【C++深入浅出】初识C++中篇(引用、内联函数)
目录
一. 前言
二. 引用
2.1 引用的概念
2.2 引用的使用
2.3 引用的特性
2.4 常引用
2.5 引用的使用场景
2.6 传值、传引用效率比较
2.7 引用和指针的区别
三. 内联函数
3.1 内联函数的概念
3.2 内联函数的特性
一. 前言
上期说道,C++是在C的基础之上,容纳进去了面向对象编程思想,并增加了许多有用的库,以及编程范式等。我们介绍了部分C++为了补充C语言语法上的不足而新增的内容,如命名空间,缺省参数,函数重载等等,上期传送门【C++深入浅出】初识C++(上篇)
http://t.csdn.cn/UjbIo 本期将继续介绍C++剩下的一些有趣的功能,如引用,内联函数等等,这也是为了后面的类和对象打好基础。
话不多说,直接上菜!!!
二. 引用
2.1 引用的概念
引用并不是新定义一个变量,而是给已存在变量取了一个别名,编译器不会为引用变量开辟内存空间,它和它引用的变量共用同一块内存空间。
引用就相当于我们给别人起昵称。例如你叫你女朋友小笨猪,那么对你而言,小笨猪就是你的女朋友,和叫名字是一个意思,既不是其他任何人,你也不会因此多一个女朋友
2.2 引用的使用
类型& 引用变量名(对象名) = 引用实体
void Test()
{int a = 10;int& ra = a; //<====定义引用类型,此时ra就是变量a的别名,ra与a是同一块内存空间printf("a的地址为%p\n", &a);printf("ra的地址为%p\n", &ra);
}int main()
{Test();return 0;
}
我们看到变量a和引用变量ra的地址是一样的,说明它们共用同一块内存空间。
2.3 引用的特性
使用引用时需要注意以下几点特性
1、引用在定义时必须初始化
int main()
{int a = 10;int& b; //错误写法,会报错int& b=a; //正确写法return 0;
}
2、一个变量可以有多个引用
int main()
{int a = 10;//下面的b,c,d均是变量a的别名int& b = a;int& c = a;int& d = c;printf("%p %p %p %p\n", &a,&b,&c,&d);return 0;
}
3、引用一旦引用一个实体,就不能引用其他实体
int main()
{int a = 10;int& b = a; //b是a的别名int c = 20; //能不能将b改成c的别名呢?b = c; //不行,这条语句是将c的值赋给引用变量b,即修改变量a的值,并不是让b引用cprintf("&a = %p &b = %p &c = %p\n", &a,&b,&c);printf("a = %d b = %d c = %d\n", a, b, c);return 0;
}
4、引用类型必须和引用实体是同种类型的
int main()
{int a = 10;double& b = a; //这种写法会报错return 0;
}
我们看到编译器报错说非常量限定,那如果我们加上const修饰呢?如下:
const double& b = a;
我们惊讶地发现通过了编译,说明上面不是因为int和double类型不一样而报错,那究竟是为什么呢?下面我们来分析分析
实际上,由于引用实体和引用变量的类型不同,编译器会自动进行隐式类型转换。编译器会生成一个double类型的临时变量tmp,然后将a的内容以某种形式放到临时变量tmp中,最后再让b引用临时变量tmp。
int main()
{int a = 10;const double& b = a;//类似于下面的步骤int a = 10;double tmp = a; //将a的值转换赋给tmpconst double& b = tmp; //b再引用tmpreturn 0;
}
由于临时变量具有常属性,因此tmp的类型就是const double,用double类型的引用变量引用const double类型的变量,这无疑是一种权限的放大,是不被允许的。就好比别人大门紧缩不然你进,你偏偏另辟蹊径从窗户翻入,这无疑是犯法的,私闯民宅。这就是为什么编译器会报出非常量限定的错误的原因,引用变量d需要加上const修饰,权限的平移是被允许的。
最后,本来临时变量tmp在当前语句结束后就会被销毁,但此时被b所引用,其生命周期就自动被延长了。
分析了这么多,下面我们用代码来进行验证一下:
int main()
{int a = 10;const double& b = a;printf("&a = %p , &b = %p\n", &a, &b); //求a,b空间的地址printf("修改前 a = %d , b = %.2lf\n", a, b);a = 20;//b = 30; //这句代码会报错,被const修饰的变量不可修改printf("修改后 a = %d , b = %.2lf\n", a, b);return 0;
}
我们发现a的地址和b的地址不同,这说明了b并不是变量a的引用,而是引用了新形成的临时变量。并且,当我们对a进行修改时,b中的内容并没有发生改变,这也印证了a和b不是同一块内存空间。最后,当我们想要对b的内容进行修改时,编译器会直接报错,说明b所在的空间具有常属性。
2.4 常引用
被const关键字修饰的引用变量我们称为常引用。我们无法通过常引用来修改引用实体的值,如下:
#include<iostream>
using namespace std;
int main()
{int a = 10;const int& b = a;//b++; //会报错,b是常引用,无法修改a++; //a是普通变量,允许修改cout << "a = " << a <<' ' << "b = " << b;return 0;
}
前面我们提到了权限不能放大,也就是说:普通引用不能引用常属性变量。但是,权限允许平移或者缩小,即常引用可以引用常属性变量、常引用可以引用普通变量。如下:
#include<iostream>
using namespace std;
int main()
{int a = 10;const int& b = a; //权限的缩小,const引用引用普通变量,编译正常const int aa = 10;const int& bb = aa;//权限的缩小,const引用引用const变量,编译正常int& cc = aa;//权限的放大,普通引用引用const变量,报错return 0;
}
2.5 引用的使用场景
引用的使用场景一般有两个:做函数参数、做函数返回值。
1、引用作为函数参数
在C语言中,如果我们调用函数时使用传值调用,那么形参的改变是不会影响实参的,形参是实参的临时拷贝。如果我们想在函数中对实参进行修改,那就必须使用传址调用,通过地址对实参的值进行修改。
而在C++中,新增了引用的语法,我们可以使用引用作为函数的形参,此时形参就是实参的一个别名,并不会额外开辟空间,形参和实参共同内存空间,修改形参也就是对实参进行修改。具体实现方式如下
#include<iostream>
using namespace std;
void ModifyFun(int& x) //引用作为函数参数
{x = 100;
}
int main()
{int a = 10;cout << "调用前" << a << endl;ModifyFun(a);cout << "调用后" << a << endl;
}
#include<iostream>
using namespace std;
void Swap(int& x , int& y) //引用作为函数参数
{int tmp = x;x = y;y = tmp;
}
int main()
{int a = 10;int b = 20;cout << "交换前:" << "a = " << a << " b = " << b << endl;Swap(a, b);cout << "交换后:" << "a = " << a << " b = " << b << endl;
}
2、引用作为函数返回值
引用也可以作为函数的返回值,如下:
#include<iostream>
using namespace std;
int& Count()
{static int n = 0; //n是一个静态变量,函数调用结束后不会销毁cout << n << endl;;return n;
}
int main()
{int& k = Count();k++;Count();return 0;
}
在Count()函数通过引用返回n,此时main函数中的引用变量k就是n的别名,当我们在main函数中修改k,就相当于对静态变量n做修改。
但是,如果以下情况使用引用返回会出现什么情况呢?
int& Add(int a, int b)
{int c = a + b; //c是局部变量,Add调用结束后被销毁return c;
}
int main()
{int& ret = Add(1, 2);Add(3, 4);cout << "Add(1, 2) is :" << ret << endl;return 0;
}
很惊讶的发现,最终ret变量的值不是3而是7,为什么呢?
这就要来谈谈上述代码出现的野引用问题了。
我们通过下图来进行分析
总结:函数返回时,如果出了函数作用域,返回对象还在(还没销毁还给系统),则可以使用
引用返回;如果已经还给系统了,则必须使用传值返回。
2.6 传值、传引用效率比较
在C/C++中,以值作为参数或者返回值类型,在传参和返回期间,函数并不会直接传递实参或者将变量本身直接返回,而是传递实参或者返回变量的一份临时拷贝,因此用值作为参数或者返回值类型,需要额外进行拷贝,效率是非常低下的,尤其是当参数或者返回值类型非常大时,效率就更低。
而如果以引用作为参数或者返回值类型,由于引用是作为变量的别名,并不会额外开辟空间形成拷贝。因此在传参和返回期间,就相当于直接传递实参或将变量本身直接返回,效率大大提升。下面我们通过代码来更直观地看看二者的效率差距:
值和引用作为函数参数的效率差距
#include <time.h>
struct A { int a[10000]; };
void TestFunc1(A a)
{;
}
void TestFunc2(A& a)
{;
}
void TestRefAndValue()
{A a;// 以值作为函数参数size_t begin1 = clock(); //clock()函数返回程序运行到调用clock()函数所耗费的时间,单位是msfor (size_t i = 0; i < 100000; ++i)TestFunc1(a);size_t end1 = clock();// 以引用作为函数参数size_t begin2 = clock();for (size_t i = 0; i < 100000; ++i)TestFunc2(a);size_t end2 = clock();// 分别计算两个函数运行结束后的时间cout << "TestFunc1(A)-time:" << end1 - begin1 << endl;cout << "TestFunc2(A&)-time:" << end2 - begin2 << endl;
}
int main()
{TestRefAndValue();return 0;
}
值和引用作为返回值类型的效率差距
#include <time.h>
struct A
{int a[10000];
}a;
// 值返回
A TestFunc1()
{ return a;
}
// 引用返回
A& TestFunc2()
{ return a;
}
void TestRefAndValue()
{// 以值作为函数的返回值类型size_t begin1 = clock();for (size_t i = 0; i < 100000; ++i)TestFunc1();size_t end1 = clock();// 以引用作为函数的返回值类型size_t begin2 = clock();for (size_t i = 0; i < 100000; ++i)TestFunc2();size_t end2 = clock();// 计算两个函数运算完成之后的时间cout << "TestFunc1 time:" << end1 - begin1 << endl;cout << "TestFunc2 time:" << end2 - begin2 << endl;
}
int main()
{TestRefAndValue();return 0;
}
通过上述代码的比较,我们发现传值和引用在作为传参以及返回值类型上效率相差很大。传引用的效率远高于传值。因此能使用引用就尽量使用引用,提高效率。
2.7 引用和指针的区别
在语法概念上引用就是一个别名,没有独立空间,和其引用实体共用同一块空间。
但在底层实现上实际是有空间的,因为引用是按照指针方式来实现的。这点我们可以参照二者编译后生成的汇编代码证明
int main()
{//引用int a = 10;int& ra = a;//指针ra = 20;int* pa = &a;*pa = 20;return 0;
}
可见,引用和指针的汇编代码是一模一样的,最后都是通过变量a的地址来修改a。
不过,引用和指针还是有不同点的,如下:
- 引用概念上定义一个变量的别名,指针存储一个变量地址。
- 引用在定义时必须初始化,指针没有要求
- 引用在初始化时引用一个实体后,就不能再引用其他实体,而指针可以在任何时候指向任何一个同类型实体
- 引用必须初始化,故没有NULL引用,但有NULL指针
- sizeof的含义不同,sizeof(引用变量)的结果为引用实体的类型大小,而sizeof(指针)始终是地址空间所占字节个数(32位平台下占4个字节,64位平台下占8个字节)
- 引用自增即引用的实体增加1,指针自增即指针向后偏移一个类型的大小
- 有多级指针,但是没有多级引用
- 访问实体方式不同,指针需要显式解引用,引用编译器自己处理
- 从安全性的角度,引用比指针使用起来相对更安全
三. 内联函数
3.1 内联函数的概念
以inline关键字修饰的函数叫做内联函数,编译时C++编译器会在调用内联函数的地方展开,不会调用函数建立栈帧,因此内联函数提升程序运行的效率。
我们可以通过汇编代码来验证加上inline的函数是否会被调用
没加inline关键字:
int Add(int x, int y)
{return x + y;
}
int main()
{int ans = 0;ans = Add(1, 2);return 0;
}
加上inline关键字:
inline int Add(int x, int y)
{return x + y;
}
int main()
{int ans = 0;ans = Add(1, 2);return 0;
}
可以看到,内联函数并不会生成对应的call指令,而是直接被替换到函数调用处,减少了调用函数建立栈帧的开销。
注意事项:
内联函数的效果需要在release模式才会体现。因为在debug模式下编译器默认不会对代码进行优化,顾不会进行展开。当然我们也可以进行设置,方法如下(VS2022):
1、找到当前项目属性设置页:
2、设置调试信息格式:
3、设置内联函数扩展:
3.2 内联函数的特性
主要有如下几点特性:
- inline是一种以空间换时间的做法,如果编译器将函数当成内联函数处理,在编译阶段,会用函数体替换函数调用。缺陷:可能会使目标文件变大;优势:少了调用建立栈帧开销,提高程序运行效率。
- inline对于编译器而言只是一个建议,不同编译器关于inline实现机制可能不同,一般建
议:将函数规模较小(即函数不是很长,具体没有准确的说法,取决于编译器内部实现)、不是递归、且频繁调用的函数采用inline修饰,否则编译器会忽略inline特性(编译器也是很聪明的,可不要贪杯噢)。以下为《C++prime》第五版关于inline的描述:
- inline不建议声明和定义分离,分离会导致链接错误。因为inline被展开,符号表中就没有函数地址了,链接就会找不到。
// in.h #include <iostream> using namespace std; inline void f(int i);// in.cpp #include "in.h" void fun(int i) {cout << i << endl; }// main.cpp #include "in.h" int main() {fun(10);return 0; }
报错原因:由于in.h文件中只有函数的声明没有定义,顾在编译阶段main.cpp中的fun() 函数无法进行展开,只能在链接阶段进行链接。但是由于in.cpp的fun()函数被声明为内联函数,fun()函数并不会进入符号表,最后就会导致链接时找不到函数地址,报错。
以上,就是本期的全部内容啦🌸
制作不易,能否点个赞再走呢🙏
相关文章:

【C++深入浅出】初识C++中篇(引用、内联函数)
目录 一. 前言 二. 引用 2.1 引用的概念 2.2 引用的使用 2.3 引用的特性 2.4 常引用 2.5 引用的使用场景 2.6 传值、传引用效率比较 2.7 引用和指针的区别 三. 内联函数 3.1 内联函数的概念 3.2 内联函数的特性 一. 前言 上期说道,C是在C的基础之上&…...

前端:VUE2中的父子传值
文章目录 一、背景什么是父子传值二、业务场景子传父1、在父页面中引入子页面2、子传父:父组件标识3、子传父:子组件标识 父传子父组件调用子组件中的方法 总结: 一、背景 最近做项目中需要使用到流工作,在这里流工作需要用到父子…...

【100天精通python】Day40:GUI界面编程_PyQt 从入门到实战(完)_网络编程与打包发布
目录 8 网络编程 8.1 使用PyQt 网络模块进行网络通信 服务器端示例 客户端示例 8.2 处理网络请求和响应 9 打包和发布 9.1 创建可执行文件或安装程序 9.2 解决依赖问题 9.3 发布 PyQt 应用到不同平台 9.3.1 发布到 Windows 9.3.2 发布到 macOS 9.3.3 发布到 Linux 9…...

Redis——set类型详解
概要 Set(集合),将一些有关联的数据放到一起,集合中的元素是无序的,并且集合中的元素是不能重复的 之前介绍的list就是有序的,对于列表来说[1, 2, 3] 和 [2, 1, 3]是两个不同的列表,而对于集合…...

redis---》高级用法之慢查询/pipline与事务/发布订阅/bitmap位图/HyperLogLog/GEO地理位置信息/持久化
高级用法之慢查询 # 配置一个时间,如果查询时间超过了我们设置的时间,我们就认为这是一个慢查询 # 配置的慢查询,只在命令执行阶段# 慢查询演示-设置慢查询---》只要超过某个时间的命令---》都会保存起来# 设置记录所有命令CONFIG SET slowl…...

Find My资讯|苹果Vision Pro开发者需将设备配对 AirTag
最近苹果Vision Pro获开发者申请,苹果要求获批的申请者使用 Measure and Fit 应用确认合适的佩戴尺寸,并会根据申请者提交的信息,定制不同的 Vision Pro 开发者套件,以便于契合申请者的面部特征,提供更好的佩戴体验。 …...

Go 语言中排序的 3 种方法
原文链接: Go 语言中排序的 3 种方法 在写代码过程中,排序是经常会遇到的需求,本文会介绍三种常用的方法。 废话不多说,下面正文开始。 使用标准库 根据场景直接使用标准库中的方法,比如: sort.Intsso…...

12----Emoji表情
本节我们主要讲解markdown的Emoji 在 Markdown 里使用 Emoji 表情有两种方法:一种是直接输入 Emoji 表情,另一种是使用 Emoji 表情短码(emoji shartcodes)。 一、打印方式: 直接输入 Emoji 表情:在 Markdown 中,可以直接输入 Em…...

C++四种强制类型转换
一、C强制转换与C强制转换 c语言强制类型转换主要用于基础的数据类型间的转换,语法为: (type-id)expression//转换格式1 type-id(expression)//转换格式2c除了能使用c语言的强制类型转换外,还新增了四种强制类型转换:static_cas…...

git仓库新建上传记录
新建git仓会出现版本分支问题,解决过程: 其他的前期绑定之类的传送:https://blog.csdn.net/qq_37194189/article/details/130767397 大概思路:新建一个分支,上传,合并,删除分支 git branch …...

flutter调用so
lutter是一种基于Dart语言的跨平台开发框架,通常用于开发Android和iOS应用程序。如果您想要在Flutter应用程序中调用一个SO库,您可以按照以下步骤进行操作: 首先,将您的SO库文件复制到Flutter项目的“lib”目录下。 接下来&…...

c#依赖注入
依赖注入(Dependency Injection,简称 DI)是一种设计模式,用于将对象的创建和管理责任从使用它的类中分离出来,从而实现松耦合和易于测试的代码。在 C# 中,依赖注入通常通过以下方式实现: 构造函数注入(Constructor Injection): 这是最常见的依赖注入方式,通过类的构…...

Django框架使用定时器-APScheduler实现定时任务:django实现简单的定时任务
一、系统环境依赖 系统:windows10 python: python3.9.0 djnago3.2.0 APScheduler3.10.1 二、django项目配置 1、创建utils包,在包里面创建schedulers包 utils/schedulers/task.py #1、设置 Django 环境,就可以导入项目的模型类这些了 …...

Go学习笔记之数据类型
文章目录 GO数据类型数组array切片slice集合map结构体make和new GO数据类型 在go语言中,定义的全局数据结构不使用不会报错,定义的局部数据结构必须使用,否则报错;建议定义的数据类型就要使用,要么不定义。 数组array …...

Spring Cloud 微服务
前言 Spring Cloud 中的所有子项目都依赖Spring Boot框架,所以Spring Boot 框架的版本号和Spring CLoud的版本号之间也存在以来及兼容关系。 Spring Cloud生态下的服务治理的解决方案主要有两个: Spring Cloud Netfix 和 Spring Cloud Alibaba。这两个…...

SpringBoot属性配置
SpringBoot提供了多种属性配置方式 application.properties server.port80 application.yml server:port: 81application.yaml server:port: 82SpringBoot配置文件加载顺序 application.properties > application.yml > application.yaml常用配置文件种类 application.…...

算法通关村第十关 | 归并排序
1. 归并排序原理 归并排序(MERARE-SORT)简单来说就是将大的序列先视为若干个比较小的数组,分成比较小的结构,然后是利用归并的思想实现的排序方法,该算法采用经典的分治策略(分就是将问题分成一些小的问题分…...

SpringBoot3集成Kafka
标签:Kafka3.Kafka-eagle3; 一、简介 Kafka是一个开源的分布式事件流平台,常被用于高性能数据管道、流分析、数据集成和关键任务应用,基于Zookeeper协调的处理平台,也是一种消息系统,具有更好的吞吐量、内…...

css学习1
1、样式定义如何显示元素。 2、样式通常保存至外部的css文件中。 3、样式可以使内容与表现分离。 4、css主要有两部分组成:选择器与一条或多条声明。 选择器通常为要改变的html元素,每条声明由一个属性和一个值组成。每个属性有一个值,属性…...

rust踩雷笔记(1)——切片传参和解引用赋值
最近学习rust,网上资料还是很有限,做题遇到的问题,有时需要自己试验。把自己做题过程遇到的问题,和试验的结论,做一些简单记录。 阅读下列文字和代码 用切片(的引用)做参数要非常小心ÿ…...

安全 1自测
常见对称加密算法: DES(Data Encryption Standard):数据加密标准,速度较快,适用于加密大量数据的场合; 3DES(Triple DES):是基于DES,对一块数据用…...

寻路算法小游戏
寻路算法小demo 寻路算法有两种,一种是dfs 深度优先算法,一种是 dfs 深度优先算法 深度优先搜索的步骤分为 1.递归下去 2.回溯上来。顾名思义,深度优先,则是以深度为准则,先一条路走到底,直到达到目标。这…...

CSS基础 知识点总结
一.CSS简介 1.1 CSS简介 ① CSS指的是层叠样式表,用来控制网页外观的一门技术 ② CSS发展至今,经历过CSS1.0 CSS2.0 CSS2.1 CSS3.0这几个版本,CSS3.0是CSS最新版本 1.2 CSS引入方式 ① 在一个页面引入CSS,共有三种方式 外部…...

自动执行探索性数据分析 (EDA),更快、更轻松地理解数据
一、说明 EDA是 exploratory data analysis (探索性数据分析 )的缩写。所谓EDA就是在数据分析之前需要对数据进行以此系统性研判,在这个研判后,得到基本的数据先验知识,在这个基础上进行数据分析。本文将在R语言和python语言的探索性处理。 摄…...

【自定义系统服务】【android13】添加自定义java系统服务
背景 在平时的业务开发中,我们往往需要开发自定义的系统服务来处理自己特殊的需求,这里介绍的是添加自定义的Java系统服务,可以在系统App中直接调用 定义aidl Binder默认可以传输基本类型的数据,如果要传递类对象,则这个类需要实现序列化。我们先定义一个序列化的自定义…...

【Sklearn】基于随机梯度下降算法的数据分类预测(Excel可直接替换数据)
【Sklearn】基于随机梯度下降算法的数据分类预测(Excel可直接替换数据) 1.模型原理2.模型参数3.文件结构4.Excel数据5.下载地址6.完整代码7.运行结果1.模型原理 随机梯度下降(Stochastic Gradient Descent,SGD)是一种优化算法,用于训练模型的参数以最小化损失函数。在分…...

44、TCP报文(二)
接上节内容,本节我们继续TCP报文首部字段含义的学习。上节为止我们学习到“数据偏移”和“保留”字段。接下来我们学习后面的一些字段(暂不包含“检验和”的计算方法和选项字段)。 TCP首部结构(续) “数据偏移”和“保…...

目标检测(Object Detection)
文章目录 1. 目标检测1.1 目标检测简要概述及名词解释1.2 IOU1.3 TP TN FP FN1.4 precision(精确度)和recall(召回率) 2. 边框回归Bounding-Box regression3. Faster R-CNN3.1 Faster-RCNN:conv layer3.2 Faster-RCNN&…...

vue中实现文字检索时候将搜索内容标红
实现结果 html: <div class"searchBox"><span class"bt">标  题</span><div class"search"><div class"shuru"><!-- <span class"title">生产经营<…...

PCL protocol composition logic
PCL 协议组合逻辑 一 主体(principal)和线程(thread)的区分 1.主体:指 **协议的参与者,用X^来表示。**每个主体可以扮演一个或多个角色,如 InitCR和RespCR ; 2.线程:主…...