差值结构的复合底部
( A, B )---3*30*2---( 1, 0 )( 0, 1 )
让网络的输入只有3个节点,AB训练集各由6张二值化的图片组成,让A 中有3个点,B中有1个点,且不重合,统计迭代次数并排序。
其中有20组数据

让迭代次数与排斥能成反比,排斥能E=EA+EB+EAB。其中因为B只有1个点,则EB=0.
计算EA相当于假设B中全是0.则结构A的底部就仅仅取决于A的内在特点,与B无关。因此在计算0*2*0*0*0*6-1*0*0*0*0*0的EA是应该调整A的结构
| - | - | - | 1 | 1 | - | |
| - | 1 | - | - | - | - | |
| - | - | - | → | - | 1 | - |
| - | - | - | - | - | - | |
| - | - | - | - | - | - | |
| 1 | 1 | - | - | - | - | |
| 1.5 | 3 |
因为点最多的行就是结构的天然底部,因此结构0*2*0*0*0*6-1*0*0*0*0*0的EA是3而不是1.5.
而在计算相互作用能的时候,因为训练集AB进样有先后顺序,因此相互作用能的底部由进样先后顺序唯一的确定,
| EAB1 | EAB2 | |||||||||
| - | - | 2 | - | - | 2 | - | - | 2 | ||
| - | 1 | - | - | 0 | - | - | 1 | - | ||
| - | - | - | - | - | - | - | - | - | ||
| - | - | - | - | - | - | - | - | - | ||
| - | - | - | - | - | - | - | - | - | ||
| 1 | 1 | - | 1 | 0 | - | 0 | 0 | - | ||
因此结构0*2*0*0*0*6-1*0*0*0*0*0相互作用能的底部就是- - 2,因为B的点先进样训练,并且假设这种短程相互作用不能隔行传播,且这种短程相互作用只能在AB之间进行,因此相互作用能分成EAB1和EAB2两个独立的结构。
将所有数据汇总

排斥能和迭代次数成反比。因此这个二分类的差值结构对应两种不同的相互作用有两种不同的底部。
相关文章:
差值结构的复合底部
( A, B )---3*30*2---( 1, 0 )( 0, 1 ) 让网络的输入只有3个节点,AB训练集各由6张二值化的图片组成,让A 中有3个点,B中有1个点,且不重合,统计迭代次数并排序。 其中有20组数据 让迭代次数与排斥能成反比,排…...
在Docker 上使用 Nginx 配置https及wss
预先创建挂载文件 /mydata/nginx/conf/nginx.conf /mydata/nginx/cert /mydata/nginx/conf.d /mydata/nginx/html /mydata/nginx/logs运行并且挂载容器 docker run -p 80:80 -p 443:443 --name nginx01 --restartalways \ -v /mydata/nginx/conf/nginx.conf:/etc/nginx/ngi…...
git回退操作
1. 在工作区回退: 此时文件没有经过任何提交 git checkout -- filename2. git add之后回退 git reset HEAD3. git commit 之后回退 git reset --hard commit_id(前4位)其中,commit_id可通过git log查看,例如: qzcryqz MINGW6…...
C++系列-类和对象-静态成员
类和对象-静态成员 静态成员静态成员变量静态成员函数 静态成员 静态成员就是在成员变量或者是成员函数前面加上static关键字。 静态成员变量 所有对象共享同一份数据在编译阶段分配内存类内声明,类外初始化可以通过对象或者类名进行访问。静态成员变量也具有访问…...
SAP MM学习笔记26- SAP中 振替转记(转移过账)和 在库转送(库存转储)2- 品目Code振替转记 和 在库转送
SAP 中在库移动 不仅有入库(GR),出库(GI),也可以是单纯内部的转记或转送。 1,振替转记(转移过账) 2,在库转送(库存转储) 1ÿ…...
【Python机器学习】实验13 基于神经网络的回归-分类实验
文章目录 神经网络例1 基于神经网络的回归(简单例子)1.1 导入包1.2 构造数据集(随机构造的)1.3 构造训练集和测试集1.4 构建神经网络模型1.5 采用训练数据来训练神经网络模型 实验:基于神经网络的分类(鸢尾花数据集)1. 导入包2. 构造数据集3.…...
【数据结构】二叉树的链式结构的实现 -- 详解
一、前置说明 在学习二叉树的基本操作前,需先要创建一棵二叉树,然后才能学习其相关的基本操作。为了降低大家学习成本,此处手动快速创建一棵简单的二叉树,快速进入二叉树操作学习。 typedef char BTDataType;typedef struct Binar…...
【C语言】什么是结构体内存对齐?结构体的大小怎么计算?
目录 1.结构体内存对齐 对偏移量的理解: 2.结构体的大小计算 2.1结构体中只有普通的数据类型的大小计算 2.2 结构体中有嵌套的结构体的大小计算 3.修改默认对齐数 4.为什么存在内存对齐? 这篇文章主要介绍结构体内存对齐和如何计算大小。 在学习结构体内存…...
【Redis】Redis中的布隆过滤器
【Redis】Redis中的布隆过滤器 前言 在实际开发中,会遇到很多要判断一个元素是否在某个集合中的业务场景,类似于垃圾邮件的识别,恶意IP地址的访问,缓存穿透等情况。类似于缓存穿透这种情况,有许多的解决方法…...
接口测试 —— Jmeter 参数加密实现
Jmeter有两种方法可以实现算法加密 1、使用__digest自带函数 参数说明: Digest algorithm:算法摘要,可输入值:MD2、MD5、SHA-1、SHA-224、SHA-256、SHA-384、SHA-512 String to be hashed:要加密的数据 Salt to be…...
Linux c语言字节序
文章目录 一、简介二、大小端判断2.1 联合体2.2 指针2.3 网络字节序 一、简介 字节序(Byte Order)指的是在存储和表示多字节数据类型(如整数和浮点数)时,字节的排列顺序。常见的字节序有大端字节序(Big En…...
批量将excel中第5列中内容将人名和电话号码进行分列
使用Python可以使用openpyxl库来实现批量将Excel中第5列的内容分列为人名和电话号码的操作。下面是示例代码: import openpyxl def split_names_and_phone_numbers(file_path, sheet_name): # 加载Excel文件 workbook openpyxl.load_workbook(file_path) …...
WPF DataGrid columns表头根据数据集动态动态生成Demo
思路是这样的,数组集合装表头的信息,遍历这个集合,遍历过程中处理一下数据,然后就把每表头信息添加到dataGrid2.Columns.Add(templateColumn); 1,页面Xaml代码: <DataGrid x:Name"dataGrid" …...
1339. 分裂二叉树的最大乘积
链接: 1339. 分裂二叉树的最大乘积 题解: /*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* …...
【C++】Stack和Queue
欢迎来到Cefler的博客😁 🕌博客主页:那个传说中的man的主页 🏠个人专栏:题目解析 🌎推荐文章:题目大解析3 目录 👉🏻Stack Constructor👉🏻Stack …...
Maven之tomcat7-maven-plugin 版本低的问题
tomcat7-maven-plugin 版本『低』的问题 相较于当前最新版的 tomcat 10 而言,tomcat7-maven-plugin 确实看起来很显老旧。但是,这个问题并不是问题,至少不是大问题。 原因 1:tomcat7-maven-plugin 仅用于我们(程序员&…...
在项目中如何解除idea和Git的绑定
在项目中如何解除idea和Git的绑定 1、点击File--->Settings...(CtrlAltS)--->Version Control--->Directory Mappings--->点击取消Git的注册根路径: 2、回到idea界面就没有Git了: 3、给这个项目初始化 这样就可以重新绑定远程仓库了&#x…...
AGI 在网易云信的技术提效和业务创新
We believe our research will eventually lead to artificial general intelligence, a system that can solve human-level problems. Building safe and beneficial AGI is our mission. ---- OpenAI 通用人工智能 AGI 作为 AI 的终极形态,是 AI 行业内追求的演…...
线性代数的学习和整理9(草稿-----未完成)
3.3 特征值和特征向量是什么? 直接说现在:特征向量这个块往哪个方向进行了拉伸,各个方向拉伸了几倍。这也让人很容易理解为什么,行列式的值就是特征值的乘积。 特征向量也代表了一些良好的性质,即这些线在线性变换后…...
React的useReducer与Reudx对比
useReducer 和 Redux 都是用于处理应用程序的状态管理的工具,但它们在概念和使用场景上存在一些区别。 useReducer: useReducer 是 React 提供的一个 Hook,用于管理局部状态。它接受一个 reducer 函数和初始状态,并返回一个包含当…...
利用最小二乘法找圆心和半径
#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...
SkyWalking 10.2.0 SWCK 配置过程
SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外,K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案,全安装在K8S群集中。 具体可参…...
golang循环变量捕获问题
在 Go 语言中,当在循环中启动协程(goroutine)时,如果在协程闭包中直接引用循环变量,可能会遇到一个常见的陷阱 - 循环变量捕获问题。让我详细解释一下: 问题背景 看这个代码片段: fo…...
Java如何权衡是使用无序的数组还是有序的数组
在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...
高等数学(下)题型笔记(八)空间解析几何与向量代数
目录 0 前言 1 向量的点乘 1.1 基本公式 1.2 例题 2 向量的叉乘 2.1 基础知识 2.2 例题 3 空间平面方程 3.1 基础知识 3.2 例题 4 空间直线方程 4.1 基础知识 4.2 例题 5 旋转曲面及其方程 5.1 基础知识 5.2 例题 6 空间曲面的法线与切平面 6.1 基础知识 6.2…...
Neo4j 集群管理:原理、技术与最佳实践深度解析
Neo4j 的集群技术是其企业级高可用性、可扩展性和容错能力的核心。通过深入分析官方文档,本文将系统阐述其集群管理的核心原理、关键技术、实用技巧和行业最佳实践。 Neo4j 的 Causal Clustering 架构提供了一个强大而灵活的基石,用于构建高可用、可扩展且一致的图数据库服务…...
C++.OpenGL (10/64)基础光照(Basic Lighting)
基础光照(Basic Lighting) 冯氏光照模型(Phong Lighting Model) #mermaid-svg-GLdskXwWINxNGHso {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-GLdskXwWINxNGHso .error-icon{fill:#552222;}#mermaid-svg-GLd…...
今日科技热点速览
🔥 今日科技热点速览 🎮 任天堂Switch 2 正式发售 任天堂新一代游戏主机 Switch 2 今日正式上线发售,主打更强图形性能与沉浸式体验,支持多模态交互,受到全球玩家热捧 。 🤖 人工智能持续突破 DeepSeek-R1&…...
AspectJ 在 Android 中的完整使用指南
一、环境配置(Gradle 7.0 适配) 1. 项目级 build.gradle // 注意:沪江插件已停更,推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...
GC1808高性能24位立体声音频ADC芯片解析
1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率,…...
