LeetCode 2363. 合并相似的物品
给你两个二维整数数组 items1 和 items2 ,表示两个物品集合。每个数组 items 有以下特质:
items[i] = [valuei, weighti] 其中 valuei 表示第 i 件物品的 价值 ,weighti 表示第 i 件物品的 重量 。
items 中每件物品的价值都是 唯一的 。
请你返回一个二维数组 ret,其中 ret[i] = [valuei, weighti], weighti 是所有价值为 valuei 物品的 重量之和 。
注意:ret 应该按价值 升序 排序后返回。
示例 1:
输入:items1 = [[1,1],[4,5],[3,8]], items2 = [[3,1],[1,5]]
输出:[[1,6],[3,9],[4,5]]
解释:
value = 1 的物品在 items1 中 weight = 1 ,在 items2 中 weight = 5 ,总重量为 1 + 5 = 6 。
value = 3 的物品再 items1 中 weight = 8 ,在 items2 中 weight = 1 ,总重量为 8 + 1 = 9 。
value = 4 的物品在 items1 中 weight = 5 ,总重量为 5 。
所以,我们返回 [[1,6],[3,9],[4,5]] 。
1 <= items1.length, items2.length <= 1000
items1[i].length == items2[i].length == 2
1 <= valuei, weighti <= 1000
items1 中每个 valuei 都是 唯一的 。
items2 中每个 valuei 都是 唯一的 。
直接模拟即可:
class Solution {
public:vector<vector<int>> mergeSimilarItems(vector<vector<int>>& items1, vector<vector<int>>& items2) {map<int, int> mapAns;for (vector<int>& item : items1) {mapAns[item[0]] += item[1];}for (vector<int> &item : items2) {mapAns[item[0]] += item[1];}vector<vector<int>> ans;for (pair<const int, int> item : mapAns) {vector<int> oneAns = {item.first, item.second};ans.push_back(oneAns);}return ans;}
};
如果输入数组items1中有n个元素,items2中有m个元素,此算法时间复杂度为O((n+m)lg(n+m)),空间复杂度为O(n+m)。
相关文章:
LeetCode 2363. 合并相似的物品
给你两个二维整数数组 items1 和 items2 ,表示两个物品集合。每个数组 items 有以下特质: items[i] [valuei, weighti] 其中 valuei 表示第 i 件物品的 价值 ,weighti 表示第 i 件物品的 重量 。 items 中每件物品的价值都是 唯一的 。 请你…...
numpy 中常用的数据保存、fmt多个参数
在经常性读取大量的数值文件时(比如深度学习训练数据),可以考虑现将数据存储为Numpy格式,然后直接使用Numpy去读取,速度相比为转化前快很多 一、保存为二进制文件(.npy/.npz) (1)numpy.save(file, arr, allow_pickleTrue, fix_importsTrue) file:文件名…...
从0到1一步一步玩转openEuler--19 openEuler 管理服务-特性说明
文章目录19 管理服务-特性说明19.1 更快的启动速度19.2 提供按需启动能力19.3 采用cgroup特性跟踪和管理进程的生命周期19.4 启动挂载点和自动挂载的管理19.5 实现事务性依赖关系管理19.6 与SysV初始化脚本兼容19.7 能够对系统进行快照和恢复19 管理服务-特性说明 19.1 更快的…...
23美赛E题:光污染(ICM)完整思路Python代码
问题E(综合评价与仿真题):光污染(ICM) 背景 光污染用于描述过度或不良使用人造光。我们称之为光污染的一些现象包括光侵入、过度照明和光杂波。在大城市,太阳落山后,这些现象最容易在天空中看到;然而,它们也可能发生在更偏远的地区。 光污染会改变我们对夜空的看法,…...
快速排序的描述以及两种实现方案
一、快速排序描述 每一轮排序选择一个基准点(pivot)进行分区 1.1. 让小于基准点的元素的进入一个分区,大于基准点的元素的进入另一个分区 1.2. 当分区完成时,基准点元素的位置就是其最终位置在子分区内重复以上过程,直…...
算力引领 数“聚”韶关——第二届中国韶关大数据创新创业大赛圆满收官
为进一步促进数字经济领域创新创业发展,推动国家数据中心集群建设,构建大数据领域资源专业平台,促进大湾区大数据科技成果和创新创业人才转化落地,为韶关大数据领域创新型产业集群的打造、大数据科技成果和创新创业人才的转化落地…...
MySQL 记录锁+间隙锁可以防止删除操作而导致的幻读吗?
文章目录什么是幻读?实验验证加锁分析总结什么是幻读? 首先来看看 MySQL 文档是怎么定义幻读(Phantom Read)的: The so-called phantom problem occurs within a transaction when the same query produces different sets of r…...
【分库分表】企业级分库分表实战方案与详解(MySQL专栏启动)
📫作者简介:小明java问道之路,2022年度博客之星全国TOP3,专注于后端、中间件、计算机底层、架构设计演进与稳定性建设优化,文章内容兼具广度、深度、大厂技术方案,对待技术喜欢推理加验证,就职于…...
(考研湖科大教书匠计算机网络)第五章传输层-第五节:TCP拥塞控制
获取pdf:密码7281专栏目录首页:【专栏必读】考研湖科大教书匠计算机网络笔记导航 文章目录一:拥塞控制概述二:拥塞控制四大算法(1)慢开始和拥塞避免A:慢启动(slow start)…...
13.使用自动创建线程池的风险,要自己创建为好
自动创建线程池就是直接调用 Executors去new默认的那几个线程池,但是会出现一定的风险,线程池里面会用到队列,也会跟线程池自身有关,所以要从队列和线程池两个方面去解析。 1.了解线程池的队列 线程池的内部结构主要由四部分组成…...
【项目设计】—— 负载均衡式在线OJ平台
目录 一、项目的相关背景 二、所用技术栈和开发环境 三、项目的宏观结构 四、compile_server模块设计 1. 编译服务(compiler模块) 2. 运行服务(runner模块) 3. 编译并运行服务(compile_run模块) 4…...
Docker学习笔记
1:docker安装步骤Linux 2:docker安装步骤Windows 3:docker官方文档 4:docker官方远程仓库 docker常用命令 1: docker images----查看docker中安装的镜像 2: docker pull nginx------在docker中安装Nginx镜…...
【爬虫理论实战】详解常见头部反爬技巧与验证方式 | 有 Python 代码实现
以下是常见头部反爬技巧与验证方式的大纲: User-Agent 字段的伪装方式,Referer 字段的伪装方式,Cookie 字段的伪装方式。 文章目录1. ⛳️ 头部反爬技巧1.1. User-Agent 字段&User-Agent 的作用1.2. 常见 User-Agent 的特征1.3. User-Age…...
基于SpringBoot+Vue的鲜花商场管理系统
【辰兮要努力】:hello你好我是辰兮,很高兴你能来阅读,昵称是希望自己能不断精进,向着优秀程序员前行! 博客来源于项目以及编程中遇到的问题总结,偶尔会有读书分享,我会陆续更新Java前端、后台、…...
华为OD机试 - 静态扫描最优成本(JS)
静态扫描最优成本 题目 静态扫描快速识别源代码的缺陷,静态扫描的结果以扫描报告作为输出: 文件扫描的成本和文件大小相关,如果文件大小为 N ,则扫描成本为 N 个金币扫描报告的缓存成本和文件大小无关,每缓存一个报告需要 M 个金币扫描报告缓存后,后继再碰到该文件则不…...
多层感知机
多层感知机理论部分 本文系统的讲解多层感知机的pytorch复现,以及详细的代码解释。 部分文字和代码来自《动手学深度学习》!! 目录多层感知机理论部分隐藏层多层感知机数学逻辑激活函数1. ReLU函数2. sigmoid函数3. tanh函数多层感知机的从零…...
python在windows调用svn-pysvn
作为EBS开发人员,开发工具用的多,部署代码类型多,管理程序麻烦,操作繁琐,一直是我最讨厌的事情。部署一次程序要使用好几个工具,改来改去,上传下载,实在难受。 扣了一下python&#…...
office365 word 另存为 pdf 的注意事项和典型设置
0. 操作环境介绍 Office 版本:Office 365 版本 不同版本的操作可能有所不同 1. 基本操作 – 另存为 pdf 【文件】 --> 【另存为】,选择适当的文件路径、文件名保存类型选择【PDF】点击【保存】 1. 导出的pdf包含目录标签 word中,可使用…...
Spring IoC容器之常见常用注解以及注解编程模型简介
一、全文概览 本篇文章主要学习记录Spring中的核心注解,罗列常见常用的注解以及Spring中的注解编程模型介绍 二、核心注解 1、Spring模式注解 常用注解场景描述Spring起始支持版本Component通用组件模式注解,是所有组件类型注解的元注解Spring 2.5Repo…...
超详细讲解文件函数
超详细讲解文件函数!!!!字符输入/输出函数fgetcfputc文本行输入/输出函数fgetsfputs格式化输入/输出函数fscanffprintf二进制输入/输出函数freadfwrite打开/关闭文件函数fopenfclose字符输入/输出函数 fgetc fgetc函数可以从指定…...
Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误
HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误,它们的含义、原因和解决方法都有显著区别。以下是详细对比: 1. HTTP 406 (Not Acceptable) 含义: 客户端请求的内容类型与服务器支持的内容类型不匹…...
通过Wrangler CLI在worker中创建数据库和表
官方使用文档:Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后,会在本地和远程创建数据库: npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库: 现在,您的Cloudfla…...
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...
Redis:现代应用开发的高效内存数据存储利器
一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发,其初衷是为了满足他自己的一个项目需求,即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源,Redis凭借其简单易用、…...
比较数据迁移后MySQL数据库和OceanBase数据仓库中的表
设计一个MySQL数据库和OceanBase数据仓库的表数据比较的详细程序流程,两张表是相同的结构,都有整型主键id字段,需要每次从数据库分批取得2000条数据,用于比较,比较操作的同时可以再取2000条数据,等上一次比较完成之后,开始比较,直到比较完所有的数据。比较操作需要比较…...
Unity VR/MR开发-VR开发与传统3D开发的差异
视频讲解链接:【XR马斯维】VR/MR开发与传统3D开发的差异【UnityVR/MR开发教程--入门】_哔哩哔哩_bilibili...
Pydantic + Function Calling的结合
1、Pydantic Pydantic 是一个 Python 库,用于数据验证和设置管理,通过 Python 类型注解强制执行数据类型。它广泛用于 API 开发(如 FastAPI)、配置管理和数据解析,核心功能包括: 数据验证:通过…...
Python爬虫实战:研究Restkit库相关技术
1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的有价值数据。如何高效地采集这些数据并将其应用于实际业务中,成为了许多企业和开发者关注的焦点。网络爬虫技术作为一种自动化的数据采集工具,可以帮助我们从网页中提取所需的信息。而 RESTful API …...
路由基础-路由表
本篇将会向读者介绍路由的基本概念。 前言 在一个典型的数据通信网络中,往往存在多个不同的IP网段,数据在不同的IP网段之间交互是需要借助三层设备的,这些设备具备路由能力,能够实现数据的跨网段转发。 路由是数据通信网络中最基…...
32位寻址与64位寻址
32位寻址与64位寻址 32位寻址是什么? 32位寻址是指计算机的CPU、内存或总线系统使用32位二进制数来标识和访问内存中的存储单元(地址),其核心含义与能力如下: 1. 核心定义 地址位宽:CPU或内存控制器用32位…...
