当前位置: 首页 > news >正文

第四章,向量组,2-矩阵等价与向量组等价的关系

第四章,向量组,2-矩阵等价与向量组等价的关系

    • 矩阵乘法与线性表示
    • 矩阵等价与向量组等价

玩转线性代数(23)线性组合与线性表示的应用的笔记,相关证明以及例子见原文

矩阵乘法与线性表示

设有 A m ∗ n B n ∗ l = C m ∗ l A_{m*n}B_{n*l}=C_{m*l} AmnBnl=Cml,那么A、B矩阵的行、列向量组与C的行、列向量组之间有什么关系呢?
先看C的行向量组, C = A B C=AB C=AB,根据初等变换的知识,A在B左边,说明是对B进行的行变换(此时的行变换不一定是初等行变换,也不一定是可逆的),将B的行变成了C的行,故C的行向量组可以由B的行向量组来线性表示,如下:
( a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ ⋮ a m 1 a m 2 ⋯ a m n ) ( b 1 T b 2 T ⋮ b n T ) = ( c 1 T c 2 T ⋮ c m T ) \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \\ \end{pmatrix} \begin{pmatrix} b_1^T\\ b_2^T\\ \vdots \\ b_n^T\\ \end{pmatrix}=\begin{pmatrix} c_1^T\\ c_2^T\\ \vdots \\ c_m^T\\ \end{pmatrix} a11a21am1a12a22am2a1na2namn b1Tb2TbnT = c1Tc2TcmT
同理,C的列向量组可由A的列向量组线性表示
( c 1 c 2 ⋯ c l ) = ( a 1 a 2 ⋯ a n ) ( b 11 b 12 ⋯ b 1 n b 21 b 22 ⋯ b 2 n ⋮ ⋮ ⋮ ⋮ b n 1 b n 2 ⋯ b n l ) \begin{pmatrix} c_1 & c_2 & \cdots & c_l \end{pmatrix}= \begin{pmatrix} a_1 & a_2 & \cdots & a_n \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nl} \\ \end{pmatrix} (c1c2cl)=(a1a2an) b11b21bn1b12b22bn2b1nb2nbnl

矩阵等价与向量组等价

矩阵等价是两个矩阵可经过初等变换来相互转化;两个向量组等价是指它们可以相互线性表示。两个向量组等价的判断条件也已经清楚,就是 R ( A ) = R ( B ) = R ( A , B ) R(A)=R(B)=R(A,B) R(A)=R(B)=R(A,B)
矩阵等价有行等价、列等价和等价有一种形式,如何判断两个矩阵等价?首先矩阵是同型矩阵,其次矩阵A与B的秩相等。因为若 R ( A ) = R ( B ) R(A)=R(B) R(A)=R(B),则A与B的标准形是相同的,即
A ∼ F = ( E r 0 0 0 ) A\sim F=\begin{pmatrix} E_r & 0\\ 0 & 0 \end{pmatrix} AF=(Er000),同时 B ∼ F = ( E r 0 0 0 ) B\sim F=\begin{pmatrix} E_r & 0\\ 0 & 0 \end{pmatrix} BF=(Er000)
根据等价矩阵的传递性知, A ∼ B A\sim B AB
由此可知,对两个向量组 A : a 1 , a 2 , ⋯ , a m , B : b 1 , b 2 , ⋯ , b l A:a_1,a_2,\cdots,a_m, B:b_1,b_2,\cdots,b_l A:a1,a2,,am,B:b1,b2,,bl和两个矩阵 A = ( a 1 , a 2 , ⋯ , a m ) , B : ( b 1 , b 2 , ⋯ , b l ) A=(a_1,a_2,\cdots,a_m), B:(b_1,b_2,\cdots,b_l) A=(a1,a2,,am),B:(b1,b2,,bl),向量组A与B等价 ⇒ \Rightarrow 矩阵A与B等价,反之不成立。

若矩阵A与B等价,可以推出的结论:
(1)若 A ∼ r B A^r_{\sim}B ArB,则存在可逆矩阵P,使PA=B,即B=PA,所以B的行向量组可由A的行向量组线性表示,同时有 A = P − 1 B A=P^{-1}B A=P1B,所以A的行向量组也可以由B的行向量组线性表示,说明A与B的行向量组等价;
(2)若 A ∼ c B A^c_{\sim}B AcB,A与B的列向量组是等价的。

其实线性表示与线性组合这些概念也可以用到方程组上.对方程组A的各个方程作线性运算所得到的一个方程就称为方程组A的一个线性组合;若其中一个方程可以写成其它方程的线性组合,则称该方程可由其它方程线性表示,若方程组B的每个方程都可由方程组A的线性表示,就称方程组B能由方程组A线性表示,这时方程组A 的解一定是方程组B的解;若方程组A与方程组B能相互线性表示,就称这两个方程组等价,等价的方程组一定同解

为什么方程组B能由方程组A线性表示,方程组A 的解一定是方程组B的解?
理解:方程组B能由方程组A线性表示,即若 x ∈ A x\in A xA一定有 x ∈ B x\in B xB,所以A的解都是B的解,B的解集合范围大。

相关文章:

第四章,向量组,2-矩阵等价与向量组等价的关系

第四章,向量组,2-矩阵等价与向量组等价的关系 矩阵乘法与线性表示矩阵等价与向量组等价 玩转线性代数(23)线性组合与线性表示的应用的笔记,相关证明以及例子见原文 矩阵乘法与线性表示 设有 A m ∗ n B n ∗ l C m ∗ l A_{m*n}B_{n*l}C_{m…...

Flink源码之StreamTask启动流程

每个ExecutionVertex分配Slot后&#xff0c;JobMaster就会向Slot所在的TaskExecutor提交RPC请求执行Task&#xff0c;接口为TaskExecutorGateway::submitTask CompletableFuture<Acknowledge> submitTask(TaskDeploymentDescriptor tdd, JobMasterId jobMasterId, RpcTi…...

【BASH】回顾与知识点梳理(三十)

【BASH】回顾与知识点梳理 三十 三十. 进程的观察30.1 ps &#xff1a;将某个时间点的进程运作情况撷取下来仅观察自己的 bash 相关进程&#xff1a; ps -l观察系统所有进程&#xff1a; ps aux 30.2 top&#xff1a;动态观察进程的变化30.3 pstree 该系列目录 --> 【BASH】…...

亿赛通电子文档安全管理系统任意文件上传漏洞复现

0x01 产品简介 亿赛通电子文档安全管理系统&#xff08;简称&#xff1a;CDG&#xff09;是一款电子文档安全加密软件&#xff0c;该系统利用驱动层透明加密技术&#xff0c;通过对电子文档的加密保护&#xff0c;防止内部员工泄密和外部人员非法窃取企业核心重要数据资产&…...

java:数据库连接池

概念 举个例子来说吧&#xff0c;假设我们开了一家餐馆&#xff0c;客人来了&#xff0c;我们就请一个服务员&#xff0c;使用完后再把他开除了&#xff0c;下个客人再来了&#xff0c;我们再请一个&#xff0c;使用完再开除。 这是不是我们现在使用 JDBC 连接数据库的场景&a…...

可视化绘图技巧100篇基础篇(三)-条形图(一)

目录 前言 适用场景 图例 条形图分类 多系列条形图 单系列条形图...

如何使用Redis实现附近商家查询

导读 在日常生活中&#xff0c;我们经常能看见查询附近商家的功能。 常见的场景有&#xff0c;比如你在点外卖的时候&#xff0c;就可能需要按照距离查询附近几百米或者几公里的商家。 本文将介绍如何使用Redis实现按照距离查询附近商户的功能&#xff0c;并以SpringBoot项目…...

于vue3+vite+element pro + pnpm开源项目

河码桌面是一个基于vue3viteelement pro pnpm 创建的monorepo项目&#xff0c;项目采用的是类操作系统的web界面&#xff0c;操作起来简单又方便&#xff0c;符合用户习惯&#xff0c;又没有操作系统的复杂&#xff01; 有两个两个分支&#xff0c;一个是web版本&#xff0c;…...

18-组件化开发 根组件

组件化开发 & 根组件: 1. 组件化:一个页面可以拆分成一个个组件&#xff0c;每个组件有着自己独立的结构、样式、行为. 好处:便于维护&#xff0c;利于复用->提升开发效率 组件分类: 普通组件 , 根组件 2. 根组件:整个应用最上层的组件&#xff0c;包裹所有普通小组件…...

springboot集成ES

1.引入pom依赖2.application 配置3.JavaBean配置以及ES相关注解 3.1 Student实体类3.2 Teacher实体类3.3 Headmaster 实体类4. 启动类配置5.elasticsearchRestTemplate 新增 5.1 createIndex && putMapping 创建索引及映射 5.1.1 Controller层5.1.2 service层5.1.3 ser…...

Maven 生成编译时间和版本Java类

本文使用Maven插件来自动生成一个 Version.java 类&#xff0c;可以在Java代码中使用里面对应的常量&#xff0c;获取当前版本号和构建时间。 Maven编译后自动生成的 Version.java 文件内容如下所示&#xff1a; package com.shanhy.demo;public final class Version {public…...

关于uniapp微信小程序scroll-view组件使用show-scrollbar隐藏不了滚动条

这里关于使用 scroll-view组件 时候有滚动条 想要隐藏滚动条但是使用show-scrollbar没有效果 这时候又使用类名隐藏滚动条 使用id隐藏滚动条都不行 解决方法&#xff1a;在使用 scroll-view组件 的页面或者app 页面加上以下代码就可以了 ::-webkit-scrollbar {displa…...

CSS:filter滤镜 详解(用法 + 代码 + 例子 + 效果)

文章目录 filter 滤镜blur() 模糊度例子 渐变光晕 brightness() 元素亮度contrast() 对比度grayscale() 元素灰度hue-rorate() 色相opacity() 透明度invert() 反转颜色saturate() 饱和度 backdrop-filter 蒙版&#xff0c;滤镜例子 卷轴展开 filter 滤镜 动图为效果添加前后对…...

【Unity每日一记】Physics.Raycast 相关_Unity中的“X光射线”

&#x1f468;‍&#x1f4bb;个人主页&#xff1a;元宇宙-秩沅 &#x1f468;‍&#x1f4bb; hallo 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍&#x1f4bb; 本文由 秩沅 原创 &#x1f468;‍&#x1f4bb; 收录于专栏&#xff1a;uni…...

软件报错msvcr90.dll丢失的解决方法,亲测可以修复

我曾经遇到过一个令人头疼的问题&#xff1a;msvcr90.dll丢失。这个问题导致了我的程序无法正常运行&#xff0c;让我感到非常苦恼。然而&#xff0c;在经过一番努力后&#xff0c;我终于成功地修复了这个问题&#xff0c;这让我感到非常欣慰和满足。 msvcr90.dll丢失的原因可能…...

第一百一十八回 如何获取蓝牙连接状态

文章目录 知识回顾实现方法示例代码我们在上一章回中介绍了如何连接蓝牙设备相关的内容,本章回中将介绍如何获取蓝牙连接状态.闲话休提,让我们一起Talk Flutter吧。 知识回顾 我们在上一章回中介绍如何连接蓝牙设备,但是如何知道蓝牙设备是否连接成功呢?这就需要我们去获取…...

C++11并发与多线程笔记(12) windows临界区、其他各种mutex互斥量

C11并发与多线程笔记&#xff08;12&#xff09; windows临界区、其他各种mutex互斥量 1、windows临界区2、自动析构技术3、递归独占互斥量 std::recursive_mutex4、带超时的互斥量 std::timed_mutex 和 std::recursive_timed_mutex4.1 std::timed_mutex&#xff1a;是带超时的…...

[MAUI]在.NET MAUI中实现可拖拽排序列表

文章目录 创建可拖放控件创建绑定服务类拖拽&#xff08;Drag&#xff09;拖拽悬停&#xff0c;经过&#xff08;DragOver&#xff09;释放&#xff08;Drop&#xff09; 创建页面元素最终效果项目地址 .NET MAUI 中提供了拖放(drag-drop)手势识别器&#xff0c;允许用户通过拖…...

Linux 内核内存管理 pfn_to_online_page宏

文章目录 一、Memory Hotplug1.1 简介1.2 热插拔事件通知机制 二、pfn_to_online_page2.1 pfn_to_online_page2.2 pfn_to_section_nr2.3 online_section_nr 参考资料 一、Memory Hotplug 1.1 简介 Linux 内存热插拔&#xff08;Memory Hotplug&#xff09;是指在运行时动态增…...

『C语言初阶』第八章 -结构体

前言 今天小羊又来给铁汁们分享关于C语言的结构体&#xff0c;在C语言中&#xff0c;结构体类型属于一种构造类型&#xff08;其他的构造类型还有&#xff1a;数组类型&#xff0c;联合类型&#xff09;&#xff0c;今天我们主要简单了解一下结构体。 一、结构体是什么&#x…...

国防科技大学计算机基础课程笔记02信息编码

1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制&#xff0c;因此这个了16进制的数据既可以翻译成为这个机器码&#xff0c;也可以翻译成为这个国标码&#xff0c;所以这个时候很容易会出现这个歧义的情况&#xff1b; 因此&#xff0c;我们的这个国…...

MongoDB学习和应用(高效的非关系型数据库)

一丶 MongoDB简介 对于社交类软件的功能&#xff0c;我们需要对它的功能特点进行分析&#xff1a; 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具&#xff1a; mysql&#xff1a;关系型数据库&am…...

LeetCode - 394. 字符串解码

题目 394. 字符串解码 - 力扣&#xff08;LeetCode&#xff09; 思路 使用两个栈&#xff1a;一个存储重复次数&#xff0c;一个存储字符串 遍历输入字符串&#xff1a; 数字处理&#xff1a;遇到数字时&#xff0c;累积计算重复次数左括号处理&#xff1a;保存当前状态&a…...

Qt Http Server模块功能及架构

Qt Http Server 是 Qt 6.0 中引入的一个新模块&#xff0c;它提供了一个轻量级的 HTTP 服务器实现&#xff0c;主要用于构建基于 HTTP 的应用程序和服务。 功能介绍&#xff1a; 主要功能 HTTP服务器功能&#xff1a; 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...

让AI看见世界:MCP协议与服务器的工作原理

让AI看见世界&#xff1a;MCP协议与服务器的工作原理 MCP&#xff08;Model Context Protocol&#xff09;是一种创新的通信协议&#xff0c;旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天&#xff0c;MCP正成为连接AI与现实世界的重要桥梁。…...

关键领域软件测试的突围之路:如何破解安全与效率的平衡难题

在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件&#xff0c;这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下&#xff0c;实现高效测试与快速迭代&#xff1f;这一命题正考验着…...

在Ubuntu24上采用Wine打开SourceInsight

1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...

Go 语言并发编程基础:无缓冲与有缓冲通道

在上一章节中&#xff0c;我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道&#xff0c;它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好&#xff0…...

基于IDIG-GAN的小样本电机轴承故障诊断

目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) ​梯度归一化(Gradient Normalization)​​ (2) ​判别器梯度间隙正则化(Discriminator Gradient Gap Regularization)​​ (3) ​自注意力机制(Self-Attention)​​ 3. 完整损失函数 二…...

【Nginx】使用 Nginx+Lua 实现基于 IP 的访问频率限制

使用 NginxLua 实现基于 IP 的访问频率限制 在高并发场景下&#xff0c;限制某个 IP 的访问频率是非常重要的&#xff0c;可以有效防止恶意攻击或错误配置导致的服务宕机。以下是一个详细的实现方案&#xff0c;使用 Nginx 和 Lua 脚本结合 Redis 来实现基于 IP 的访问频率限制…...