当前位置: 首页 > news >正文

网站备案信息真实性核验单 下载/百度关键词价格查询

网站备案信息真实性核验单 下载,百度关键词价格查询,黄冈做网站公司,网页设计需要学什么科目回归预测 | MATLAB实现BO-SVM贝叶斯优化支持向量机多输入单输出回归预测(多指标,多图) 目录 回归预测 | MATLAB实现BO-SVM贝叶斯优化支持向量机多输入单输出回归预测(多指标,多图)效果一览基本介绍程序设计…

回归预测 | MATLAB实现BO-SVM贝叶斯优化支持向量机多输入单输出回归预测(多指标,多图)

目录

    • 回归预测 | MATLAB实现BO-SVM贝叶斯优化支持向量机多输入单输出回归预测(多指标,多图)
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

1
2
3

基本介绍

回归预测 | MATLAB实现BO-SVM贝叶斯优化支持向量机多输入单输出回归预测(多指标,多图),输入多个特征,输出单个变量,多输入单输出回归预测;
多指标评价,代码质量极高;excel数据,方便替换,运行环境2018及以上。

程序设计

  • 完整源码和数据获取方式:私信回复MATLAB实现BO-SVM贝叶斯优化支持向量机多输入单输出回归预测(多指标,多图)
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据
res = xlsread('data.xlsx');%%  划分训练集和测试集
temp = randperm(103);P_train = res(temp(1: 80), 1: 7)';
T_train = res(temp(1: 80), 8)';
M = size(P_train, 2);P_test = res(temp(81: end), 1: 7)';
T_test = res(temp(81: end), 8)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test);%%  数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);%%  均方根误差
error1 = sqrt(sum((T_sim1 - T_train).^2) ./ M);
error2 = sqrt(sum((T_sim2 - T_test ).^2) ./ N);%%  相关指标计算
% 决定系数 R2
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test -  T_sim2)^2 / norm(T_test -  mean(T_test ))^2;disp(['训练集数据的R2为:', num2str(R1)])
disp(['测试集数据的R2为:', num2str(R2)])% 平均绝对误差 MAE
mae1 = sum(abs(T_sim1 - T_train)) ./ M ;
mae2 = sum(abs(T_sim2 - T_test )) ./ N ;disp(['训练集数据的MAE为:', num2str(mae1)])
disp(['测试集数据的MAE为:', num2str(mae2)])% 平均相对误差 MBE
mbe1 = sum(T_sim1 - T_train) ./ M ;
mbe2 = sum(T_sim2 - T_test ) ./ N ;disp(['训练集数据的MBE为:', num2str(mbe1)])
disp(['测试集数据的MBE为:', num2str(mbe2)])

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

相关文章:

回归预测 | MATLAB实现BO-SVM贝叶斯优化支持向量机多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现BO-SVM贝叶斯优化支持向量机多输入单输出回归预测(多指标,多图) 目录 回归预测 | MATLAB实现BO-SVM贝叶斯优化支持向量机多输入单输出回归预测(多指标,多图)效果一览基本介绍程序设计…...

GAN!生成对抗网络GAN全维度介绍与实战

目录 一、引言1.1 生成对抗网络简介1.2 应用领域概览1.3 GAN的重要性 二、理论基础2.1 生成对抗网络的工作原理2.1.1 生成器生成过程 2.1.2 判别器判别过程 2.1.3 训练过程训练代码示例 2.1.4 平衡与收敛 2.2 数学背景2.2.1 损失函数生成器损失判别器损失 2.2.2 优化方法优化代…...

自动驾驶仿真:基于Carsim开发的加速度请求模型

文章目录 前言一、加速度输出变量问题澄清二、配置Carsim动力学模型三、配置Carsim驾驶员模型四、添加VS Command代码五、Run Control联合仿真六、加速度模型效果验证 前言 1、自动驾驶行业中,算法端对于纵向控制的功能预留接口基本都是加速度,我们需要…...

.netcore grpc客户端工厂及依赖注入使用

一、客户端工厂概述 gRPC 与 HttpClientFactory 的集成提供了一种创建 gRPC 客户端的集中方式。可以通过依赖包Grpc.Net.ClientFactory中的AddGrpcClient进行gRPC客户端依赖注入AddGrpcClient函数提供了许多配置项用于处理一些其他事项;例如AOP、重试策略等 二、案…...

C语言入门_Day7 逻辑运算

目录: 前言 1.逻辑运算 2.优先级 3.易错点 4.思维导图 前言 算术运算用来进行数据的计算和处理;比较运算是用来比较不同的数据,进而来决定下一步怎么做;除此以外还有一种运算叫做逻辑运算,它的应用场景也是用来影…...

什么是Eureka?以及Eureka注册服务的搭建

导包 <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0"xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation"http://maven.apache.org/POM/4.0.0 htt…...

Docker安装并配置镜像加速器,镜像、容器的基本操作

目录 1.安装docker服务&#xff0c;配置镜像加速器 &#xff08;1&#xff09;安装依赖的软件包 &#xff08;2&#xff09;设置yum源&#xff0c;我配置的阿里仓库 &#xff08;3&#xff09;选择一个版本安装 &#xff08;4&#xff09;启动docker服务&#xff0c;并设置…...

前端 -- 基础 网页、HTML、 WEB标准 扫盲详解

什么是网页 : 网页是构成网站的基本元素&#xff0c;它通常由 图片、链接、文字、声音、视频等元素组成。 通常我们看到的网页 &#xff0c;常见以 .html 或 .htm 后缀结尾的文件&#xff0c; 因此俗称 HTML 文件 什么是 HTML : HTML 指的是 超文本标记语言&#xff0c…...

分布式锁实现方式

分布式锁 1 分布式锁介绍 1.1 什么是分布式 一个大型的系统往往被分为几个子系统来做&#xff0c;一个子系统可以部署在一台机器的多个 JVM(java虚拟机) 上&#xff0c;也可以部署在多台机器上。但是每一个系统不是独立的&#xff0c;不是完全独立的。需要相互通信&#xff…...

C语言小练习(一)

&#x1f31e; “人生是用来体验的&#xff0c;不是用来绎示完美的&#xff0c;接受迟钝和平庸&#xff0c;允许出错&#xff0c;允许自己偶尔断电&#xff0c;带着遗憾&#xff0c;拼命绽放&#xff0c;这是与自己达成和解的唯一办法。放下焦虑&#xff0c;和不完美的自己和解…...

Flask-flask系统运行后台轮询线程

对于有些flask系统&#xff0c;后台需要启动轮询线程&#xff0c;执行特定的任务&#xff0c;以下是一个简单的例子。 globals/daemon.py import threading from app.executor.ops_service import find_and_run_ops_task_todo_in_redisdef context_run_func(app, func):with …...

jsp本质-servlet

jsp本质-servlet 一、jsp文件 <% page language"java" contentType"text/html; charsetUTF-8" pageEncoding"UTF-8"%> <!DOCTYPE html> <html> <head><meta charset"UTF-8"><title>JSP Example…...

回归预测 | MATLAB实现GWO-SVM灰狼优化算法优化支持向量机多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现GWO-SVM灰狼优化算法优化支持向量机多输入单输出回归预测&#xff08;多指标&#xff0c;多图&#xff09; 目录 回归预测 | MATLAB实现GWO-SVM灰狼优化算法优化支持向量机多输入单输出回归预测&#xff08;多指标&#xff0c;多图&#xff09;效果一览基…...

科技资讯|苹果Vision Pro新专利曝光:可调节液态透镜

苹果公司近日申请了名为“带液态镜头的电子设备”&#xff0c;概述了未来可能的头显设计。头显设备中的透镜采用可调节的液态透镜&#xff0c;每个透镜可以具有填充有液体的透镜腔&#xff0c;透镜室可以具有形成光学透镜表面的刚性和 / 或柔性壁。 包括苹果自家的 Vision Pr…...

神经网络基础-神经网络补充概念-38-归一化输入

概念 归一化输入是一种常见的数据预处理技术&#xff0c;旨在将不同特征的取值范围映射到相似的尺度&#xff0c;从而帮助优化机器学习模型的训练过程。归一化可以提高模型的收敛速度、稳定性和泛化能力&#xff0c;减少模型受到不同特征尺度影响的情况。 常见的归一化方法 …...

【Redis】什么是缓存雪崩,如何预防缓存雪崩?

【Redis】什么是缓存雪崩&#xff0c;如何预防缓存雪崩&#xff1f; 如果缓存集中在一段时间内失效&#xff0c;也就是通常所说的热点数据集中失效 &#xff08;一般都会给缓存设定一个失效时间&#xff0c;过了失效时间后&#xff0c;该数据库会被缓存直接删除&#xff0c;从…...

[国产MCU]-W801开发实例-开发环境搭建

W801开发环境搭建 文章目录 W801开发环境搭建1、W801芯片介绍2、W801芯片特性3、W801芯片结构4、开发环境搭建1、W801芯片介绍 W801芯片是联盛德微电子推出的一款高性价比物联网芯片。 W801 芯片是一款安全 IoT Wi-Fi/蓝牙 双模 SoC芯片。芯片提供丰富的数字功能接口。支持2.…...

区间预测 | MATLAB实现QRGRU门控循环单元分位数回归时间序列区间预测

区间预测 | MATLAB实现QRGRU门控循环单元分位数回归时间序列区间预测 目录 区间预测 | MATLAB实现QRGRU门控循环单元分位数回归时间序列区间预测效果一览基本介绍模型描述程序设计参考资料 效果一览 基本介绍 MATLAB实现QRGRU门控循环单元分位数回归时间序列区间预测。基于分位…...

改善神经网络——优化算法(mini-batch、动量梯度下降法、Adam优化算法)

改善神经网络——优化算法 梯度下降Mini-batch 梯度下降&#xff08;Mini-batch Gradient Descent&#xff09;指数加权平均包含动量的梯度下降RMSprop算法Adam算法 优化算法可以使神经网络运行的更快&#xff0c;机器学习的应用是一个高度依赖经验的过程&#xff0c;伴随着大量…...

大数据面试题:Spark的任务执行流程

面试题来源&#xff1a; 《大数据面试题 V4.0》 大数据面试题V3.0&#xff0c;523道题&#xff0c;679页&#xff0c;46w字 可回答&#xff1a;1&#xff09;Spark的工作流程&#xff1f;2&#xff09;Spark的调度流程&#xff1b;3&#xff09;Spark的任务调度原理&#xf…...

通过 Amazon SageMaker JumpStart 部署 Llama 2 快速构建专属 LLM 应用

来自 Meta 的 Llama 2 基础模型现已在 Amazon SageMaker JumpStart 中提供。我们可以通过使用 Amazon SageMaker JumpStart 快速部署 Llama 2 模型&#xff0c;并且结合开源 UI 工具 Gradio 打造专属 LLM 应用。 Llama 2 简介 Llama 2 是使用优化的 Transformer 架构的自回归语…...

ansible远程执行命令

一、ansible简介 需要在一台机器上搭建ansible环境&#xff0c;且配置目的ip的密码&#xff0c;通道没有问题即可下发命令 使用的通道是ssh&#xff08;端口&#xff1a;36000&#xff09; 二、搭建细节 1、安装ansible yum install -y ansible 2、把目的ip密码写到配置…...

Windows快速恢复丢失的颜色校准

场景 有时开机或启动某个软件后&#xff0c;颜色校准&#xff08;设置项&#xff1a;校准显示器颜色&#xff09;会丢失&#xff0c;每次重新设置很麻烦。 文章首发及后续更新&#xff1a;https://mwhls.top/4723.html&#xff0c;无图/无目录/格式错误/更多相关请至首发页查看…...

Vue安装单文件组件

安装 npm npm 全称为 Node Package Manager&#xff0c;是一个基于Node.js的包管理器&#xff0c;也是整个Node.js社区最流行、支持的第三方模块最多的包管理器。 npm -v由于网络原因 安装 cnpm npm install -g cnpm --registryhttps://registry.npm.taobao.org安装 vue-cli…...

小白的Node.js学习笔记大全---不定期更新

Node.js是什么 Node. js 是一个基于 Chrome v8 引擎的服务器端 JavaScript 运行环境Node. js 是一个事件驱动、非阻塞式I/O 的模型&#xff0c;轻量而又高效Node. js 的包管理器 npm 是全球最大的开源库生态系统 特性 单一线程 Node.js 沿用了 JavaScript 单一线程的执行特…...

第二周晨考自测(2.0)

1.冒泡排序 冒泡排序是数组解构中的常见排序算法之一。规则如下&#xff1a;先遍历数组&#xff0c;让相邻的两个数据进行比较&#xff0c;如果前一个比后一个大&#xff0c;那么就把这两个数据交换位置&#xff0c;经过一轮遍历之后&#xff0c;最大的那个数字就排在数组最后…...

计算机视觉之三维重建(三)(单视图测量)

2D变换 等距变换 旋转平移保留形状、面积通常描述刚性物体运动 相似变换 在等距变换的基础增加缩放特点 射影变换 共线性、四共线点的交比保持不变 仿射变换 面积比值、平行关系等不变仿射变换是特殊的射影变换 影消点与影消线 2D无穷远点 两直线的交点可由两直线的…...

docker 批量快速删除容器和镜像

一、批量删除镜像 如果你想要批量删除 Docker 镜像,可以使用各种命令。以下是一些示例: 1. 删除所有镜像: docker rmi $(docker images -q) 2. 删除所有未标记的镜像(即 <none> 镜像): docker rmi $(docker images -f "dangling=true" -q) 请注意…...

【数据分析入门】Matplotlib

目录 零、图形解析与工作流0.1 图形解析0.2 工作流 一、准备数据1.1 一维数据1.2 二维数据或图片 二、绘制图形2.1 画布2.2 坐标轴 三、绘图例程3.1 一维数据3.2 向量场3.3 数据分布3.4 二维数据或图片 四、自定义图形4.1 颜色、色条与色彩表4.2 标记4.3 线型4.4 文本与标注4.5…...

mongodb.使用自带命令工具导出导入数据

在一次数据更新中&#xff0c;同事把老数据进行了清空操作&#xff0c;但是新的逻辑数据由于某种原因&#xff08;好像是她的电脑中病毒了&#xff09;&#xff0c;一直无法正常连接数据库进行数据插入&#xff0c;然后下午2点左右要给甲方演示&#xff0c;所以要紧急恢复本地的…...