【论文解读】Hybrid-SORT: Weak Cues Matter for Online Multi-Object Tracking
因为Hybrid-SORT的baseline是基于OCSORT进行改进的,在这之前建议先了解byteTrack和【】的相关知识
1.介绍
1.1 基本框架
多目标跟踪(MOT)将问题分为两个子任务。第一个任务是检测每个帧中的对象。第二个任务是将它们在不同的框架中联系起来。关联任务主要通过显式或隐式地利用强线索来解决,包括空间和外观信息。
1.2 当前方法的局限性
当两个物体在当前帧中高度重叠时,检测和估计轨迹位置之间的交集(IoU)会变得模糊,两个物体的外观特征都被前景特征所主导。
2. Hybrid-SORT
修改了当前最先进的SORT-like算法OCSORT作为我们的强基线。首先,对OC-SORT中的速度方向建模进行修正,即以观测为中心的动量(OCM),将盒中心扩展到四个盒角,将固定的时间间隔扩展到多个时间间隔;其次,我们在ByteTrack之后加入了一个额外的低置信度检测关联阶段。
2.1 弱条件建模
2.1.1 Tracklet 置信度建模
增加了两个额外的状态:轨迹置信度c及其速度分量
如下图所示,Kalman Filter在试图估计置信状态的突然变化时表现出明显的滞后,且置信度状态的变化趋势呈现出明显方向性
基于以上特点,因此本文使用基于轨迹历史的简单线性预测来估计轨迹置信度。
置信度代价计算为根据式4估计的轨迹置信度与检测置信度之间的绝对差值
2.1.2 Height Modulated IoU(HMIOU)
引入height状态有助于提高association :
(1)物体的高度在一定程度上反映了深度信息,使得高度状态成为区分高度重叠对象的有效线索。
(2)其次,高度状态对不同姿态具有较强的鲁棒性,是一种准确估计的状态,是物体的高质量表征。
公式化表述为:
HIoU代表高度状态,这是一个弱线索,而IoU代表空间信息,这是一个强线索,我们使用HIoU来调制IoU,实现对遮挡或聚类对象的增强识别
2.2 Hybrid-SORT
2.2.1 Robust OCM
2.2.1.1 原始OCM存在的局限性
原始OCM的建模容易受到固定时间间隔和稀疏状态(即只有目标中心)引起的噪声的影响。
2.2.1.2 Robust OCM
- 首先,将3帧的固定时间间隔扩展为1 ~ 3的多个时间间隔的叠加;
- 其次,我们用物体的四个角代替它的中心点来计算速度方向。
避免由于姿态的突然变化,轨迹和轨迹到检测中心的速度方向可能完全相反,从而导致匹配错误
2.2.2 外观建模
首先检测对象,然后将结果裁剪的补丁提供给ReID模型。我们使用指数移动平均(EMA)对轨迹图外观信息建模,并利用余弦距离作为度量来计算轨迹图外观特征与检测外观特征之间的相似度。
2.2.3 算法架构
关联阶段主要包括三个阶段:第一阶段是高置信度对象的关联阶段,第二阶段是低置信度对象的关联阶段(ByteTrack中的BYTE),第三阶段是用最后一次检测恢复丢失的轨迹(OC-SORT中的OCR)。
3.代码
3.1 卡尔曼滤波器KalmanBoxTracker建模
3.1.1 引入轨迹置信度c及其速度分量·
if not orig:from .kalmanfilter_score_new import KalmanFilterNew_score_new as KalmanFilter_score_newself.kf = KalmanFilter_score_new(dim_x=9, dim_z=5)
3.1.2 轨迹置信度的预测
简单线性预测来估计轨迹置信度
if not self.confidence_pre:return self.history[-1], np.clip(self.kf.x[3], self.args.track_thresh, 1.0),np.clip(self.confidence, 0.1, self.args.track_thresh)else:return self.history[-1], np.clip(self.kf.x[3], self.args.track_thresh, 1.0), np.clip(self.confidence - (self.confidence_pre - self.confidence), 0.1, self.args.track_thresh)
返回值分别是 分别是九位预测量,置信度预测值,置信度的速度分量·
3.2 Robust OCM
3.2.1 四个角代替它的中心点
lt, rt, lb, rb : 代表bbox四个角点的速度
Y1, X1 = speed_direction_batch_lt(detections, previous_obs)Y2, X2 = speed_direction_batch_rt(detections, previous_obs)Y3, X3 = speed_direction_batch_lb(detections, previous_obs)Y4, X4 = speed_direction_batch_rb(detections, previous_obs)cost_lt = cost_vel(Y1, X1, trackers, lt, detections, previous_obs, vdc_weight)cost_rt = cost_vel(Y2, X2, trackers, rt, detections, previous_obs, vdc_weight)cost_lb = cost_vel(Y3, X3, trackers, lb, detections, previous_obs, vdc_weight)cost_rb = cost_vel(Y4, X4, trackers, rb, detections, previous_obs, vdc_weight)angle_diff_cost = cost_lt + cost_rt + cost_lb + cost_rb
speed_direction_batch_XX用来计算四个角点的速度
cost_vel 用来计算某个交点速度的cost
3.3 Height Modulated IoU(HMIOU)
def hmiou(bboxes1, bboxes2):"""Height_Modulated_IoU"""bboxes2 = np.expand_dims(bboxes2, 0)bboxes1 = np.expand_dims(bboxes1, 1)yy11 = np.maximum(bboxes1[..., 1], bboxes2[..., 1])yy12 = np.minimum(bboxes1[..., 3], bboxes2[..., 3])yy21 = np.minimum(bboxes1[..., 1], bboxes2[..., 1])yy22 = np.maximum(bboxes1[..., 3], bboxes2[..., 3])o = (yy12 - yy11) / (yy22 - yy21)xx1 = np.maximum(bboxes1[..., 0], bboxes2[..., 0])yy1 = np.maximum(bboxes1[..., 1], bboxes2[..., 1])xx2 = np.minimum(bboxes1[..., 2], bboxes2[..., 2])yy2 = np.minimum(bboxes1[..., 3], bboxes2[..., 3])w = np.maximum(0., xx2 - xx1)h = np.maximum(0., yy2 - yy1)wh = w * ho *= wh / ((bboxes1[..., 2] - bboxes1[..., 0]) * (bboxes1[..., 3] - bboxes1[..., 1])+ (bboxes2[..., 2] - bboxes2[..., 0]) * (bboxes2[..., 3] - bboxes2[..., 1]) - wh)return (o)
相关文章:
【论文解读】Hybrid-SORT: Weak Cues Matter for Online Multi-Object Tracking
因为Hybrid-SORT的baseline是基于OCSORT进行改进的,在这之前建议先了解byteTrack和【】的相关知识 1.介绍 1.1 基本框架 多目标跟踪(MOT)将问题分为两个子任务。第一个任务是检测每个帧中的对象。第二个任务是将它们在不同的框架中联系起来。关联任务主要通过显式…...
Microsoft 图像BERT,基于大规模图文数据的跨模态预训练
视觉语言任务是当今自然语言处理(NLP)和计算机视觉领域的热门话题。大多数现有方法都基于预训练模型,这些模型使用后期融合方法融合下游任务的多模态输入。然而,这种方法通常需要在训练期间进行特定的数据注释,并且对于…...
vue3+elementUI-plus实现select下拉框的虚拟滚动
网上查了几个方案,要不就是不兼容,要不就是不支持vue3, 最终找到一个合适的,并且已上线使用,需要修改一下样式: 代码如下: main.js里引用 import vue3-virtual-scroller/dist/vue3-virtual-scroller.css; …...
学C的第三十四天【程序环境和预处理】
相关代码gitee自取: C语言学习日记: 加油努力 (gitee.com) 接上期: 学C的第三十三天【C语言文件操作】_高高的胖子的博客-CSDN博客 1 . 程序的翻译环境和执行环境 在ANSI C(C语言标准)的任何一种实现中,存在两个不同的环境。 ࿰…...
微服务中间件--Ribbon负载均衡
Ribbon负载均衡 a.Ribbon负载均衡原理b.Ribbon负载均衡策略 (IRule)c.Ribbon的饥饿加载 a.Ribbon负载均衡原理 1.发起请求http://userservice/user/1,Ribbon拦截该请求 2.Ribbon通过EurekaServer拉取userservice 3.EurekaServer返回服务列表给Ribbon做负载均衡 …...
字符设备驱动实例(ADC驱动)
四、ADC驱动 ADC是将模拟信号转换为数字信号的转换器,在 Exynos4412 上有一个ADC,其主要的特性如下。 (1)量程为0~1.8V。 (2)精度有 10bit 和 12bit 可选。 (3)采样时钟最高为5MHz,转换速率最高为1MSPS (4)具有四路模拟输入,同一时…...
python基础5——正则、数据库操作
文章目录 一、数据库编程1.1 connect()函数1.2 命令参数1.3 常用语句 二、正则表达式2.1 匹配方式2.2 字符匹配2.3 数量匹配2.4 边界匹配2.5 分组匹配2.6 贪婪模式&非贪婪模式2.7 标志位 一、数据库编程 可以使用python脚本对数据库进行操作,比如获取数据库数据…...
SpringAOP原理:手写动态代理实现
0、基础知识 AOP我们知道,是在不修改源代码的情况下,为代码添加一些新功能的技术。通过动态代理,可以在不修改原始类代码的前提下,对方法进行拦截和增强。 动态代理常用于在不改变原有业务逻辑的情况下,对方法…...
【旅游度假】Axure酒店在线预订APP原型图 旅游度假子模块原型模板
作品概况 页面数量:共 10 页 兼容软件:Axure RP 9/10,不支持低版本 应用领域:旅游度假,生活服务 作品申明:页面内容仅用于功能演示,无实际功能 作品特色 本作品为「酒店在线预订」的移动端…...
Android JNI系列详解之CMake和ndk-build编译工具介绍
一、前提 CMake和ndk-build只是编译工具,本次主要介绍ndk-build和CMake的区别,下节课介绍他们的使用。 二、CMake工具介绍 CMake:cross platform make,是跨平台的编译工具 CMake是在AndroidStudio2.2之后引入(目前默认…...
【Linux取经路】解析环境变量,提升系统控制力
文章目录 一、进程优先级1.1 什么是优先级?1.2 为什么会有优先级?1.3 小结 二、Linux系统中的优先级2.1 查看进程优先级2.2 PRI and NI2.3 修改进程优先级2.4 进程优先级的实现原理2.5 一些名词解释 三、环境变量3.1 基本概念3.2 PATH:Linux系…...
TCP编程流程(补充)
目录 1、listen: 2、listen、tcp三次握手 3、 发送缓冲区和接收缓冲区: 4、tcp编程启用多线程 1、listen: 执行listen会创建一个监听队列 listen(sockfd,5) 2、listen、tcp三次握手 三次握手 3、 发送缓冲区和接收缓冲区:…...
每天一道leetcode:433. 最小基因变化(图论中等广度优先遍历)
今日份题目: 基因序列可以表示为一条由 8 个字符组成的字符串,其中每个字符都是 A、C、G 和 T 之一。 假设我们需要调查从基因序列 start 变为 end 所发生的基因变化。一次基因变化就意味着这个基因序列中的一个字符发生了变化。 例如,&quo…...
【C++】做一个飞机空战小游戏(十)——子弹击落炮弹、炮弹与飞机相撞
[导读]本系列博文内容链接如下: 【C】做一个飞机空战小游戏(一)——使用getch()函数获得键盘码值 【C】做一个飞机空战小游戏(二)——利用getch()函数实现键盘控制单个字符移动【C】做一个飞机空战小游戏(三)——getch()函数控制任意造型飞机图标移动 【C】做一个飞…...
去除UI切图边缘上多余的线条
最近接到UI切图,放进项目,显示边缘有多余线条,影响UI美观。开始以为切图没切好,实则不是。如图: ->解决: 将该图片资源WrapMode改为Clamp...
Spring高手之路13——BeanFactoryPostProcessor与BeanDefinitionRegistryPostProcessor解析
文章目录 1. BeanFactoryPostProcessor 概览1.1 解读 BeanFactoryPostProcessor1.2. 如何使用 BeanFactoryPostProcessor 2. BeanDefinitionRegistryPostProcessor 深入探究2.1 解读 BeanDefinitionRegistryPostProcessor2.2 BeanDefinitionRegistryPostProcessor 的执行时机2.…...
【LeetCode动态规划】详解买卖票I~IV,经典dp题型买
给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。 你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最大利润。 返回你可以从这笔交易中获取的最大利润。…...
【深入探究人工智能】:常见机器学习算法总结
文章目录 1、前言1.1 机器学习算法的两步骤1.2 机器学习算法分类 2、逻辑回归算法2.1 逻辑函数2.2 逻辑回归可以用于多类分类2.3 逻辑回归中的系数 3、线性回归算法3.1 线性回归的假设3.2 确定线性回归模型的拟合优度3.3线性回归中的异常值处理 4、支持向量机(SVM&a…...
设计模式之解释器模式详解及实例
1、解释器设计模式概述: 解释器模式(Interpreter Pattern)是一种设计模式,它主要用于描述如何构建一个解释器以解释特定的语言或表达式。该模式定义了一个文法表示和解释器的类结构,用于解释符合该文法规则的语句。解…...
Nodejs沙箱逃逸--总结
一、沙箱逃逸概念 JavaScript和Nodejs之间有什么区别:JavaScript用在浏览器前端,后来将Chrome中的v8引擎单独拿出来为JavaScript单独开发了一个运行环境,因此JavaScript也可以作为一门后端语言,写在后端(服务端&#…...
No115.精选前端面试题,享受每天的挑战和学习
文章目录 变量提升和函数提升的顺序Event Loop封装 FetchAPI,要求超时报错的同时,取消执行的 promise(即不继续执行)强缓存和协商缓存的区别token可以放在cookie里吗? 变量提升和函数提升的顺序 在JavaScript中&#…...
Elasticsearch:语义搜索 - Semantic Search in python
当 OpenAI 于 2022 年 11 月发布 ChatGPT 时,引发了人们对人工智能和机器学习的新一波兴趣。 尽管必要的技术创新已经出现了近十年,而且基本原理的历史甚至更早,但这种巨大的转变引发了各种发展的“寒武纪大爆炸”,特别是在大型语…...
Flink学习笔记(一)
流处理 批处理应用于有界数据流的处理,流处理则应用于无界数据流的处理。 有界数据流:输入数据有明确的开始和结束。 无界数据流:输入数据没有明确的开始和结束,或者说数据是无限的,数据通常会随着时间变化而更新。 在…...
[Raspberry Pi]如何用VNC遠端控制樹莓派(Ubuntu desktop 23.04)?
之前曾利用VMware探索CentOS,熟悉Linux操作系統的指令和配置運作方式,後來在樹莓派價格飛漲的時期,遇到貴人贈送Raspberry Pi 4 model B / 8GB,這下工具到位了,索性跳過樹莓派官方系統(Raspberry Pi OS),直…...
17.HPA和rancher
文章目录 HPA部署 metrics-server部署HPA Rancher部署Rancherrancher添加集群仪表盘创建 namespace仪表盘创建 Deployments仪表盘创建 service 总结 HPA HPA(Horizontal Pod Autoscaling)Pod 水平自动伸缩,Kubernetes 有一个 HPA 的资源&…...
VS2022远程Linux使用cmake开发c++工程配置方法
文章目录 远程连接CMakePresets.json的配置Task.vs.json配置launch.vs.json配置最近使用别人在VS2015上使用visualgdb搭建的linux开发环境,各种不顺手,一会代码不能调转了,一会行号没了,调试的时候断不到正确的位置,取消的断点仍然会进。因此重新摸索了一套使用vs的远程开…...
《强化学习:原理与Python实战》——可曾听闻RLHF
前言: RLHF(Reinforcement Learning with Human Feedback,人类反馈强化学习)是一种基于强化学习的算法,通过结合人类专家的知识和经验来优化智能体的学习效果。它不仅考虑智能体的行为奖励,还融合了人类专家…...
STM32——RTC实时时钟
文章目录 Unix时间戳UTC/GMT 时间戳转换BKP简介BKP基本结构读写BKP备份寄存器电路设计关键代码 RTC简介RTC框图RTC基本结构硬件电路RTC操作注意事项读写实时时钟电路设计关键代码 Unix时间戳 Unix 时间戳(Unix Timestamp)定义为从UTC/GMT的1970年1月1日…...
webSocket 开发
1 认识webSocket WebSocket_ohana!的博客-CSDN博客 一,什么是websocket WebSocket是HTML5下一种新的协议(websocket协议本质上是一个基于tcp的协议)它实现了浏览器与服务器全双工通信,能更好的节省服务器资源和带宽…...
c#设计模式-结构型模式 之 代理模式
前言 由于某些原因需要给某对象提供一个代理以控制对该对象的访问。这时,访问对象不适合或者不能直接 引用目标对象,代理对象作为访问对象和目标对象之间的中介。在学习代理模式的时候,可以去了解一下Aop切面编程AOP切面编程_aop编程…...
外贸网站建设推广优化/国内seo公司
背景 首先我是个菜鸡,工资也低的一笔。 刚毕业时候在一家国企上班干 app 开发,干了快两年的时候,跳槽到了一家伪大厂干安全。投了不少简历都没有回音,只有这加伪大厂要我就来了。当时说好了会接触一些底层的东西,然而…...
企业做网站需要哪些材料/seo怎么做优化
2019独角兽企业重金招聘Python工程师标准>>> 其实说。是一个付不起责任的人。 因为具体的工作安排并不能做好监督与沟通。 但是, 作为员工, 经理的安排我是应该主动的完成的。 特别是写文档这个事情。 在我认知中。 主要工作是在10月之前完成…...
aaa云主机可以建网站吗/网络推广宣传
转自http://wenku.baidu.com/link?urlkGLhiO1xiiepXa9Q2OJDmm6Zr8dQmpSYYPVTFmc3CZtD6Z7HvFi2miCYDiQdTYF2TYIpSvp93STFFoLv1yP6OG25OjVDHn11y2BHFvlYJLG 我们平常学习时经常会写一下javaweb程序,我们为了更能逼近现实,就想着自己的javaweb程序发布后&a…...
可信网站认证收费吗/怎么快速推广app
hdu2098很水的题,但是自己用的是筛子法,但是自己想到惠超市了饿,还执意放到上面ac思路很简单,简单来说就是从1到n-1然后到n-1/2到n-1/2,因此正好一半,因此/2,然后验证是否为素数就行了,因此,验证…...
网站现在如何做推广/google 推广优化
Node,节点,一切的基础。 由OGRE的学习中最大的收获是在自写引擎时形成了一个设计框架,即由NODE形成的一种设计模式。 一个Node, 有关系属性:父,子,兄节点 有变化属性:位置࿰…...
php网站做代理服务器/网络优化培训骗局
本来是不太想动的...无可奈何,看到一句话【业精于勤, 荒于嬉】便还是动手写一写加深理解的同时给以后的自己留个备份吧...element-ui Tree组件如何给具有懒加载的tree设置半选效果?这也是让我很头疼的一个问题...因为数据不是一口气都请求回来的…...