当前位置: 首页 > news >正文

网站建设服务代理商/网站优化什么意思

网站建设服务代理商,网站优化什么意思,重庆汽车网站建设,淮南网约车平台文章目录 矩阵方程有解判定定理线性方程组有解判定特化:齐次线性方程组有解判定推广:矩阵方程 A X B AXB AXB有解判定证明推论 矩阵方程有解判定定理 线性方程组有解判定 线性方程组 A x b A\bold{x}\bold{b} Axb有解的充分必要条件是它的系数矩阵A和增广矩阵 ( A , b ) (A,…

文章目录

矩阵方程有解判定定理

线性方程组有解判定

  • 线性方程组 A x = b A\bold{x}=\bold{b} Ax=b有解的充分必要条件是它的系数矩阵A和增广矩阵 ( A , b ) (A,\bold{b}) (A,b)具有相同的秩 R ( A ) = R ( A , b ) R(A)=R(A,\bold{b}) R(A)=R(A,b),记 r = R ( A ) = R ( A , b ) r=R(A)=R(A,\bold{b}) r=R(A)=R(A,b):

    • r = n r=n r=n有方程组有唯一解
    • r < n r<{n} r<n方程组有多解
  • 对于非齐次线性方程,需要计算 R ( A ) , R ( A , b ) R(A),R(A,\bold{b}) R(A),R(A,b)

  • 对于齐次线性方程只需要计算 R ( A ) R(A) R(A)

特化:齐次线性方程组有解判定

  • 这是线性方程组有解的特例,可以将定理进一步简化

  • 齐次线性方程组 A x = 0 A\bold{x}=\bold{0} Ax=0齐次方程组的情况可以理解为 b \bold{b} b中元素全为0

  • 容易知道 A x = 0 A\bold{x}=\bold{0} Ax=0总有 R ( A ) = R ( A ‾ ) = r R(A)=R(\overline{A})=r R(A)=R(A)=r,因此齐次线性方程组总是有解;

    • 我们只需要计算系数矩阵 A A A的秩 R ( A ) R(A) R(A)即可得到 r r r
    • r = n r=n r=n则方程组有唯一解,并且是零解
    • r < n r<n r<n方程组有非零解
  • 齐次线性方程组有解判定定理:齐次线性方程组 A x = 0 A\bold{x}=\bold{0} Ax=0有解的充要条件是 R ( A ) ⩽ n R(A)\leqslant{n} R(A)n;

    • 有零解(唯一解)的充要条件是 R ( A ) = n R(A)=n R(A)=n
    • 有非零解(多解)的充要条件是 R ( A ) < n R(A)<n R(A)<n;

推广:矩阵方程 A X = B AX=B AX=B有解判定

  • 这里 B B B是常数项矩阵(不再是系数矩阵的增广矩阵)
  • 定理:矩阵方程 A X = B AX=B AX=B有解的充要条件是 R ( A ) = R ( A , B ) R(A)=R(A,B) R(A)=R(A,B)
    • 注意这里 X , B X,B X,B不一定是向量,可能是多行多列的矩阵

    • 参考同济线代v6@p76@定理6

证明

  • A , X , B A,X,B A,X,B分别为 m × n m\times{n} m×n, n × l n\times{l} n×l, m × l m\times{l} m×l的矩阵

  • 对X和B按列分块:

    • X X X= ( x 1 , x 2 , ⋯ x l ) (\bold{x}_1,\bold{x}_2,\cdots \bold{x}_l) (x1,x2,xl),
    • B B B= ( b 1 , b 2 , ⋯ b l ) (\bold{b}_1,\bold{b}_2,\cdots \bold{b}_l) (b1,b2,bl)
  • 矩阵方程 A X = B AX=B AX=B等价 l l l向量方程(线性方程组)

  • A X = A ( x 1 , x 2 , ⋯ x l ) AX=A(\bold{x}_1,\bold{x}_2,\cdots \bold{x}_l) AX=A(x1,x2,xl)= ( A x 1 , A x 2 , ⋯ A x l ) (A\bold{x}_1,A\bold{x}_2,\cdots A\bold{x}_l) (Ax1,Ax2,Axl)

  • 所有 A X = B AX=B AX=B等价于 ( A x 1 , A x 2 , ⋯ A x l ) (A\bold{x}_1,A\bold{x}_2,\cdots A\bold{x}_l) (Ax1,Ax2,Axl)= ( b 1 , b 2 , ⋯ b l ) (\bold{b}_1,\bold{b}_2,\cdots \bold{b}_l) (b1,b2,bl)

    • 又等价于 A x i = b i ( i = 1 , 2 , ⋯ , l ) A\bold{x}_i=\bold{b}_i(i=1,2,\cdots,l) Axi=bi(i=1,2,,l) l l l个线性方程组
    • 这些线性方程的共同点是有相同的系数矩阵 A A A,这意味着这 l l l个线性方程组以及原矩阵方程的系数矩阵的秩都是相等的,这个结论很重要
    • 而位置数矩阵和常数项矩阵又是相对独立的
  • R ( A ) = r R(A)=r R(A)=r,且 A A A行阶梯形矩阵为 A ~ \widetilde{A} A ,则 A ~ \widetilde{A} A r r r个非零行,且 A ~ \widetilde{A} A 的后 m − r m-r mr行为全零行

  • ( A , B ) (A,B) (A,B)= ( A , b 1 , b 2 , ⋯ b l ) (A,\bold{b}_1,\bold{b}_2,\cdots \bold{b}_l) (A,b1,b2,bl) ∼ r \overset{r}{\sim} r ( A ~ , b 1 ~ , ⋯ , b l ~ ) {(\widetilde{A},\widetilde{\bold{b}_1},\cdots,\widetilde{\bold{b}_l})} (A ,b1 ,,bl )

    • 其中 A ~ \widetilde{A} A A A A行阶梯形矩阵
    • 而向量 b 1 ~ , ⋯ , b l ~ \widetilde{\bold{b}_1},\cdots,\widetilde{\bold{b}_l} b1 ,,bl b 1 , b 2 , ⋯ b l \bold{b}_1,\bold{b}_2,\cdots \bold{b}_l b1,b2,bl A ∼ r A ~ A\overset{r}{\sim}\widetilde{A} ArA 执行相同的行变换后的结果,即 b i ~ \widetilde{\bold{b}_i} bi 并不表示某个行阶梯形矩阵
  • 将等价的第 i i i个线性方程组的增广矩阵初等行变换为行阶梯形矩阵: ( A , b i ) (A,\bold{b}_i) (A,bi) ∼ r \overset{r}{\sim} r ( A ~ , b i ~ ) {(\widetilde{A},\widetilde{\bold{b}_i})} (A ,bi ), ( i = 1 , 2 , ⋯ , l ) (i=1,2,\cdots,l) (i=1,2,,l)

  • A X = B AX=B AX=B有解 ⇔ \Leftrightarrow A x i = b i {A\bold{x}_i=\bold{b}_i} Axi=bi ( i = 1 , 2 , ⋯ , l ) (i=1,2,\cdots,l) (i=1,2,,l)有解

    • ⇔ \Leftrightarrow R ( A , b i ) {R(A,\bold{b}_i)} R(A,bi)= R ( A ) = r R(A)=r R(A)=r, ( i = 1 , 2 , ⋯ , l ) (i=1,2,\cdots,l) (i=1,2,,l)
    • ⇔ \Leftrightarrow b i ~ {\widetilde{\bold{b}_i}} bi 的后 m − r m-r mr个分量(元)全为0 ( i = 1 , 2 , ⋯ , l ) (i=1,2,\cdots,l) (i=1,2,,l)
      • 因为,若后 m − r m-r mr个元中存在非零元,会导致 R ( A , b i ) > R ( A ) R(A,\bold{b}_i)>R(A) R(A,bi)>R(A),导致 A x i = b i {A\bold{x}_i=\bold{b}_i} Axi=bi无解
      • 而其前 r r r个元的取值情况不会影响 R ( A , b i ) {R(A,\bold{b}_i)} R(A,bi)= R ( A ) R(A) R(A)的成立,我们不关心
    • ⇔ \Leftrightarrow 矩阵 ( b 1 ~ , ⋯ , b l ~ ) (\widetilde{\bold{b}_1},\cdots,\widetilde{\bold{b}_l}) (b1 ,,bl )的后 m − r m-r mr行全为0;
    • ⇔ \Leftrightarrow 行阶梯形矩阵 D ~ \widetilde{D} D = ( A ~ , b 1 ~ , ⋯ , b l ~ ) (\widetilde{A},\widetilde{\bold{b}_1},\cdots,\widetilde{\bold{b}_l}) (A ,b1 ,,bl )的后 m − r m-r mr行全为0
    • ⇔ \Leftrightarrow R ( D ~ ) ⩽ m − ( m − r ) = r R(\widetilde{D})\leqslant{m-(m-r)=r} R(D )m(mr)=r,又因为 D ~ \widetilde{D} D 包含了 A ~ \widetilde{A} A ,所以 R ( A ~ ) = r ⩽ R ( D ~ ) R(\widetilde{A})=r\leqslant{R(\widetilde{D})} R(A )=rR(D )
    • ⇔ \Leftrightarrow R ( D ~ ) = r R(\widetilde{D})=r R(D )=r
    • ⇔ R ( A , B ) = R ( A ) \Leftrightarrow{R(A,B)=R(A)} R(A,B)=R(A)
  • 因此,如果 A X = B AX=B AX=B有解,则 R ( A , B ) = R ( A ) R(A,B)=R(A) R(A,B)=R(A)

推论

  • A X = B AX=B AX=B有解,则 R ( B ) ⩽ R ( A , B ) = R ( A ) R(B)\leqslant{R(A,B)}=R(A) R(B)R(A,B)=R(A),所以 R ( B ) ⩽ R ( A ) R(B)\leqslant{R(A)} R(B)R(A),即常数项矩阵的秩小于系数矩阵的秩
  • A X = B AX=B AX=B两边同时取转置运算,有 X T A T = B T X^TA^T=B^T XTAT=BT,同理有 R ( B T ) ⩽ R ( X T ) R(B^T)\leqslant R(X^T) R(BT)R(XT),即 R ( B ) ⩽ R ( X ) R(B)\leqslant{R(X)} R(B)R(X)
  • 综上, R ( B ) ⩽ min ⁡ ( R ( A ) , R ( X ) ) R(B)\leqslant{\min(R(A),R(X))} R(B)min(R(A),R(X))

相关文章:

LA@2@1@线性方程组和简单矩阵方程有解判定定理

文章目录 矩阵方程有解判定定理线性方程组有解判定特化:齐次线性方程组有解判定推广:矩阵方程 A X B AXB AXB有解判定证明推论 矩阵方程有解判定定理 线性方程组有解判定 线性方程组 A x b A\bold{x}\bold{b} Axb有解的充分必要条件是它的系数矩阵A和增广矩阵 ( A , b ) (A,…...

如何使用ChatGPT创作一个小说式的虚构的世界

世界构建也许是小说写作中最重要的一环&#xff0c;但也可能非常耗时。让ChatGPT加快这一过程吧。 写小说最棒的一点就是有机会从零开始创造一个新世界。你可以创造超凡脱俗的景观&#xff0c;赋予人物魔法。神话故事可以存在于你小说中的现实世界&#xff0c;而传统可以帮助你…...

用于量子通信和互联网的光量子芯片

近年来&#xff0c;新兴的光量子芯片在量子通信和量子互联网领域取得了重大进展。光量子芯片芯片具有可扩展、稳定和低成本等特点&#xff0c;为微型化应用开辟了新的可能性。 7月14日&#xff0c;一篇发表在《light: science & applications》的文章概述了用于量子通信的光…...

11. Vuepress2.x 关闭夜间模式

修改 docs/.vuepress/config.ts 配置文件 设置 themeConfig.darkMode属性详见 官网 module.exports {host: localhost, // ipport: 8099, //端口号title: 我的技术站, // 设置网站标题description: 描述&#xff1a;我的技术站,base: /, //默认路径head: [// 设置 favor.ico&a…...

netty实现websocket通信

调用注意&#xff1a; 1、端口一定要是可以访问的。 2、依赖必须注意和其他版本冲突&#xff0c;比如redis的springboot starter包&#xff0c;会与5.0版本冲突。 <netty.version>4.1.74.Final</netty.version> <dependency><groupId>io…...

两个list如何根据一个list中的属性去过滤掉另一个list中不包含这部分的属性,用流实现

你可以使用Java 8的流来实现这个功能。假设你有两个包含对象的List&#xff0c;每个对象有一个属性&#xff0c;你想根据一个List中的属性值来过滤掉另一个List中不包含这个属性值的对象。下面是一种使用流的方式来实现这个功能 import java.util.ArrayList; import java.util…...

Blender 混合现实3D模型制作指南【XR】

本教程分步展示如何&#xff1a; 减少 3D 模型的多边形数量&#xff0c;使其满足 Microsoft Dynamics 365 Guides 和使用 Microsoft Power Apps 创建的应用程序中包含的混合现实组件的特定性能目标的性能需求。将 3D 模型的多种材质&#xff08;颜色&#xff09;组合成可应用于…...

kubeasz在线安装K8S集群单master集群(kubeasz安装之二)

一、介绍 Kubeasz 是一个基于 Ansible 自动化工具&#xff0c;用于快速部署和管理 Kubernetes 集群的工具。它支持快速部署高可用的 Kubernetes 集群&#xff0c;支持容器化部署&#xff0c;可以方便地扩展集群规模&#xff0c;支持多租户&#xff0c;提供了强大的监控和日志分…...

『C语言』数据在内存中的存储规则

前言 小羊近期已经将C语言初阶学习内容与铁汁们分享完成&#xff0c;接下来小羊会继续追更C语言进阶相关知识&#xff0c;小伙伴们坐好板凳&#xff0c;拿起笔开始上课啦~ 一、数据类型的介绍 我们目前已经学了基本的内置类型&#xff1a; char //字符数据类型 short …...

基于ssm+vue的新能源汽车在线租赁管理系统源码和论文PPT

基于ssmvue的新能源汽车在线租赁管理系统源码和论文PPT010 开发环境&#xff1a; 开发工具&#xff1a;idea 数据库mysql5.7(mysql5.7最佳) 数据库链接工具&#xff1a;navcat,小海豚等 开发技术&#xff1a;java ssm tomcat8.5 摘 要 随着科学技术的飞速发展&#xff0…...

深入解析IDS/IPS与SSL/TLS和网络安全

目录 防火墙 IDS IPS DMZ VPN VPS SSL/TLS 动态IP 静态IP 防火墙 防火墙是一种网络安全设备&#xff0c;用于监控和控制网络流量&#xff0c;保护网络免受未经授权的访问、恶意攻击和威胁。防火墙可以基于规则进行数据包过滤&#xff0c;允许或阻止特定类型的流量通过…...

在Visual Studio上,使用OpenCV实现人脸识别

1. 环境与说明 本文介绍了如何在Visual Studio上&#xff0c;使用OpenCV来实现人脸识别的功能 环境说明 : 操作系统 : windows 10 64位Visual Studio版本 : Visual Studio Community 2022 (社区版)OpenCV版本 : OpenCV-4.8.0 (2023年7月最新版) 实现效果如图所示&#xff0…...

搭建openGauss 5.0 一主一从复制集群

openGauss是一款支持SQL2003标准语法&#xff0c;支持主备部署的高可用关系型国产数据库。 多种存储模式支持复合业务场景&#xff0c;新引入提供原地更新存储引擎。NUMA化数据结构支持高性能。Paxos一致性日志复制协议&#xff0c;主备模式&#xff0c;CRC校验支持高可用。支…...

Docker碎碎念

docker和虚拟机的区别 虚拟机&#xff08;VM&#xff09;是通过在物理硬件上运行一个完整的操作系统来实现的。 每个虚拟机都有自己的内核、设备驱动程序和用户空间&#xff0c;它们是相互独立且完全隔离的。 虚拟机可以在不同的物理服务器之间迁移&#xff0c;因为它们是以整…...

【C++】extern

目录 1. 变量声明和定义的关系 2. 默认状态下&#xff0c;const对象仅在文件内有效 3. 链接指示&#xff1a;extern "C" 3.1 声明一个非C的函数 3.2 链接指示与头文件 3.3 指向extern "C"函数的指针 3.4 链接指示对整个声明都有效 3.5 导出C函数到…...

2023全网Mysql 合集(25w字)附课程 从安装到高级,实战

mysql学习 1.安装mysql 安装教程 2.mysql的详细学习教程 mysql的详细教程 3.mysql 的高级优化 MySQL高级篇&#xff08;SQL优化、索引优化、锁机制、主从复制&#xff09; 4.MySQL 面试 MySQL数据库面试题总结 二.mysql实战 一、创建数据表并插入数据 1、学生表 Stud…...

张俊林:由ChatGPT反思大语言模型(LLM)的技术精要

转自&#xff1a;https://mp.weixin.qq.com/s/eMrv15yOO0oYQ-o-wiuSyw 导读&#xff1a;ChatGPT出现后惊喜或惊醒了很多人。惊喜是因为没想到大型语言模型&#xff08;LLM,Large Language Model&#xff09;效果能好成这样&#xff1b;惊醒是顿悟到我们对LLM的认知及发展理念&a…...

单机编排docker compose

Docker之旅(8)-单机编排docker compose 当在宿主机启动较多的容器时候&#xff0c;如果都是手动操作会觉得比较麻烦而且容易出错&#xff0c; 并且每个容器之间也会有先后启动的顺序依赖等。这个时候推荐使用 docker 单机 编排工具 docker-compose&#xff0c;docker-compose …...

C++ 面向对象三大特性——多态

✅<1>主页&#xff1a;我的代码爱吃辣 &#x1f4c3;<2>知识讲解&#xff1a;C 继承 ☂️<3>开发环境&#xff1a;Visual Studio 2022 &#x1f4ac;<4>前言&#xff1a;面向对象三大特性的&#xff0c;封装&#xff0c;继承&#xff0c;多态&#xff…...

相同数字的积木游戏

题目描述 题目描述 小华和小薇一起通过玩积木游戏学习数学。 他们有很多积木&#xff0c;每个积木块上都有一个数字&#xff0c;积木块上的数字可能相同。 小华随机拿一些积木挨着排成一排&#xff0c;请小薇找到这排积木中数字相同目所处位置最远的2块积木块&#xff0c;计算…...

安防监控视频云存储EasyCVR平台H.265转码功能更新:新增分辨率配置

安防视频集中存储EasyCVR视频监控综合管理平台可以根据不同的场景需求&#xff0c;让平台在内网、专网、VPN、广域网、互联网等各种环境下进行音视频的采集、接入与多端分发。在视频能力上&#xff0c;视频云存储平台EasyCVR可实现视频实时直播、云端录像、视频云存储、视频存储…...

图数据库_Neo4j学习cypher语言_常用函数_关系函数_字符串函数_聚合函数_数据库备份_数据库恢复---Neo4j图数据库工作笔记0008

然后再来看一些常用函数,和字符串函数,这里举个例子,然后其他的 类似 可以看到substring字符串截取函数 可以看到截取成功 聚合函数 这里用了一个count(n) 统计函数,可以看到效果 关系函数,我们用过就是id(r) 可以取出对应的r的id来这样.....

LeetCode150道面试经典题-- 加一(简单)

1.题目 给定一个由 整数 组成的 非空 数组所表示的非负整数&#xff0c;在该数的基础上加一。 最高位数字存放在数组的首位&#xff0c; 数组中每个元素只存储单个数字。 你可以假设除了整数 0 之外&#xff0c;这个整数不会以零开头。 2.示例 示例 1&#xff1a; 输入&am…...

Centos7 配置Docker镜像加速器

docker实战(一):centos7 yum安装docker docker实战(二):基础命令篇 docker实战(三):docker网络模式(超详细) docker实战(四):docker架构原理 docker实战(五):docker镜像及仓库配置 docker实战(六):docker 网络及数据卷设置 docker实战(七):docker 性质及版本选择 认知升…...

微信小程序中pdf的上传、下载及excel导出

微信小程序中pdf的上传、下载及excel导出 pdf上传上传1&#xff1a;上传2&#xff1a; pdf下载导出excel pdf上传 上传两种方法&#xff1a; 上传1&#xff1a; 1.用vant weapp组件&#xff1a; //pdf上传--vant weapp组件 <view class"content"><van-u…...

Python_11 类的方法

一、查缺补漏 1. 实例方法必须用类实例化对象()来调用&#xff0c;用类来调用时会执行&#xff0c;但是self中不是实例化类地址而是传的字符串 二、类中的方法 1. 实例方法 1. 定义在类里面的普通方法(函数) 2. 第一个参数必须是类实例&#xff0c;在方法调用的时候会自动…...

CentOS系统环境搭建(一)——Centos7更新

Centos7更新 更新 yum&#xff08;包括centos内核&#xff09; yum update执行后&#xff0c;系统将更新到centos 7.9。 从这一篇文章开始开始&#xff0c;我将开始在centos系统环境搭建&#x1f517;https://blog.csdn.net/weixin_43982359/category_12411496.html中开始对C…...

Mariadb高可用MHA

目录 前言 一、概述 &#xff08;一&#xff09;、概念 &#xff08;二&#xff09;、组成 &#xff08;三&#xff09;、特点 &#xff08;四&#xff09;、工作原理 二、案例 &#xff08;一&#xff09;、构建MHA 1.所有节点ssh免密登录 2、MySQL主从复制 &#x…...

SASS 学习笔记 II

SASS 学习笔记 II 上篇笔记&#xff0c;SASS 学习笔记 中包含&#xff1a; 配置 变量 嵌套 这里加一个扩展&#xff0c;嵌套中有一个 & 的用法&#xff0c;使用 & 可以指代当前 block 中的 selector&#xff0c;后面可以追加其他的选择器。如当前的 scope 是 form&a…...

提高 Snowflake 工作效率的 6 大工具

推荐&#xff1a;使用 NSDT场景编辑器 助你快速搭建可二次编辑的3D应用场景 Snowflake 彻底改变了企业存储、处理和分析数据的方式&#xff0c;提供了无与伦比的灵活性、可扩展性和性能。但是&#xff0c;与任何强大的技术一样&#xff0c;要真正利用其潜力&#xff0c;必须拥有…...