当前位置: 首页 > news >正文

深入浅出Pytorch函数——torch.nn.Linear

分类目录:《深入浅出Pytorch函数》总目录


对输入数据做线性变换 y = x A T + b y=xA^T+b y=xAT+b

语法

torch.nn.Linear(in_features, out_features, bias=True, device=None, dtype=None)

参数

  • in_features:[int] 每个输入样本的大小
  • out_features :[int] 每个输出样本的大小
  • bias:[bool] 若设置为False,则该层不会学习偏置项目,默认值为True

变量形状

  • 输入变量: ( N , in_features ) (N, \text{in\_features}) (N,in_features)
  • 输出变量: ( N , out_features ) (N, \text{out\_features}) (N,out_features)

变量

  • weight:模块中形状为 ( out_features , in_features ) (\text{out\_features}, \text{in\_features}) (out_features,in_features)的可学习权重项
  • bias :模块中形状为 out_features \text{out\_features} out_features的可学习偏置项

实例

>>> m = nn.Linear(20, 30)
>>> input = torch.randn(128, 20)
>>> output = m(input)
>>> print(output.size())
torch.Size([128, 30])

函数实现

class Linear(Module):r"""Applies a linear transformation to the incoming data: :math:`y = xA^T + b`This module supports :ref:`TensorFloat32<tf32_on_ampere>`.On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision<fp16_on_mi200>` for backward.Args:in_features: size of each input sampleout_features: size of each output samplebias: If set to ``False``, the layer will not learn an additive bias.Default: ``True``Shape:- Input: :math:`(*, H_{in})` where :math:`*` means any number ofdimensions including none and :math:`H_{in} = \text{in\_features}`.- Output: :math:`(*, H_{out})` where all but the last dimensionare the same shape as the input and :math:`H_{out} = \text{out\_features}`.Attributes:weight: the learnable weights of the module of shape:math:`(\text{out\_features}, \text{in\_features})`. The values areinitialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`, where:math:`k = \frac{1}{\text{in\_features}}`bias:   the learnable bias of the module of shape :math:`(\text{out\_features})`.If :attr:`bias` is ``True``, the values are initialized from:math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where:math:`k = \frac{1}{\text{in\_features}}`Examples::>>> m = nn.Linear(20, 30)>>> input = torch.randn(128, 20)>>> output = m(input)>>> print(output.size())torch.Size([128, 30])"""__constants__ = ['in_features', 'out_features']in_features: intout_features: intweight: Tensordef __init__(self, in_features: int, out_features: int, bias: bool = True,device=None, dtype=None) -> None:factory_kwargs = {'device': device, 'dtype': dtype}super().__init__()self.in_features = in_featuresself.out_features = out_featuresself.weight = Parameter(torch.empty((out_features, in_features), **factory_kwargs))if bias:self.bias = Parameter(torch.empty(out_features, **factory_kwargs))else:self.register_parameter('bias', None)self.reset_parameters()def reset_parameters(self) -> None:# Setting a=sqrt(5) in kaiming_uniform is the same as initializing with# uniform(-1/sqrt(in_features), 1/sqrt(in_features)). For details, see# https://github.com/pytorch/pytorch/issues/57109init.kaiming_uniform_(self.weight, a=math.sqrt(5))if self.bias is not None:fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight)bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0init.uniform_(self.bias, -bound, bound)def forward(self, input: Tensor) -> Tensor:return F.linear(input, self.weight, self.bias)def extra_repr(self) -> str:return 'in_features={}, out_features={}, bias={}'.format(self.in_features, self.out_features, self.bias is not None)

相关文章:

深入浅出Pytorch函数——torch.nn.Linear

分类目录&#xff1a;《深入浅出Pytorch函数》总目录 对输入数据做线性变换 y x A T b yxA^Tb yxATb 语法 torch.nn.Linear(in_features, out_features, biasTrue, deviceNone, dtypeNone)参数 in_features&#xff1a;[int] 每个输入样本的大小out_features &#xff1a;…...

Vue3.2+TS的defineExpose的应用

defineExpose通俗来讲&#xff0c;其实就是讲子组件的方法或者数据&#xff0c;暴露给父组件进行使用&#xff0c;这样对组件的封装使用&#xff0c;有很大的帮助&#xff0c;那么defineExpose应该如何使用&#xff0c;下面我来用一些实际的代码&#xff0c;带大家快速学会defi…...

牛客网Python入门103题练习|【08--元组】

⭐NP62 运动会双人项目 描述 牛客运动会上有一项双人项目&#xff0c;因为报名成功以后双人成员不允许被修改&#xff0c;因此请使用元组&#xff08;tuple&#xff09;进行记录。先输入两个人的名字&#xff0c;请输出他们报名成功以后的元组。 输入描述&#xff1a; 第一…...

Jenkins改造—nginx配置鉴权

先kill掉8082的端口进程 netstat -natp | grep 8082 kill 10256 1、下载nginx nginx安装 EPEL 仓库中有 Nginx 的安装包。如果你还没有安装过 EPEL&#xff0c;可以通过运行下面的命令来完成安装 sudo yum install epel-release 输入以下命令来安装 Nginx sudo yum inst…...

(二)VisionOS平台概述

2.VisionOS平台概述 1. VisionOS平台概述 Unity 对VisionOS的支持将 Unity 编辑器和运行时引擎的全部功能与RealityKit提供的渲染功能结合起来。Unity 的核心功能&#xff08;包括脚本、物理、动画混合、AI、场景管理等&#xff09;无需修改即可支持。这允许游戏和应用程序逻…...

菜单中的类似iOS中开关的样式

背景是我们有需求&#xff0c;做类似ios中开关的按钮。github上有一些开源项目&#xff0c;比如 SwitchButton&#xff0c; 但是这个项目中提供了很多选项&#xff0c;并且实际使用中会出现一些奇怪的问题。 我调整了下代码&#xff0c;把无关的功能都给删了&#xff0c;保留核…...

Vue 2 动态组件和异步组件

先阅读 【Vue 2 组件基础】中的初步了解动态组件。 动态组件与keep-alive 我们知道动态组件使用is属性和component标签结合来切换不同组件。 下面给出一个示例&#xff1a; <!DOCTYPE html> <html><head><title>Vue 动态组件</title><scri…...

MongoDB升级经历(4.0.23至5.0.19)

MongoDB从4.0.23至5.0.19升级经历 引子&#xff1a;为了解决MongoDB的两个漏洞决定把MongoDB升级至最新版本&#xff0c;期间也踩了不少坑&#xff0c;在这里分享出来供大家学习与避坑~ 1、MongoDB的两个漏洞 漏洞1&#xff1a;MongoDB Server 安全漏洞(CVE-2021-20330) 漏洞2…...

iPhone上的个人热点丢失了怎么办?如何修复iPhone上不见的个人热点?

个人热点功能可将我们的iPhone手机转变为 Wi-Fi 热点&#xff0c;有了Wi-Fi 热点后就可以与附近的其他设备共享其互联网连接。 一般情况下&#xff0c;个人热点打开就可以使用&#xff0c;但也有部分用户在升级系统或越狱后发现 iPhone 的个人热点消失了。 iPhone上的个人热点…...

AI 媒人:为什么图形神经网络比 MLP 更好?

一、说明 G拉夫神经网络&#xff08;GNN&#xff09;&#xff01;想象他们是人工智能世界的媒人&#xff0c;通过探索他们的联系&#xff0c;不知疲倦地帮助数据点找到朋友和人气。数字派对上的终极僚机。 现在&#xff0c;为什么这些GNN如此重要&#xff0c;你问&#xff1f;好…...

信息学奥赛一本通 1984:【19CSPJ普及组】纪念品 | 洛谷 P5662 [CSP-J2019] 纪念品

【题目链接】 ybt 1984&#xff1a;【19CSPJ普及组】纪念品 洛谷 P5662 [CSP-J2019] 纪念品 【题目考点】 1. 动态规划&#xff1a;完全背包 【解题思路】 由于小伟每天都可以买卖物品无限次&#xff0c;我们可以假想每天开始时&#xff0c;他把所有的商品都卖出&#xff…...

JVM——JVM参数指南

文章目录 1.概述2.堆内存相关2.1.显式指定堆内存–Xms和-Xmx2.2.显式新生代内存(Young Ceneration)2.3.显示指定永久代/元空间的大小 3.垃圾收集相关3.1.垃圾回收器3.2.GC记录 1.概述 在本篇文章中&#xff0c;你将掌握最常用的 JVM 参数配置。如果对于下面提到了一些概念比如…...

马上七夕到了,用各种编程语言实现10种浪漫表白方式

目录 1. 直接表白&#xff1a;2. 七夕节表白&#xff1a;3. 猜心游戏&#xff1a;4. 浪漫诗句&#xff1a;5. 爱的方程式&#xff1a;6. 爱心Python&#xff1a;7. 心形图案JavaScript 代码&#xff1a;8. 心形并显示表白信息HTML 页面&#xff1a;9. Java七夕快乐&#xff1a;…...

Spring Clould 注册中心 - Eureka,Nacos

视频地址&#xff1a;微服务&#xff08;SpringCloudRabbitMQDockerRedis搜索分布式&#xff09; Eureka 微服务技术栈导学&#xff08;P1、P2&#xff09; 微服务涉及的的知识 认识微服务-服务架构演变&#xff08;P3、P4&#xff09; 总结&#xff1a; 认识微服务-微服务技…...

使用appuploader工具发布证书和描述性文件教程

使用APPuploader工具发布证书和描述性文件教程 之前用AppCan平台开发了一个应用&#xff0c;平台可以同时生成安卓版和苹果版&#xff0c;想着也把这应用上架到App Store试试&#xff0c;于是找同学借了个苹果开发者账号&#xff0c;但没那么简单&#xff0c;还要用到Mac电脑的…...

【面试八股文】每日一题:谈谈你对IO的理解

谈谈你对IO的理解 每日一题-Java核心-谈谈你对对IO的理解【面试八股文】 1.Java基础知识 Java IO&#xff08;Input/Output&#xff09;是Java编程语言中用于处理输入和输出的一组类和接口。它提供了一种在Java程序中读取和写入数据的方法。 Java IO包括两个主要的部分&#x…...

200. 岛屿数量

思路&#xff1a;遍历整个矩阵&#xff0c;对每个格子执行以下操作&#xff1a; 如果格子是陆地&#xff08;‘1’&#xff09;&#xff0c;则将其标记为已访问&#xff08;‘0’&#xff09;&#xff0c;并从当前位置开始进行深度优先搜索&#xff0c;将与当前格子相邻的陆地都…...

【LeetCode】581.最短无序连续子数组

题目 给你一个整数数组 nums &#xff0c;你需要找出一个 连续子数组 &#xff0c;如果对这个子数组进行升序排序&#xff0c;那么整个数组都会变为升序排序。 请你找出符合题意的 最短 子数组&#xff0c;并输出它的长度。 示例 1&#xff1a; 输入&#xff1a;nums [2,6…...

曲面(弧面、柱面)展平(拉直)瓶子标签识别ocr

瓶子或者柱面在做字符识别的时候由于变形&#xff0c;识别效果是很不好的 或者是检测瓶子表面缺陷的时候效果也没有展平的好 下面介绍两个项目&#xff0c;关于曲面&#xff08;弧面、柱面&#xff09;展平&#xff08;拉直&#xff09; 项目一&#xff1a;通过识别曲面的6个点…...

知识继承概述

文章目录 知识继承第一章 知识继承概述1.背景介绍第一页 背景第二页 大模型训练成本示例第三页 知识继承的动机 2.知识继承的主要方法 第二章 基于知识蒸馏的知识继承预页 方法概览 1.知识蒸馏概述第一页 知识蒸馏概述第二页 知识蒸馏第三页 什么是知识第四页 知识蒸馏的核心目…...

Docker 离线安装指南

参考文章 1、确认操作系统类型及内核版本 Docker依赖于Linux内核的一些特性&#xff0c;不同版本的Docker对内核版本有不同要求。例如&#xff0c;Docker 17.06及之后的版本通常需要Linux内核3.10及以上版本&#xff0c;Docker17.09及更高版本对应Linux内核4.9.x及更高版本。…...

docker详细操作--未完待续

docker介绍 docker官网: Docker&#xff1a;加速容器应用程序开发 harbor官网&#xff1a;Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台&#xff0c;用于将应用程序及其依赖项&#xff08;如库、运行时环…...

【CSS position 属性】static、relative、fixed、absolute 、sticky详细介绍,多层嵌套定位示例

文章目录 ★ position 的五种类型及基本用法 ★ 一、position 属性概述 二、position 的五种类型详解(初学者版) 1. static(默认值) 2. relative(相对定位) 3. absolute(绝对定位) 4. fixed(固定定位) 5. sticky(粘性定位) 三、定位元素的层级关系(z-i…...

【AI学习】三、AI算法中的向量

在人工智能&#xff08;AI&#xff09;算法中&#xff0c;向量&#xff08;Vector&#xff09;是一种将现实世界中的数据&#xff08;如图像、文本、音频等&#xff09;转化为计算机可处理的数值型特征表示的工具。它是连接人类认知&#xff08;如语义、视觉特征&#xff09;与…...

06 Deep learning神经网络编程基础 激活函数 --吴恩达

深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...

基于SpringBoot在线拍卖系统的设计和实现

摘 要 随着社会的发展&#xff0c;社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 在线拍卖系统&#xff0c;主要的模块包括管理员&#xff1b;首页、个人中心、用户管理、商品类型管理、拍卖商品管理、历史竞拍管理、竞拍订单…...

实战三:开发网页端界面完成黑白视频转为彩色视频

​一、需求描述 设计一个简单的视频上色应用&#xff0c;用户可以通过网页界面上传黑白视频&#xff0c;系统会自动将其转换为彩色视频。整个过程对用户来说非常简单直观&#xff0c;不需要了解技术细节。 效果图 ​二、实现思路 总体思路&#xff1a; 用户通过Gradio界面上…...

uniapp 实现腾讯云IM群文件上传下载功能

UniApp 集成腾讯云IM实现群文件上传下载功能全攻略 一、功能背景与技术选型 在团队协作场景中&#xff0c;群文件共享是核心需求之一。本文将介绍如何基于腾讯云IMCOS&#xff0c;在uniapp中实现&#xff1a; 群内文件上传/下载文件元数据管理下载进度追踪跨平台文件预览 二…...

密码学基础——SM4算法

博客主页&#xff1a;christine-rr-CSDN博客 ​​​​专栏主页&#xff1a;密码学 &#x1f4cc; 【今日更新】&#x1f4cc; 对称密码算法——SM4 目录 一、国密SM系列算法概述 二、SM4算法 2.1算法背景 2.2算法特点 2.3 基本部件 2.3.1 S盒 2.3.2 非线性变换 ​编辑…...

TJCTF 2025

还以为是天津的。这个比较容易&#xff0c;虽然绕了点弯&#xff0c;可还是把CP AK了&#xff0c;不过我会的别人也会&#xff0c;还是没啥名次。记录一下吧。 Crypto bacon-bits with open(flag.txt) as f: flag f.read().strip() with open(text.txt) as t: text t.read…...