当前位置: 首页 > news >正文

2023牛客暑期多校训练营9 B.Semi-Puzzle: Brain Storm

文章目录

  • 题目大意
  • 题解
    • 求解
    • 回溯
  • 参考代码

题目大意

给定两个数 a , m a,m a,m ,求满足 a u ≡ u ( m o d m ) a^u \equiv u (mod\ \ m) auu(mod  m) 的一个解。
( 1 ≤ a , m ≤ 1 0 9 , 0 ≤ u ≤ 1 0 18 ) (1\leq a,m \leq10^9 ,0\leq u\leq 10^{18}) (1a,m109,0u1018)

题解

参考了讨论区 https://blog.nowcoder.net/n/576f9463036346f0a0fb04fee50fac75 的方法

求解

考虑使用欧拉定理,考虑 b > = ϕ p b>=\phi_p b>=ϕp的情况。
a u ≡ { a u % ϕ m g c d ( a , u ) = 1 a u % ϕ i + ϕ m g c d ( a , u ) ! = 1 ( m o d m ) a^u\equiv\begin{cases}a^{u\% \phi_m }&gcd(a,u)=1\\a^{u\% \phi_i+\phi_m}& gcd(a,u)!=1\end{cases}(mod \ m) au{au%ϕmau%ϕi+ϕmgcd(a,u)=1gcd(a,u)!=1(mod m)
定义 d = u % ϕ m d=u\%\phi_m d=u%ϕm u % ϕ m + ϕ m u\%\phi_m+\phi_m u%ϕm+ϕm
k ∗ ϕ p + d = u ( k > = 0 ) k*\phi_p+d=u(k>=0) kϕp+d=u(k>=0)
则原式可以转化为 a d ≡ d + k ∗ ϕ m ( m o d m ) a^d \equiv d+k*\phi_m (mod\ m) add+kϕm(mod m)
移项可以得到 a d − d ≡ k ∗ ϕ m ( m o d m ) a^d-d\equiv k*\phi_m(mod\ m) addkϕm(mod m)
ϕ m ∗ x 1 + m ∗ y 1 ≡ g c d ( ϕ m , m ) ( m o d m ) \phi_m*x1+m*y1\equiv gcd(\phi_m,m) (mod \ m) ϕmx1+my1gcd(ϕm,m)(mod m) 是一个已知有解的同余方程
回到上一个方程想要得到解 k k k ,显然要满足 a d − d = x ∗ g c d ( m , ϕ m ) , ( x > 0 ) a^d-d=x *gcd(m,\phi_m),(x>0) add=xgcd(m,ϕm),(x>0)
也就是 a d ≡ d ( m o d g c d ( m , ϕ m ) ) a^d \equiv d (mod \ gcd(m,\phi_m)) add(mod gcd(m,ϕm))
重新得到了题目,但是模数缩小了,因此我们想到了递归,直到模数为 1 1 1 时直接推出答案。

回溯

假设我们已经得到了最后一组解 d = 0 d=0 d=0
求解同余方程 a d − d ≡ k ∗ ϕ m ( m o d m ) a^d-d\equiv k*\phi_m(mod\ m) addkϕm(mod m),使用扩展欧几里得定理,推出 x 1 x1 x1 的值,
k = x 1 ∗ a d − d g c d ( m , ϕ m ) % m o d k=x1*\frac{a^d-d}{gcd(m,\phi_m)}\%mod k=x1gcd(m,ϕm)add%mod
由于 a d a^d ad 超出范围,根据 a b % ( b ∗ c ) = a % ( b ∗ c ) b \frac{a}{b}\%(b*c)=\frac{a\%(b*c)}{b} ba%(bc)=ba%(bc)得出
k = x 1 ∗ ( a d − d ) % m / ϕ m k=x1*(a^d-d)\%m/\phi_m k=x1(add)%m/ϕm
再利用 k ∗ ϕ p + d = u k*\phi_p+d=u kϕp+d=u,得出结果即可。

参考代码

#include<bits/stdc++.h>
#define ll long long
using namespace std;
ll phi(ll x)
{ll ans=x;for(int i=2;i*i<=x;i++){if(x%i==0)ans=ans/i*(i-1);while(x%i==0)x/=i;}if(x!=1)ans=ans/x*(x-1);return ans;
}
ll ksm(ll a,ll b,ll p)
{ll res=1;while(b){if(b&1)res=res*a%p;a=a*a%p;b>>=1;}return res;
}
ll exgcd(ll a,ll b,ll &x,ll &y)
{if(!b){x=1,y=0;return a;}ll k=exgcd(b,a%b,y,x);y-=a/b*x;return k;
}
int n,T;
ll a,m;
ll work(ll a,ll p)              //递归求解
{if(p==1)return 0;ll m=phi(p);ll b=work(a,__gcd(m,p))+m;ll x,y;ll d=exgcd(m,p,x,y);ll k=(((x*(ksm(a,b,p)-b+p))%p+p)%p/d);   //回溯求值return k*m+b;
}
int main()
{cin>>T;while(T--){scanf("%lld%lld",&a,&m);printf("%lld\n",work(a,m));}
}

相关文章:

2023牛客暑期多校训练营9 B.Semi-Puzzle: Brain Storm

文章目录 题目大意题解求解回溯 参考代码 题目大意 给定两个数 a , m a,m a,m &#xff0c;求满足 a u ≡ u ( m o d m ) a^u \equiv u (mod\ \ m) au≡u(mod m) 的一个解。 ( 1 ≤ a , m ≤ 1 0 9 , 0 ≤ u ≤ 1 0 18 ) (1\leq a,m \leq10^9 ,0\leq u\leq 10^{18}) (1≤a…...

mysql中的窗口函数

MySQL中的窗口函数&#xff08;Window Functions&#xff09;是一种用于在查询结果集内执行计算的功能。窗口函数可以在查询中进行分析和聚合操作&#xff0c;而无需将查询结果分组。它们可以用于计算排名、行号、累积值等各种分析操作。窗口函数通常与OVER子句一起使用&#x…...

【双指针】经典数组双指针题LeetCode

文章目录 27. 移除元素 简单283. 移动零 简单&#x1f525;167. 两数之和 II - 输入有序数组 中等11. 盛最多水的容器 中等&#x1f525;15. 三数之和 中等&#xff08;N数之和&#xff09;中等&#x1f525;42. 接雨水 困难 &#x1f525;26. 删除有序数组中的重复项 简单5. 最…...

极智嘉x吉利汽车 x京东物流,引领汽车行业智慧物流新变革!

近日&#xff0c;中国领先的汽车制造商吉利汽车携手中国领先的技术驱动的供应链解决方案及物流服务商京东物流、全球仓储机器人引领者极智嘉(Geek)&#xff0c;在西安吉利汽车制造基地RDC仓库率先落地SkyPick上存下拣解决方案&#xff0c;实现了全物流链精益化、智能化、一体化…...

RK3588平台开发系列讲解(AI 篇)RKNN C API 详细说明

文章目录 一、API 硬件平台支持说明二、API 函数介绍2.1、rknn_init2.2、rknn_destroy2.3、rknn_query2.4、rknn_inputs_set2.5、rknn_run2.6、rknn_outputs_get2.7、rknn_outputs_release沉淀、分享、成长,让自己和他人都能有所收获!😄 📢本篇章主要讲解 RKNN C API 详细…...

【基础】Android Handler

一、博客参考 Handler机制详解【重点】&#xff1a;https://www.jianshu.com/p/b4d745c7ff7a Handler Thread工作线程操作UI范例【重点】&#xff1a;https://www.cnblogs.com/net168/p/4075126.html 二、内存泄漏的解决&#xff1a;静态内部类弱引用 关于 Handler&#xf…...

c语言实现MD5算法

MD5加密 文章目录 MD5加密MD5介绍应用场景代码分析 &#xff08;基于qt5.14.2&#xff09;测试记录 MD5介绍 1。 一种单向加密算法&#xff0c;即对明文加密&#xff0c;而不能通过密文得到明文。对原数据的任何改动&#xff0c;哪怕是1字节&#xff0c;得到的MD5值都有很大的区…...

Apache Doris 2.0.0 特性分析

1、存算分离 所谓存算分离是指查询外表时&#xff0c;使用一种专门做计算的BE节点&#xff0c;但对于存储在BE上的内部表&#xff0c;目前还不能做到存储分离。 doris可以查询外部表&#xff0c;包括&#xff1a; Hive、Iceberg、Hudi、Elasticsearch、JDBC、Paimon 早期版本中…...

如何做H5性能测试?

提起H5性能测试&#xff0c;可能许多同学有所耳闻&#xff0c;但是不知道该如何对H5做性能测试&#xff0c;或者不知道H5应该关注哪些性能指标。今天我们就来看下&#xff0c;希望阅读本文后&#xff0c;能够有所了解。 常用指标 1、H5性能相关参数介绍 白屏时间&#xff1a;…...

【Docker】Docker Desktop配置资源:cpu、内存等(windows环境下)

Docker Desktop配置资源&#xff1a;cpu、内存等&#xff08;windows环境下&#xff09; 一、WSL2 以及 hyper-v区别&#xff0c;二者安装docker desktop1.WSL2和hyper-v区别2.安装Docker Desktop 二、docker desktop限额配置&#xff0c;资源配置方法 Docker 是指容器化技术&a…...

8.2.tensorRT高级(3)封装系列-内存管理的封装,内存的复用

目录 前言1. 内存管理封装2. 补充知识总结 前言 杜老师推出的 tensorRT从零起步高性能部署 课程&#xff0c;之前有看过一遍&#xff0c;但是没有做笔记&#xff0c;很多东西也忘了。这次重新撸一遍&#xff0c;顺便记记笔记。 本次课程学习 tensorRT 高级-内存管理的封装&…...

Keepalived入门指南:实现故障转移和负载均衡

文章目录 一、简介1. Keepalived概述2. 高可用性和负载均衡的重要性 二、故障转移1. 什么是故障转移2. Keepalived的故障转移原理a) VRRP协议b) 虚拟路由器ID和优先级 3. 配置Keepalived实现故障转移a) 主备服务器的设置b) 监控网络接口c) 虚拟IP的配置d) 备份服务器接管流程 三…...

cuOSD(CUDA On-Screen Display Library)库的学习

目录 前言1. cuOSD1.1 Description1.2 Getting started1.3 For Python Interface1.4 Demo1.5 Performance Table 2. cuOSD案例2.1 环境配置2.2 simple案例2.3 segment案例2.4 segment2案例2.5 polyline案例2.6 comp案例2.7 perf案例 3. cuOSD浅析3.1 simple_draw函数 4. 补充知…...

c++函数指针基本用法

将函数像变量一样传递&#xff0c;实际上拿到的是函数的地址&#xff0c;由于函数类型的多样&#xff0c;可以使用auto关键字&#xff0c;可以使用 void(*function2)() &#xff0c;不过它太繁琐&#xff0c;因此使用typedef 起个名字 typedef void(*HelloWorldFunction)(); 叫…...

Java创建对象的几种方式

在Java中&#xff0c;对象是程序中的一种基本元素&#xff0c;它通过类定义和创建。本篇教程旨在介绍Java中创建对象的几种方式&#xff0c;包括使用new关键字、反射、clone、反序列化等方式。 使用new关键字创建对象 在Java中&#xff0c;最常用的创建对象方式是使用new关键…...

Docker实战专栏简介

&#x1f337;&#x1f341; 博主猫头虎 带您 Go to New World.✨&#x1f341; &#x1f984; 博客首页——猫头虎的博客&#x1f390; &#x1f433;《面试题大全专栏》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33a; &a…...

解放数据库,实时数据同步利器:Alibaba Canal

文章首发地址 Canal是一个开源的数据库增量订阅&消费组件&#xff0c;主要用于实时数据同步和数据订阅的场景&#xff0c;特别适用于构建分布式系统、数据仓库、缓存更新等应用。它支持MySQL、阿里云RDS等主流数据库&#xff0c;能够实时捕获数据库的增删改操作&#xff…...

机器学习基础之《分类算法(3)—模型选择与调优》

作用是如何选择出最好的K值 一、什么是交叉验证&#xff08;cross validation&#xff09; 1、定义 交叉验证&#xff1a;将拿到的训练数据&#xff0c;分为训练和验证集。以下图为例&#xff1a;将数据分成5份&#xff0c;其中一份作为验证集。然后经过5次(组)的测试&#x…...

Datawhale Django后端开发入门 TASK03 QuerySet和Instance、APIVIew

一、QuerySet QuerySet 是 Django 中的一个查询集合&#xff0c;它是由 Model.objects 方法返回的&#xff0c;并且可以用于生成数据库中所有满足一定条件的对象的列表。 QuerySet 在 Django 中表示从数据库中获取的对象集合,它是一个可迭代的、类似列表的对象集合。主要特点…...

Python 网页解析中级篇:深入理解BeautifulSoup库

在Python的网络爬虫中&#xff0c;BeautifulSoup库是一个重要的网页解析工具。在初级教程中&#xff0c;我们已经了解了BeautifulSoup库的基本使用方法。在本篇文章中&#xff0c;我们将深入学习BeautifulSoup库的进阶使用。 一、复杂的查找条件 在使用find和find_all方法查找…...

IDEA 如何制作代码补丁?IDEA 生成 patch 和使用 patch

什么是升级补丁&#xff1f; 比如你本地修复的 bug&#xff0c;需要把增量文件发给客户&#xff0c;很多场景下大家都需要手工整理修改的文件&#xff0c;并整理好目录&#xff0c;这个很麻烦。那有没有简单的技巧呢&#xff1f;看看 IDEA 生成 patch 和使用 patch 的使用。 介…...

Redis专题-秒杀

Redis专题-并发/秒杀 开局一张图&#xff0c;内容全靠“编”。 昨天晚上在群友里看到有人在讨论库存并发的问题&#xff0c;看到这里我就决定写一篇关于redis秒杀的文章。 1、理论部分 我们看看一般我们库存是怎么出问题的 其实redis提供了两种解决方案&#xff1a;加锁和原子操…...

C++笔记之std::move和右值引用的关系、以及移动语义

C笔记之std::move和右值引用的关系、以及移动语义 code review! 文章目录 C笔记之std::move和右值引用的关系、以及移动语义1.一个使用std::move的最简单C例子2.std::move 和 T&& reference_name expression;对比3.右值引用和常规引用的经典对比——移动语义和拷贝语…...

ES6自用笔记

目录 原型链 引用类型&#xff1a;__proto__(隐式原型)属性&#xff0c;属性值是对象函数&#xff1a;prototype(原型)属性&#xff0c;属性值是对象 相关方法 person.prototype.isPrototypeOf(stu) Object.getPrototypeOf(Object)替换已不推荐的Object._ _ proto _ _ Ob…...

【BASH】回顾与知识点梳理(二十九)

【BASH】回顾与知识点梳理 二十九 二十九. 进程和工作管理29.1 什么是进程 (process)进程与程序 (process & program)子进程与父进程&#xff1a;fork and exec&#xff1a;进程呼叫的流程系统或网络服务&#xff1a;常驻在内存的进程 29.2 Linux 的多人多任务环境多人环境…...

Docker的Cgroup资源限制

Docker通过Cgroup来控制容器使用的资源配额&#xff0c;包括 CPU、内存、磁盘三大方面&#xff0c;基本覆盖了常见的资源配颡和使用量控制。 Cgoup 是CotrolGroups 的缩写&#xff0c;是Linux 内核提供的一种可以限制、记录、隔高进程组所使用的物理资源&#xff08;如CPU、内存…...

AI智能语音机器人的基本业务流程

先画个图&#xff0c;了解下AI语音机器人的基本业务流程。 上图是一个AI语音机器人的业务流程&#xff0c;简单来说就是首先要配置话术&#xff0c;就是告诉机器人在遇到问题该怎么回答&#xff0c;这个不同公司不同行业的差别比较大&#xff0c;所以一般每个客户都会配置其个性…...

uniapp 上传比较大的视频文件就超时

uni.uploadFile&#xff0c;上传超过10兆左右的文件就报错err&#xff1a;uploadFile:fail timeout&#xff0c;超时 解决&#xff1a; 在manifest.json文件中做超时配置 uni.uploadFile({url: this.action,method: "POST",header: {Authorization: uni.getStorage…...

CSS简介

目录 CSS CSS概念 核心概念 为什么需要CSS 语法 CSS的引入方式 内联样式&#xff08;行内样式&#xff09; 内部样式 外部样式&#xff08;推荐&#xff09; CSS CSS概念 CSS&#xff08;Cascading Style Sheets&#xff09;层叠样式表&#xff0c;又叫级联样式表&am…...

卡方分箱(chi-square)

统计学&#xff0c;风控建模经常遇到卡方分箱算法ChiMerge。卡方分箱在金融信贷风控领域是逻辑回归评分卡的核心&#xff0c;让分箱具有统计学意义&#xff08;单调性&#xff09;。卡方分箱在生物医药领域可以比较两种药物或两组病人是否具有显著区别。但很多建模人员搞不清楚…...

wordpress 乱码/推广软文300字范文

硬件系统设计硬件平台基于ARM920T的处理器AT91RM9200&#xff0c;该处理器不仅有丰富的片上资源和标准接口&#xff0c;而且有低功耗、低成本、高性能、支持多种主要的嵌入式操作系统等特点&#xff0c;其采用5级整数流水线结构&#xff0c;性能高达200此方案的硬件系统结构设计…...

电商网站开源授权二次开发/西安seo顾问公司

1. 概念&#xff1a;Java DataBase Connectivity Java 数据库连接&#xff0c; Java语言操作数据库 * JDBC本质&#xff1a;其实是官方(sun公司)定义的一套操作所有关系型数据库的规则&#xff0c;即接口。各个数据库厂商去实现这套接口&#xff0c;提供数据库驱动jar包。我们可…...

药检局信息化网站系统建设方案/新闻最新消息

本节课演示如何以动画的方式,显示或隐藏指定的位图,该功能在日常的开发工作里还是挺常见的。 首先添加一个布尔属性,标识是否显示或隐藏指定的视图。 添加另一个字符串属性,作为和密码输入框进行绑定的状态属性。 添加一个VStack视图,作为子视图的容器。 然后添加一个…...

欧洲大带宽服务器/网站优化方案

字典&#xff08;Dictionary&#xff09; 字典是一种存储多个相同类型的值的容器。每个值&#xff08;value&#xff09;都关联唯一的键&#xff08;key&#xff09;&#xff0c;键作为字典中的这个值数据的标识符。和数组中的数据项不同&#xff0c;字典中的数据项并没有具体顺…...

做网站 分工/全网推广平台推荐

1.基于贫血模型的传统开发模式 // BO&#xff0c;不包含业务逻辑 // 虚拟钱包 public class VirtualWalletBo {// 省略 getter/setter/constructor 方法 private Long id; private Long createTime; private BigDecimal balance; }// Service public class VirtualWalletSer…...

一个网站如何做推广/seo优化入门教程

从MySQL5.6开始&#xff0c;mysqlbinlog支持将远程服务器上的binlog实时复制到本地服务器上。mysqlbinlog的实时二进制复制功能并非简单的将远程服务器的日志复制过来&#xff0c;它是通过MySQL 5.6公布的Replication API实时获取二进制事件。本质上&#xff0c;就相当于MySQL的…...