【考研数学】概率论与数理统计 | 第一章——随机事件与概率(2,概率基本公式与事件独立)
文章目录
- 引言
- 四、概率基本公式
- 4.1 减法公式
- 4.2 加法公式
- 4.3 条件概率公式
- 4.4 乘法公式
- 五、事件的独立性
- 5.1 事件独立的定义
- 5.1.1 两个事件的独立
- 5.1.2 三个事件的独立
- 5.2 事件独立的性质
- 写在最后
引言
承接上文,继续介绍概率论与数理统计第一章的内容。
四、概率基本公式
4.1 减法公式
P ( A − B ) = P ( A B ‾ ) = P ( A ) − P ( A B ) . P(A-B)=P(A \overline{B} )=P(A)-P(AB). P(A−B)=P(AB)=P(A)−P(AB). 证明: A = ( A − B ) + A B A=(A-B)+AB A=(A−B)+AB ,且 A − B A-B A−B 与 A B AB AB 互斥,根据概率的有限可加性,有 P ( A ) = P ( A − B ) + P ( A B ) P(A)=P(A-B)+P(AB) P(A)=P(A−B)+P(AB) ,即 P ( A − B ) = P ( A ) − P ( A B ) P(A-B)=P(A)-P(AB) P(A−B)=P(A)−P(AB) 。
A = A B ‾ + A B A=A\overline{B} +AB A=AB+AB ,且 A B ‾ A\overline{B} AB 与 A B AB AB 互斥,由有限可加性得: P ( A B ‾ ) = P ( A ) − P ( A B ) P(A \overline{B} )=P(A)-P(AB) P(AB)=P(A)−P(AB)
4.2 加法公式
(1) P ( A + B ) = P ( A ) + P ( B ) − P ( A B ) . P(A+B)=P(A)+P(B)-P(AB). P(A+B)=P(A)+P(B)−P(AB).
证明: A + B = ( A − B ) + ( B − A ) + A B A+B=(A-B)+(B-A)+AB A+B=(A−B)+(B−A)+AB ,且 A − B , B − A , A B A-B,B-A,AB A−B,B−A,AB 两两互斥,由有限可加性,可得: P ( A + B ) = P ( A − B ) + P ( B − A ) + P ( A B ) P(A+B)=P(A-B)+P(B-A)+P(AB) P(A+B)=P(A−B)+P(B−A)+P(AB) 再结合减法公式,有: P ( A + B ) = P ( A ) − P ( A B ) + P ( B ) − P ( B A ) + P ( A B ) = P ( A ) + P ( B ) − P ( A B ) . P(A+B)=P(A)-P(AB)+P(B)-P(BA)+P(AB)=P(A)+P(B)-P(AB). P(A+B)=P(A)−P(AB)+P(B)−P(BA)+P(AB)=P(A)+P(B)−P(AB). (2) P ( A + B + C ) = P ( A ) + P ( B ) + P ( C ) − P ( A B ) − P ( A C ) − P ( B C ) + P ( A B C ) . P(A+B+C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC). P(A+B+C)=P(A)+P(B)+P(C)−P(AB)−P(AC)−P(BC)+P(ABC).
4.3 条件概率公式
设 A , B A,B A,B 为两个事件,且 P ( A ) > 0 P(A)>0 P(A)>0 ,则 P ( B ∣ A ) = P ( A B ) P ( A ) . P(B | A)= \frac{P(AB)}{P(A)}. P(B∣A)=P(A)P(AB).
4.4 乘法公式
(1)设 P ( A ) > 0 P(A)>0 P(A)>0 ,则 P ( A B ) = P ( A ) P ( B ∣ A ) . P(AB)=P(A)P(B|A). P(AB)=P(A)P(B∣A).
(2) P ( A 1 A 2 … A n ) = P ( A 1 ) P ( A 2 ∣ A 1 ) P ( A 3 ∣ A 1 A 2 ) … P ( A n ∣ A 1 A 2 … A n − 1 ) . P(A_1A_2 \dots A_n)=P(A_1)P(A_2|A_1)P( A_3|A_1A_2)\dots P(A_n|A_1A_2\dots A_{n-1}). P(A1A2…An)=P(A1)P(A2∣A1)P(A3∣A1A2)…P(An∣A1A2…An−1).
五、事件的独立性
5.1 事件独立的定义
5.1.1 两个事件的独立
设 A , B A,B A,B 为两个随机事件,若 P ( A B ) = P ( A ) P ( B ) P(AB)=P(A)P(B) P(AB)=P(A)P(B) ,则称事件 A , B A,B A,B 相互独立。
5.1.2 三个事件的独立
设 A , B , C A,B,C A,B,C 为三个随机事件,若满足 P ( A B ) = P ( A ) P ( B ) , P ( A C ) = P ( A ) P ( C ) , P ( B C ) = P ( B ) P ( C ) , P(AB)=P(A)P(B),P(AC)=P(A)P(C),P(BC)=P(B)P(C), P(AB)=P(A)P(B),P(AC)=P(A)P(C),P(BC)=P(B)P(C), 且 P ( A B C ) = P ( A ) P ( B ) P ( C ) P(ABC)=P(A)P(B)P(C) P(ABC)=P(A)P(B)P(C) ,则称三个事件 A , B , C A,B,C A,B,C 相互独立。
5.2 事件独立的性质
性质 1 若事件 A A A 和 B B B 相互独立,则 A A A 与 B ‾ \overline{B} B 、 A ‾ \overline{A} A 与 B B B 、 A ‾ \overline{A} A 与 B ‾ \overline{B} B 也相互独立,反之亦成立。
证明:由独立可知, P ( A B ) = P ( A ) P ( B ) P(AB)=P(A)P(B) P(AB)=P(A)P(B) ,则 P ( A B ‾ ) = P ( A − B ) = P ( A ) − P ( A B ) = P ( A ) − P ( A ) P ( B ) = P ( A ) P ( B ‾ ) , P(A\overline{B})=P(A-B)=P(A)-P(AB)=P(A)-P(A)P(B)=P(A)P(\overline{B}), P(AB)=P(A−B)=P(A)−P(AB)=P(A)−P(A)P(B)=P(A)P(B), 即 A A A 与 B ‾ \overline{B} B 相互独立, A ‾ \overline{A} A 与 B B B 相互独立同理可证。
P ( A ‾ ∩ B ‾ ) = P ( A ∪ B ) ‾ = 1 − P ( A + B ) = 1 − P ( A ) − P ( B ) + P ( A B ) = [ 1 − P ( A ) ] [ 1 − P ( B ) ] = P ( A ‾ ) P ( B ‾ ) P(\overline{A}\cap \overline{B})=P(\overline{A \cup B)}=1-P(A+B)=1-P(A)-P(B)+P(AB)=[1-P(A)][1-P(B)]=P(\overline{A})P(\overline{B}) P(A∩B)=P(A∪B)=1−P(A+B)=1−P(A)−P(B)+P(AB)=[1−P(A)][1−P(B)]=P(A)P(B) ,则有 A ‾ \overline{A} A 与 B ‾ \overline{B} B 相互独立,反之证明同理。
性质 2 设 A , B A,B A,B 为两个随机事件且 P ( A ) = 0 P(A)=0 P(A)=0 或 P ( A ) = 1 P(A)=1 P(A)=1 ,则 A , B A,B A,B 相互独立。
证明:设 P ( A ) = 0 P(A)=0 P(A)=0 ,由 A B ⊂ A AB \sub A AB⊂A 可知, P ( A B ) ≤ P ( A ) = 0 P(AB) \leq P(A)=0 P(AB)≤P(A)=0 ,又因为 P ( A B ) ≥ 0 P(AB) \geq0 P(AB)≥0 ,故 P ( A B ) = 0 P(AB)=0 P(AB)=0 ,即有 P ( A B ) = P ( A ) = 0 P(AB)=P(A)=0 P(AB)=P(A)=0 ,可得 P ( A B ) = P ( A ) P ( B ) P(AB)=P(A)P(B) P(AB)=P(A)P(B) ,从而有 A , B A,B A,B 相互独立。
设 P ( A ) = 1 P(A)=1 P(A)=1 , P ( A ‾ ) = 0 P(\overline{A})=0 P(A)=0 , P ( B A ‾ ) = P ( B ) − P ( A ) ≤ 1 P(B\overline{A})=P(B)-P(A) \leq1 P(BA)=P(B)−P(A)≤1 ,由 P ( A ) = 1 P(A)=1 P(A)=1 ,可知 P ( B A ‾ ) = 0 P(B\overline{A})=0 P(BA)=0 ,故 P ( B A ‾ ) = P ( A ‾ ) P ( B ) P(B\overline{A})=P(\overline{A})P(B) P(BA)=P(A)P(B) ,即有 A ‾ \overline{A} A 与 B B B 相互独立,根据性质 1 ,事件 A , B A,B A,B 相互独立。
1,事件 A , B , C A,B,C A,B,C 两两独立,则事件 A , B , C A,B,C A,B,C 不一定独立。
2,设 A , B A,B A,B 为两个随机事件,且 P ( A ) > 0 , P ( B ) > 0 P(A)>0,P(B)>0 P(A)>0,P(B)>0 ,则
若 A , B A,B A,B 独立,则 A , B A,B A,B 不互斥。因为此时 P ( A B ) = P ( A ) P ( B ) > 0 P(AB)=P(A)P(B)>0 P(AB)=P(A)P(B)>0 ,不为空集。
若 A , B A,B A,B 互斥,则 A , B A,B A,B 不独立。此时 P ( A B ) = ∅ P(AB)=\empty P(AB)=∅ ,必不可能等于 P ( A ) P ( B ) P(A)P(B) P(A)P(B) 。
设事件 A 1 , A 2 , … , A m A_1,A_2,\dots,A_m A1,A2,…,Am ,事件 B 1 , B 2 , … , B n B_1,B_2,\dots,B_n B1,B2,…,Bn 相互独立,则由事件 A 1 , A 2 , … , A m A_1,A_2,\dots,A_m A1,A2,…,Am 所构成的任意事件 φ ( A 1 , A 2 , … , A m ) \varphi(A_1,A_2,\dots,A_m) φ(A1,A2,…,Am) 与由事件 B 1 , B 2 , … , B n B_1,B_2,\dots,B_n B1,B2,…,Bn 构成的任意事件 ϕ ( B 1 , B 2 , … , B n ) \phi (B_1,B_2,\dots,B_n) ϕ(B1,B2,…,Bn) 相互独立。
写在最后
剩下一个贝叶斯和全概率,还有概型,放到后面吧。
相关文章:
【考研数学】概率论与数理统计 | 第一章——随机事件与概率(2,概率基本公式与事件独立)
文章目录 引言四、概率基本公式4.1 减法公式4.2 加法公式4.3 条件概率公式4.4 乘法公式 五、事件的独立性5.1 事件独立的定义5.1.1 两个事件的独立5.1.2 三个事件的独立 5.2 事件独立的性质 写在最后 引言 承接上文,继续介绍概率论与数理统计第一章的内容。 四、概…...
SpringBoot整合RabbitMQ,笔记整理
1创建生产者工程springboot-rabbitmq-produce 2.修改pom.xml文件 <!--父工程--> <parent><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-parent</artifactId><version>2.6.0</version><r…...
搜狗拼音暂用了VSCode及微信小程序开发者工具快捷键Ctrl + Shit + K 搜狗拼音截图快捷键
修改搜狗拼音的快捷键 右键--更多设置--属性设置--按键--系统功能快捷键--系统功能快捷键设置--取消Ctrl Shit K的勾选--勾选截屏并设置为Ctrl Shit A 微信开发者工具设置快捷键 右键--Command Palette--删除行 微信开发者工具快捷键 删除行:Ctrl Shit K 或…...
Python包sklearn画ROC曲线和PR曲线
前言 关于ROC和PR曲线的介绍请参考: 机器学习:准确率(Precision)、召回率(Recall)、F值(F-Measure)、ROC曲线、PR曲线 参考: Python下使用sklearn绘制ROC曲线(超详细) Python绘图|Python绘制ROC曲线和PR曲线 源码 …...
snpEff变异注释的一点感想
snpEff变异注释整成人生思考 1.介绍2.安装过程以及构建物种参考数据库3.坑货来了4.结果文件判读5.小tips 1.介绍   SnpEff(Snp Effect)是一个用于预测基因组变异(例如单核苷酸变异、插入、缺失等)对基因功能的影响的生物…...
“保姆级”考研下半年备考时间表
7月-8月 确定考研目标与备考计划 暑假期间是考研复习的关键时期,需要复习的主要内容有:重点关注重要的学科和专业课程,复习相关基础知识和核心概念。制定详细的复习计划并合理安排每天的学习时间,增加真题练习熟悉考试题型和答题技…...
具有弱监督学习的精确3D人脸重建:从单幅图像到图像集的Python实现详解
随着深度学习和计算机视觉技术的飞速发展,3D人脸重建技术在多个领域获得了广泛应用,例如虚拟现实、电影特效、生物识别等。但是,由单幅图像实现高精度的3D人脸重建仍然是一个巨大的挑战。在本文中,我们将探讨如何利用弱监督学习进…...
查询投稿会议的好用网址
会议伴侣 https://www.myhuiban.com/ 艾思科蓝 https://www.ais.cn/...
一元三次方程的解
一元三次方程的解法,点击跳转知乎原文地址 (一)一元三次方程降阶 一元三次方程原型: a x 3 b x 2 c x d 0 a x^3 b x^2 cx d 0 ax3bx2cxd0 代换削元。最简单的方法是线性变化削元。假设x my n, 带入后可以削去未知数…...
aardio开发语言Excel数据表读取修改保存实例练习
import win.ui; /*DSG{{*/ var winform win.form(text"aardio form";right759;bottom479) winform.add( buttonEnd{cls"button";text"末页";left572;top442;right643;bottom473;z6}; buttonExcelRead{cls"button";text"读取Exce…...
webshell绕过
文章目录 webshell前置知识进阶绕过 webshell 前置知识 <?phpecho "A"^""; ?>运行结果 可以看到出来的结果是字符“!”。 为什么会得到这个结果?是因为代码的“A”字符与“”字符产生了异或。 php中,两个变…...
Spring Boot 统一功能处理
目录 1.用户登录权限效验 1.1 Spring AOP 用户统一登录验证的问题 1.2 Spring 拦截器 1.2.1 自定义拦截器 1.2.2 将自定义拦截器加入到系统配置 1.3 拦截器实现原理 1.3.1 实现原理源码分析 2. 统一异常处理 2.1 创建一个异常处理类 2.2 创建异常检测的类和处理业务方法 3. 统一…...
图像处理常见的两种拉流方式
传统算法或者深度学习在进行图像处理之前,总是会首先进行图像的采集,也就是所谓的拉流。解决拉流的方式有两种,一个是直接使用opencv进行取流,另一个是使用ffmpeg进行取流,如下分别介绍这两种方式进行拉流处理。 1、o…...
数据可视化数据调用浅析
数据可视化是现代数据分析和决策支持中不可或缺的一环。它将数据转化为图形、图表和可视化工具,以便更直观地理解和解释数据。在数据可视化的过程中,数据的调用和准备是关键的一步。本文将探讨数据可视化中的数据调用过程,并介绍一些常用的数…...
恒运资本:CPO概念发力走高,兆龙互联涨超10%,华是科技再创新高
CPO概念15日盘中发力走高,截至发稿,华是科技涨超15%再创新高,兆龙互联涨逾11%,中贝通讯涨停,永鼎股份、太辰光涨超5%,天孚通讯涨逾4%。 消息面上,光通讯闻名咨询机构LightCounting近日发布的202…...
【蓝桥杯】[递归]母牛的故事
原题链接:https://www.dotcpp.com/oj/problem1004.html 目录 1. 题目描述 2. 思路分析 3. 代码实现 1. 题目描述 2. 思路分析 我们列一个年份和母牛数量的表格: 通过观察,找规律,我们发现: 当年份小于等于4时&…...
使用RDP可视化远程桌面连接Linux系统
使用RDP可视化远程桌面连接Linux系统 远程桌面连接Linux安装安装包准备服务器安装xrdp远程连接 远程桌面连接Linux 通常使用SSH来连接服务器,进行命令行操作,但是这次需要远程调试生产环境的内网服务器,进行浏览器访问内网网站,至…...
数据可视化diff工具jsondiffpatch使用学习
1.jsondiffpatch 简介 jsondiffpatch 是一个用于比较和生成 JSON 数据差异的 JavaScript 库。它可以将两个 JSON 对象进行比较,并生成一个描述它们之间差异的 JSON 对象。这个差异对象可以用于多种用途,例如: 生成可视化的差异报告应用差异…...
pdf 转 word
pdf 转 word 一、思路 直接调用LibreOffice 命令进行文档转换的命令行工具 使用的前系统中必须已经安装了 libreofficelibreoffice已翻译的用户界面语言包: 中文 (简体)libreoffice离线帮助文档: 中文 (简体)上传字体 重点:重点:重点: 亲…...
【数据结构OJ题】设计循环队列
原题链接:https://leetcode.cn/problems/design-circular-queue/ 1. 题目描述 2. 循环队列的概念和结构 为充分利用向量空间,克服"假溢出"现象的方法是:将向量空间想象为一个首尾相接的圆环,并称这种向量为循环向量。…...
Java 语言特性(面试系列2)
一、SQL 基础 1. 复杂查询 (1)连接查询(JOIN) 内连接(INNER JOIN):返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...
基于大模型的 UI 自动化系统
基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...
遍历 Map 类型集合的方法汇总
1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...
Day131 | 灵神 | 回溯算法 | 子集型 子集
Day131 | 灵神 | 回溯算法 | 子集型 子集 78.子集 78. 子集 - 力扣(LeetCode) 思路: 笔者写过很多次这道题了,不想写题解了,大家看灵神讲解吧 回溯算法套路①子集型回溯【基础算法精讲 14】_哔哩哔哩_bilibili 完…...
AtCoder 第409场初级竞赛 A~E题解
A Conflict 【题目链接】 原题链接:A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串,只有在同时为 o 时输出 Yes 并结束程序,否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...
Frozen-Flask :将 Flask 应用“冻结”为静态文件
Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是:将一个 Flask Web 应用生成成纯静态 HTML 文件,从而可以部署到静态网站托管服务上,如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...
页面渲染流程与性能优化
页面渲染流程与性能优化详解(完整版) 一、现代浏览器渲染流程(详细说明) 1. 构建DOM树 浏览器接收到HTML文档后,会逐步解析并构建DOM(Document Object Model)树。具体过程如下: (…...
从零开始打造 OpenSTLinux 6.6 Yocto 系统(基于STM32CubeMX)(九)
设备树移植 和uboot设备树修改的内容同步到kernel将设备树stm32mp157d-stm32mp157daa1-mx.dts复制到内核源码目录下 源码修改及编译 修改arch/arm/boot/dts/st/Makefile,新增设备树编译 stm32mp157f-ev1-m4-examples.dtb \stm32mp157d-stm32mp157daa1-mx.dtb修改…...
pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)
目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关࿰…...
什么是Ansible Jinja2
理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具,可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板,允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板,并通…...
