stable diffusion基础
整合包下载:秋叶大佬 【AI绘画·8月最新】Stable Diffusion整合包v4.2发布!
参照:基础04】目前全网最贴心的Lora基础知识教程!
VAE
作用:滤镜+微调

VAE下载地址:C站(https://civitai.com/models)或者启动器下载

VAE存放路径:sd-webui-aki-v4\models\VAE
Embedding
又名textual inversion,中文名嵌入or文本反转,通俗理解:提示词打包(宏)



Lora
英文全称Low-Rank Adaptation of Large Language Models,直译为大语言模型的低阶适应,这是微软的研究人员为了解决大语言模型微调而开发的一项技术
存放路径:sd-webui-aki-v4\models\Lora
功能1:对人物和物品的复刻

功能2:训练画风

功能3:固定人物的动作特征


Embeddings和Lora的区别
Embeddings文件大小几KB或几十KB,Lora几MB-一百多MB之间,Lora在做各种特征还原的时候效果要比Embeddings好得多
Embeddings不可取代的地方:比如三视图的功能,或者多视图的人物展现功能


Hypernetwork 训练画风
超网格(低配版的Lora),与Lora和Embedding类似,都是对生成的图片进行针对性的调整。主要用于训练画风,训练难度很大。最大优点:实现对画面风格的转变。


Hypernetwork通过训练可以非常神似地对角色或物件进行还原,但只能是神似,此功能比较少用到。如果想进一步更高精度的还原,还需要借助Lora乃至于Dreambooth进行训练

使用注意事项:
1.权重
2.用超网格配套的大模型效果更好
3.最好使用和超网格作者相同的参数
4.有触发词一定要使用触发词
5.新手尽量不要混用超网格
模型文件类型鉴别网站
秋叶的模型类型分辨工具地址:https://spell.novelai.dev/
相关文章:
stable diffusion基础
整合包下载:秋叶大佬 【AI绘画8月最新】Stable Diffusion整合包v4.2发布! 参照:基础04】目前全网最贴心的Lora基础知识教程! VAE 作用:滤镜微调 VAE下载地址:C站(https://civitai.com/models…...
Greiner–Hormann裁剪算法深度探索:C++实现与应用案例
介绍 在计算几何中,裁剪是一个核心的主题。特别是,多边形裁剪已经被广泛地应用于计算机图形学,地理信息系统和许多其他领域。Greiner-Hormann裁剪算法是其中之一,提供了一个高效的方式来计算两个多边形的交集、并集等。在本文中&…...
Automatically Correcting Large Language Models
本文是大模型相关领域的系列文章,针对《Automatically Correcting Large Language Models: Surveying the landscape of diverse self-correction strategies》的翻译。 自动更正大型语言模型:综述各种自我更正策略的前景 摘要1 引言2 自动反馈校正LLM的…...
【学习FreeRTOS】第8章——FreeRTOS列表和列表项
1.列表和列表项的简介 列表是 FreeRTOS 中的一个数据结构,概念上和链表有点类似,列表被用来跟踪 FreeRTOS中的任务。列表项就是存放在列表中的项目。 列表相当于链表,列表项相当于节点,FreeRTOS 中的列表是一个双向环形链表列表的…...
分布式图数据库 NebulaGraph v3.6.0 正式发布,强化全文索引能力
本次 v3.6.0 版本,主要强化全文索引能力,以及优化部分场景下的 MATCH 性能。 强化 强化增强全文索引功能,具体 pr 参见:#5567、#5575、#5577、#5580、#5584、#5587 优化 支持使用 MATCH 子句检索 VID 或属性索引时使用变量&am…...
在 ubuntu 18.04 上使用源码升级 OpenSSH_7.6p1到 OpenSSH_9.3p1
1、检查系统已安装的当前 SSH 版本 使用命令 ssh -V 查看当前 ssh 版本,输出如下: OpenSSH_7.6p1 Ubuntu-4ubuntu0.7, OpenSSL 1.0.2n 7 Dec 20172、安装依赖,依次执行以下命令 sudo apt update sudo apt install build-essential zlib1g…...
python中可以处理word文档的模块:docx模块
前言 大家早好、午好、晚好吖 ❤ ~欢迎光临本文章 话不多说,直接开搞,如果有什么疑惑/资料需要的可以点击文章末尾名片领取源码 一.docx模块 Python可以利用python-docx模块处理word文档,处理方式是面向对象的。 也就是说python-docx模块…...
TikTok或将于8月底关闭半闭环、速卖通或将推出“半托管”模式
《出海周报》是运营坛为外贸企业主和外贸人独家打造的重要资讯栏目,聚焦企业出海、海外市场动态、海外监管政策等方面,以简捷的方式,提升读者获取资讯的效率。 接下来运营坛为大家带来第15期出海周报,快来看看这周国内外市场发生了…...
《凤凰架构》第二章——访问远程服务
前言 这章挺难的,感觉离我比较远,不太好懂,简单记录吧。 这章主要讲访问远程服务,主要对比了RPC和REST的区别,可以结合知乎上的文章《既然有 HTTP 请求,为什么还要用 RPC 调用?》 这篇文章进行…...
【Diffusion】李宏毅2023机器学习Diffusion笔记
文章目录 1 想法概述2 实际过程阶段1 Add Noise阶段2 Denoise 3 数学原理4 为什么推理时要额外加入noise5 一些不知道对不对的Summary 1 想法概述 从一张充满噪声的图中不断denoise,最终得到一张clear的图片。为了确定当前图片中噪声占比的大小,同时输入…...
CloudEvents—云原生事件规范
我们的系统中或多或少都会用到如下两类业务技术: 异步任务,用于降低接口时延或削峰,提升用户体验,降低系统并发压力;通知类RPC,用于微服务间状态变更,用户行为的联动等场景; 以上两种…...
神经网络基础-神经网络补充概念-51-局部最优问题
概念 局部最优问题是在优化问题中常见的一个挑战,特别是在高维、非凸、非线性问题中。局部最优问题指的是算法在优化过程中陷入了一个局部最小值点,而不是全局最小值点。这会导致优化算法在某个局部区域停止,而无法找到更好的解。 解决方案…...
深度学习中,什么是batch-size?如何设置?
什么是batch-size? batch-size 是深度学习模型在训练过程中一次性输入给模型的样本数量。它在训练过程中具有重要的意义,影响着训练速度、内存使用以及模型的稳定性等方面。 以下是 batch-size 大小的一些影响和意义: 训练速度:较大的 bat…...
[保研/考研机试] KY26 10进制 VS 2进制 清华大学复试上机题 C++实现
题目链接: 10进制 VS 2进制http://www.nowcoder.com/share/jump/437195121691738172415 描述 对于一个十进制数A,将A转换为二进制数,然后按位逆序排列,再转换为十进制数B,我们称B为A的二进制逆序数。 例如对于十进制…...
JSP-学习笔记
文章目录 1.JSP介绍2 JSP快速入门3 JSP 脚本3.1 JSP脚本案例3.2 JSP缺点 4 EL表达式4.1 快速入门案例 5. JSTL标签6. MVC模式和三层架构6.1 MVC6.2 三层架构 7. 案例-基于MVC和三层架构实现商品表的增删改查 1.JSP介绍 概念 JSP(JavaServer Pages)是一种…...
Golang协程,通道详解
进程、线程以及并行、并发 关于进程和线程 进程(Process)就是程序在操作系统中的一次执行过程,是系统进行资源分配和调度的基本单位,进程是一个动态概念,是程序在执行过程中分配和管理资源的基本单位,每一…...
unity 之 Vector 数据类型
文章目录 Vector 1Vector 2Vector 3Vector 4 Vector 1 在Unity中,Vector1 并不是一个常见的向量类型。 如果您需要表示标量(单个值)或者只需要一维的数据,通常会直接使用浮点数(float)或整数(in…...
私密数据采集:隧道爬虫IP技术的保密性能力探究
作为一名专业的爬虫程序员,今天要和大家分享一个关键的技术,它能够为私密数据采集提供保密性能力——隧道爬虫IP技术。如果你在进行敏感数据采集任务时需要保护数据的私密性,那么这项技术将是你的守护神。 在进行私密数据采集任务时ÿ…...
使用git rebase 之后的如何恢复到原始状态
我们常常喜欢使用git rebase去切换分支提交代码,操作流程就是: 先切换分支:比如当前是master 我们修改了一堆代码产生一个commit id :5555555567777 那么我们常常比较懒就直接切换了:git checkout dev 然后呢?使用命令git rebase 5555555567777,想把这笔修改提交到d…...
matlab相机标定知识整理
matlab相机标定知识整理 单目相机标定 单目相机标定 内参矩阵:cameraParams.Intrinsics.K 或者 cameraParams.K旋转矩阵:cameraParams.RotationMatrices 有待确定 cameraParams.RotationVectors平移矩阵:cameraParams.TranslationVectors径向…...
C++初阶-list的底层
目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...
【项目实战】通过多模态+LangGraph实现PPT生成助手
PPT自动生成系统 基于LangGraph的PPT自动生成系统,可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析:自动解析Markdown文档结构PPT模板分析:分析PPT模板的布局和风格智能布局决策:匹配内容与合适的PPT布局自动…...
Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)
引言:为什么 Eureka 依然是存量系统的核心? 尽管 Nacos 等新注册中心崛起,但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制,是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...
2025盘古石杯决赛【手机取证】
前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来,实在找不到,希望有大佬教一下我。 还有就会议时间,我感觉不是图片时间,因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...
蓝桥杯3498 01串的熵
问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798, 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...
Mobile ALOHA全身模仿学习
一、题目 Mobile ALOHA:通过低成本全身远程操作学习双手移动操作 传统模仿学习(Imitation Learning)缺点:聚焦与桌面操作,缺乏通用任务所需的移动性和灵活性 本论文优点:(1)在ALOHA…...
python报错No module named ‘tensorflow.keras‘
是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...
JAVA后端开发——多租户
数据隔离是多租户系统中的核心概念,确保一个租户(在这个系统中可能是一个公司或一个独立的客户)的数据对其他租户是不可见的。在 RuoYi 框架(您当前项目所使用的基础框架)中,这通常是通过在数据表中增加一个…...
让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...
如何应对敏捷转型中的团队阻力
应对敏捷转型中的团队阻力需要明确沟通敏捷转型目的、提升团队参与感、提供充分的培训与支持、逐步推进敏捷实践、建立清晰的奖励和反馈机制。其中,明确沟通敏捷转型目的尤为关键,团队成员只有清晰理解转型背后的原因和利益,才能降低对变化的…...
