来很明确分类的样本加进去反而会影响算法的输出结果】,让算法更关注于模糊地带的样本。f输出的可以理解为【样本特征为x的情况下,分类为1的概率】。


可视化理解,略过 
logistics regression-Cost function:
在线性回归中 平方误差很好用(凸的,可以直接到达全局最优),但是逻辑斯蒂回归模型平方误差就是非凸了,因此我们考虑换一个cost。

因此,转而用以下的函数:
值得注意的是,此处的函数是分类函数。那么目标函数转化为:
利用梯度下降法:

GD实现,逻辑斯蒂回归模型与线性回归函数不同但是trick类似
相关文章:
【速通版】吴恩达机器学习笔记Part3
目录 1.多元线性回归 a.特征缩放 可行的缩放方式: 1.除以最大值: 2.mean normalization: 3.Z-score normalization b.learning curve: c.learning rate: 2.多项式回归 3.classification logistics regression 1.多元线性回归 其意义很…...
【leetcode】跳跃游戏
一、题目描述 给定一个非负整数数组 nums ,你最初位于数组的 第一个下标 。 数组中的每个元素代表你在该位置可以跳跃的最大长度。 判断你是否能够到达最后一个下标。 示例 1: 输入:nums [2,3,1,1,4] 输出:true 解释&#x…...
论文投稿指南——中文核心期刊推荐(冶金工业 2)
【前言】 🚀 想发论文怎么办?手把手教你论文如何投稿!那么,首先要搞懂投稿目标——论文期刊 🎄 在期刊论文的分布中,存在一种普遍现象:即对于某一特定的学科或专业来说,少数期刊所含…...
【GPLT 二阶题目集】L2-044 大众情人
人与人之间总有一点距离感。我们假定两个人之间的亲密程度跟他们之间的距离感成反比,并且距离感是单向的。例如小蓝对小红患了单相思,从小蓝的眼中看去,他和小红之间的距离为 1,只差一层窗户纸;但在小红的眼里…...
SpringBoot整合(二)MyBatisPlus技术详解
MyBatisPlus详解 一、标准数据层开发 MyBatisPlus(简称MP)是基于MyBatis框架基础上开发的增强型工具,旨在简化开发、提高效率 MyBatisPlus的官网为:https://mp.baomidou.com/ 1.1 标准CRUD 1.2 新增 int insert (T t)T:泛型,…...
导入importk8s集群,添加node节点,rancher agent,Rancher Agent设置选项
curl方式: Rancher在每个节点上部署代理以与节点通信。 此页面描述了可以传递给代理的选项,要使用这些选项,您需要采用创建自定义集群 ,并在docker run添加节点时将选项添加到生成的命令中。 常规选项 参数环境变量描述—serve…...
C++11--右值引用与移动语义
目录 基本概念 左值与右值 左值引用与右值引用 右值引用的使用场景和意义 左值引用的使用场景 右值引用和移动语义 移动构造和拷贝构造的区别 编译器的优化 移动赋值和赋值运算符重载的区别 右值引用的其他应用场景 完美转发 万能引用 完美转发保持值属性 完美转…...
Python SQLAlchemy入门教程
本文将以Mysql举例,介绍sqlalchemy的基本用法。其中,Python版本为2.7,sqlalchemy版本为1.1.6。 一. 介绍 SQLAlchemy是Python中最有名的ORM工具。 关于ORM: 全称Object Relational Mapping(对象关系映射࿰…...
你是真的“C”——操作符详解【下篇】+整形提升+算术转换
你是真的“C”——操作符详解下篇😎前言🙌操作符详解【上篇】内容:操作符详解【下篇】内容:1、 条件操作符2、逗号表达式:3、下标引用、函数调用和结构成员3、访问一个结构的成员表达式求值1、隐式类型转换:…...
文本匹配SimCSE模型代码详解以及训练自己的中文数据集
前言 在上一篇博客文本匹配中的示例代码中使用到了一个SimCSE模型,用来提取短文本的特征,然后计算特征相似度,最终达到文本匹配的目的。但是该示例代码中的短文本是用的英文短句,其实SimCSE模型也可以用于中文短文本的特征提取&a…...
Biotin-PEG-FITC 生物素聚乙二醇荧光素;FITC-PEG-Biotin 科研用生物试剂
结构式: Biotin-PEG-FITC 生物素聚乙二醇荧光素 英文名称:Biotin-PEG-Fluorescein 中文名称:生物素聚乙二醇荧光素 外观:黄色液体、半固体或固体,取决于分子量。 溶剂:溶于大部分有机溶剂,…...
FISCO BCOS 搭建区块链,在SpringBoot中调用合约
一、搭建区块链 使用的是FISCO BCOS 和 WeBASE-Front来搭建区块链,详细教程: https://blog.csdn.net/yueyue763184/article/details/128924144?spm1001.2014.3001.5501 搭建好能达到下图效果即可: 二、部署智能合约与导出java文件、SDK证…...
面试官:int和Integer有什么区别?
回答思路: 原始数据类型和包装类介绍 主要区别(数据使用内存) 自动装箱、自动拆箱机制和实践原则 回答总结: int 是8种基本数据类型(byte、boolean、char、short、int、long、float、double)之一ÿ…...
MFC常用技巧
MFC常用技巧1、句柄MFC中如何获取窗口的句柄2、字符串CString转char*Unicode下char *转换为CString3、Visual C 64 位迁移的常见问题(数据类型、指针类型的长度问题)4、c - 将_beginthread返回的uintptr_t转换为HANDLE是否安全1、句柄 MFC中如何获取窗口…...
C++ —— 多态
目录 1.多态的概念 2.多态的定义及实现 2.1构成多态的两个硬性条件 2.2虚函数的重写 2.3override和final 3.抽象类 3.1接口继承和实现继承 4.多态原理 4.1虚函数表 4.2原理 4.3静态绑定和动态绑定 5.单继承和多继承体系的虚函数表 5.1单继承体系的虚函数表 5.2多继…...
java agent设计开发概要
agent开发设计 agent 开发的一些心得,适合熟悉agent或者有agent开发需求的同学 1 有个基础的agent,是java 标准的agent。这是agent代码入口 2 设计包结构, 基础agent agent下有plugin,加载plugin可以自己定义一个类加载器 plugin࿱…...
node.js笔记-模块化(commonJS规范),包与npm(Node Package Manager)
目录 模块化 node.js中模块的分类 模块的加载方式 模块作用域 向外共享模块作用域中的成员 向外共享成员 包与npm(Node package Manager) 什么是包? 包的来源 为什么需要包? 查找和下载包 npm下载和卸载包命令 配置np…...
Linux 磁盘坏块修复处理(错误:read error: Input/output error)
当磁盘出现坏块时,你对所关联的文件进行读取时,一般会出现 read error: Input/output error 这样的错误。 反过来讲,当你看到 read error: Input/output error 这种错误时,很大可能就是磁盘出现了坏块问题。 解决步骤:…...
API 面试四连杀:接口如何设计?安全如何保证?签名如何实现?防重如何实现?
下面我们就来讨论下常用的一些API设计的安全方法,可能不一定是最好的,有更牛逼的实现方式,但是这篇是我自己的经验分享. 一、token 简介 Token:访问令牌access token, 用于接口中, 用于标识接口调用者的身份、凭证,减…...
操作系统题目收录(六)
1、某系统采用基于优先权的非抢占式进程调度策略,完成一次进程调度和进程切换的系统时间开销为1us。在T时刻就绪队列中有3个进程P1P_1P1、P2P_2P2和P3P_3P3,其在就绪队列中的等待时间、需要的CPU时间和优先权如下表所示。若优先权值大的进程优先获…...
19c补丁后oracle属主变化,导致不能识别磁盘组
补丁后服务器重启,数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后,存在与用户组权限相关的问题。具体表现为,Oracle 实例的运行用户(oracle)和集…...
[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解
突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 安全措施依赖问题 GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...
简易版抽奖活动的设计技术方案
1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...
visual studio 2022更改主题为深色
visual studio 2022更改主题为深色 点击visual studio 上方的 工具-> 选项 在选项窗口中,选择 环境 -> 常规 ,将其中的颜色主题改成深色 点击确定,更改完成...
【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力
引言: 在人工智能快速发展的浪潮中,快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型(LLM)。该模型代表着该领域的重大突破,通过独特方式融合思考与非思考…...
python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)
更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...
Mac软件卸载指南,简单易懂!
刚和Adobe分手,它却总在Library里给你写"回忆录"?卸载的Final Cut Pro像电子幽灵般阴魂不散?总是会有残留文件,别慌!这份Mac软件卸载指南,将用最硬核的方式教你"数字分手术"࿰…...
Spring Boot面试题精选汇总
🤟致敬读者 🟩感谢阅读🟦笑口常开🟪生日快乐⬛早点睡觉 📘博主相关 🟧博主信息🟨博客首页🟫专栏推荐🟥活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...
如何理解 IP 数据报中的 TTL?
目录 前言理解 前言 面试灵魂一问:说说对 IP 数据报中 TTL 的理解?我们都知道,IP 数据报由首部和数据两部分组成,首部又分为两部分:固定部分和可变部分,共占 20 字节,而即将讨论的 TTL 就位于首…...
C++.OpenGL (14/64)多光源(Multiple Lights)
多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...

