当前位置: 首页 > news >正文

一文彻底理解时间复杂度和空间复杂度(附实例)

目录

  • 1 P=NP?
  • 2 时间复杂度
    • 2.1 常数阶复杂度
    • 2.2 对数阶复杂度
    • 2.3 线性阶复杂度
    • 2.4 平方阶复杂度
    • 2.5 指数阶复杂度
    • 2.6 总结
  • 3 空间复杂度

1 P=NP?

P类问题(Polynomial)指在多项式时间内能求解的问题;NP类问题(Non-Deterministic Polynomial)指在多项式时间内能验证一个解的问题。

在这里插入图片描述

问题的归约(reduction)指将一个问题的求解等效为另一个问题的求解,其中这种等效具有提升普遍性、加大复杂度的趋势,且问题归约可传递。举例而言,可以将求解一元一次方程归约为求解一元二次方程。

若任意一个NP类问题都能在多项式时间内归约到某个NP问题,则该问题被称为NP完全问题(NP-Complete);若无法归约到某个NP问题,则该问题被称为NP难问题(NP-Hard)

P类问题本身是NP的,因为能在多项式时间内求解必然能在多项式时间内验证解。但反之,NP问题是否是P问题的论断称为“P=NP?”,该论断被列为千禧七大难题之首,暂未被证明或证伪。

2 时间复杂度

一般地,算法中基本操作重复执行的次数是问题规模 n n n的某个函数 f ( n ) f(n) f(n)。在计算机科学中用时间复杂度(Time Complexity)定性描述一个算法的运行时耗——体现在问题规模 n n n变化 c c c倍后算法的执行效率,而非针对一个特定的 n n n,记为

T ( n ) = O ( f ( n ) ) T\left( n \right) =O\left( f\left( n \right) \right) T(n)=O(f(n))

其中 O ( ⋅ ) O\left( \cdot \right) O()是复杂度度量函数,不包括输入的低阶项和首项系数(非常数项)。必须指出,使用 O ( ⋅ ) O\left( \cdot \right) O()属于渐进时间复杂度——输入值大小趋近无穷时的情况,否则不能忽略其他低阶项的影响。常见的时间复杂度如下

2.1 常数阶复杂度

常数阶复杂度记为 O ( a ) O(a) O(a)

示例

// 计算 1 + 2 + 3 + ... + n 的值
int sum(int n)
{return (1 + n) * n / 2;
}

解释:对任意问题规模 ,算法均只执行一次,故认为算法时间复杂度为 O ( 1 ) O(1) O(1)

2.2 对数阶复杂度

常数阶复杂度记为 O ( log ⁡ n ) O\left( \log n \right) O(logn)

示例

/** 二分查找*    A[] : 待查找的数组(已排序)*      n : 数组长度* target : 查找的目标值*/
int binarySearch(int A[], int n, int target) {int lt = 0, rt = n;while(lt < rt){int mid = lt + (rt - lt)/2;if(A[mid] == target) return mid;else if(A[mid] > target) rt = mid;else lt = mid + 1;}return -1; // 查找不到
}

解释:二分查找算法每次迭代排除一半元素,因此第 m m m次迭代后剩余待查找元素个数为 n / 2 m {{n}/{2^m}} n/2m,最坏情况下排除到只剩最后一个值后得到结果——结果为该值或查找不到,即令 n / 2 m = 1 {{n}/{2^m}}=1 n/2m=1,则 f ( n ) = m = log ⁡ 2 n f\left( n \right) =m=\log _2n f(n)=m=log2n,故认为算法时间复杂度为 O ( log ⁡ n ) O\left( \log n \right) O(logn)

2.3 线性阶复杂度

示例

// 计算 1 + 2 + 3 + ... + n 的值
int sum(int n)
{int sum = 0;for(int i = 1; i <= n; i++) {sum += i;}return sum
}

解释:对任意问题规模 n n n,算法均执行 n n n次,故认为算法时间复杂度为 O ( n ) O(n) O(n)

2.4 平方阶复杂度

示例

/** 冒泡排序* arr[] : 待排序数组*     n : 数组长度*/
void bubbleSort(int[] arr, int n) {if(n == 0 || n == 1) return;for(int i = 0; i < n - 1; ++i) {for(int j = 0; j < n - i - 1; ++j) {if(a[j] > a[j+1]) swap(a[j], a[j+1]);}}
}

解释:冒泡排序算法共 n − 1 n-1 n1次迭代,每次迭代循环比较 n − i − 1 n-i-1 ni1次,故总迭代次数为 ( n − 1 ) + ( n − 2 ) + ⋯ + 1 = n ( n − 1 ) / 2 \left( n-1 \right) +\left( n-2 \right) +\cdots +1={{n\left( n-1 \right)}/{2}} (n1)+(n2)++1=n(n1)/2,故认为算法时间复杂度为 O ( n 2 ) O\left( n^2 \right) O(n2)

2.5 指数阶复杂度

示例

// 计算斐波那契数列
int fibonacci(int n)
{if (n<=0) return 0;if (n==1) return 1;return fb(n - 1) + fb(n - 2);
}

解释:斐波那契算法本质上是二阶常系数差分方程 f ( n ) = f ( n − 1 ) + f ( n − 2 ) f\left( n \right) =f\left( n-1 \right) +f\left( n-2 \right) f(n)=f(n1)+f(n2),其特征根为 x 1 , 2 = 1 ± 5 2 x_{1,2}=\frac{1\pm \sqrt{5}}{2} x1,2=21±5 ,则该差分方程通解为 f ( n ) = c 1 ( 1 + 5 2 ) n + c 2 ( 1 − 5 2 ) n f\left( n \right) =c_1\left( \frac{1+\sqrt{5}}{2} \right) ^n+c_2\left( \frac{1-\sqrt{5}}{2} \right) ^n f(n)=c1(21+5 )n+c2(215 )n,代入初始条件 f ( 0 ) = 0 f\left( 0 \right) =0 f(0)=0 f ( 1 ) = 1 f\left( 1 \right) =1 f(1)=1解得 c 1 c_1 c1 c 2 c_2 c2后即得

f ( n ) = 1 5 [ ( 1 + 5 2 ) n − ( 1 − 5 2 ) n ] f\left( n \right) =\frac{1}{\sqrt{5}}\left[ \left( \frac{1+\sqrt{5}}{2} \right) ^n-\left( \frac{1-\sqrt{5}}{2} \right) ^n \right] f(n)=5 1[(21+5 )n(215 )n]

故认为算法时间复杂度为 O ( a n ) O\left( a^n \right) O(an)

2.6 总结

特别地,当 n n n处于复杂度底数位置时称为多项式时间复杂度,例如常数阶、对数阶、线性阶等;当 n n n处于复杂度指数位置时称为超多项式时间复杂度,例如指数阶、阶乘阶等。一般地,计算机只能处理多项式时间复杂度算法,而无法忍受超多项式时间算法中问题规模的些许增长带来的爆炸式耗时,因此将多项式时间视为算法在时间复杂度层面是否有效的分水岭,如图所示。

在这里插入图片描述

3 空间复杂度

在计算机科学中用空间复杂度(Space Complexity)定性描述一个算法的内存占用——体现在问题规模 n n n变化 c c c倍后算法临时占用内存的增长状况,而非针对一个特定的 n n n,记为

S ( n ) = O ( f ( n ) ) S\left( n \right) =O\left( f\left( n \right) \right) S(n)=O(f(n))

算法空间复杂度分析与时间复杂度类似,区别在于其关注的不是基础操作的重复次数,而是算法运行时堆栈中的内存消耗,在递归算法中尤为明显。一般地,算法复杂性分析优先考察时间复杂度,而假设空间不受限;对空间复杂度的考察主要集中在嵌入式领域。

下面是归并排序的实例。

/** 归并排序* a[] : 待排序数组*  lt : 排序左索引*  rt : 排序右索引* p[] : 临时数组,存储排序元素*/
void merge(int a[], int lt, int rt, int p[]){int mid = (rt - lt)/2 + lt;int i = lt, j = mid + 1;int k = 0;// 合并while(i <= mid && j <= rt){ if(a[i] <= a[j])  p[k++] = a[i++];else              p[k++] = a[j++];}// 合并剩余while(i <= mid)         p[k++] = a[i++];while(j <= rt)          p[k++] = a[j++];// 重新赋值回去for(i = 0; i < k; ++i)  a[lt+i] = p[i];
}// 划分
void mergeSort(int a[], int lt, int rt, int p[]){if(lt < rt){int mid = (rt - lt)/2 + lt;mergeSort(a, lt, mid, p);   // 递归排序 lt ~ midmergeSort(a, mid+1, rt, p); // 递归排序 mid+1 ~ rtmerge(a, lt, rt, p);        // 合并 lt ~ rt}
}

设问题规模为 n n n,即待排序元素为 n n n个,则递归调用时最坏情况下会产生 log ⁡ 2 n \log _2n log2n层递归树。若临时数组在全局作用域中开辟,则递归过程中不再开辟新的内存空间,空间复杂度为 O ( n ) O(n) O(n);若临时数组在栈中申请,则每层递归都要开辟一次长度为 n n n的临时空间,空间复杂度为 O ( n log ⁡ 2 n ) O\left( n\log _2n \right) O(nlog2n)


🔥 更多精彩专栏

  • 《ROS从入门到精通》
  • 《Pytorch深度学习实战》
  • 《机器学习强基计划》
  • 《运动规划实战精讲》

👇源码获取 · 技术交流 · 抱团学习 · 咨询分享 请联系👇

相关文章:

一文彻底理解时间复杂度和空间复杂度(附实例)

目录 1 PNP&#xff1f;2 时间复杂度2.1 常数阶复杂度2.2 对数阶复杂度2.3 线性阶复杂度2.4 平方阶复杂度2.5 指数阶复杂度2.6 总结 3 空间复杂度 1 PNP&#xff1f; P类问题(Polynomial)指在多项式时间内能求解的问题&#xff1b;NP类问题(Non-Deterministic Polynomial)指在…...

Mysql的索引详解

零. 索引类型概述 1. 实际开发中使用的索引种类 主键索引唯一索引普通索引联合索引全文索引空间索引 2. 索引的格式类型 BTree类型Hash类型FullText类型&#xff08;全文索引)RTree类型&#xff08;空间索引) MySQL 的索引方法&#xff0c;主要包括 BTREE 和 HASH。 顾名思…...

.netcore windows app启动webserver

创建controller: using Microsoft.AspNetCore.Mvc; using Microsoft.Extensions.Logging; using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Text.Json.Serialization; using System.Threading.Tasks;namespace MyWorker.…...

泰迪大数据挖掘建模平台功能特色介绍

大数据挖掘建模平台面相高校、企业级别用户快速进行数据处理的建模工具。 大数据挖掘建模平台介绍 平台底层算法基于R语言、Python、Spark等引擎&#xff0c;使用JAVA语言开发&#xff0c;采用 B/S 结构&#xff0c;用户无需下载客户端&#xff0c;可直接通过浏览器进行…...

【问题】java序列化,什么时候使用

文章目录 是什么为什么如何做流操作 注事事项 是什么 把对象转换为字节序列的过程称为对象的序列化。 把字节序列恢复为对象的过程称为对象的反序列化。 对象的序列化主要有两种用途&#xff1a;   1&#xff09;把对象的字节序列永久地保存到硬盘上&#xff0c;通常存放在一…...

【最新可用】VMware中ubuntu与主机window之间使用共享文件夹传输大文件

一、VMware设置共享文件夹 &#xff08;1&#xff09;虚拟机关机情况下&#xff0c;创建一个共享文件夹 &#xff08;2&#xff09;ubuntu中挂载共享文件夹 1、如果之前已经挂载 hgfs&#xff0c;先取消挂载 sudo umount /mnt/hgfs2、重新使用以下命令挂载 sudo /usr/bin/vmh…...

A. Two Semiknights Meet

题目描述 可知走法为中国象棋中的象的走法 解题思路 利用结构体来存储两个 K K K的位置 x , y x,y x,y&#xff0c;因为两个 K K K同时走&#xff0c;所以会出现两种情况 相向而行&#xff0c;两者距离减少 相反而行&#xff0c;两者距离不变 我们完全可以不考虑格子是好…...

〔011〕Stable Diffusion 之 解决绘制多人或面部很小的人物时面部崩坏问题 篇

✨ 目录 🎈 脸部崩坏🎈 下载脸部修复插件🎈 启用脸部修复插件🎈 插件生成效果🎈 插件功能详解🎈 脸部崩坏 相信很多人在画图时候,特别是画 有多个人物 图片或者 人物在图片中很小 的时候,都会很容易出现面部崩坏的问题这是由于神经网络无法完全捕捉人脸的微妙细节…...

在ubuntu+cpolar+rabbitMQ环境下,实现mq服务端远程访问

文章目录 前言1.安装erlang 语言2.安装rabbitMQ3. 内网穿透3.1 安装cpolar内网穿透(支持一键自动安装脚本)3.2 创建HTTP隧道 4. 公网远程连接5.固定公网TCP地址5.1 保留一个固定的公网TCP端口地址5.2 配置固定公网TCP端口地址 前言 RabbitMQ是一个在 AMQP(高级消息队列协议)基…...

Vue elementui 实现表格selection的默认勾选,翻页记录勾选状态

需求&#xff1a;当弹出一个列表页数据&#xff0c;对其进行筛选选择。 列表更新&#xff0c;填充已选数据 主要使用toggleRowSelection 代码如下&#xff1a; <el-table v-loading"loading" :data"drugList" selection-change"handleSelection…...

CloudCompare——统计滤波

目录 1.统计滤波2.软件实现3.完整操作4.算法源码5.相关代码 本文由CSDN点云侠原创&#xff0c;CloudCompare——统计滤波&#xff0c;爬虫自重。如果你不是在点云侠的博客中看到该文章&#xff0c;那么此处便是不要脸的爬虫。 1.统计滤波 算法原理见&#xff1a;PCL 统计滤波器…...

nodejs+vue古诗词在线测试管理系统

一开始&#xff0c;本文就对系统内谈到的基本知识&#xff0c;从整体上进行了描述&#xff0c;并在此基础上进行了系统分析。为了能够使本系统较好、较为完善的被设计实现出来&#xff0c;就必须先进行分析调查。基于之前相关的基础&#xff0c;在功能上&#xff0c;对新系统进…...

174-地下城游戏

题目 恶魔们抓住了公主并将她关在了地下城 dungeon 的 右下角 。地下城是由 m x n 个房间组成的二维网格。我们英勇的骑士最初被安置在 左上角 的房间里&#xff0c;他必须穿过地下城并通过对抗恶魔来拯救公主。 骑士的初始健康点数为一个正整数。如果他的健康点数在某一时刻…...

Linux定时任务crontab

常用命令 crontab -e 进入定时脚本&#xff0c;编辑后保存即立即生效 crontab -l 查看用户定时脚本 tail -f /var/log/cron 查看执行日志 service crond status 查看定时器运行状态 service crond restart 重启定时器 定时任务不执行原因 定时任务设置的格式正确&#xff0c;手…...

golang字符串切片去重

函数的功能是从输入的字符串切片中去除重复的元素&#xff0c;并返回去重后的结果。具体的实现逻辑如下&#xff1a; 创建一个空的结果切片result&#xff0c;用于存储去重后的字符串。创建一个临时的maptempMap&#xff0c;用于存放不重复的字符串。map的键是字符串&#xff0…...

git如何检查和修改忽略文件和忽略规则

查询忽略规则 使用命令行&#xff1a;git status --ignored&#xff0c;进行查询&#xff0c; 例&#xff1a; $ git status --ignored On branch develop Your branch is up to date with origin/develop.Ignored files:(use "git add -f <file>..." to inc…...

Android AppCompatActivity标题栏操作

使用 AndroidStudio 新建的工程默认用 AppCompatActivity &#xff0c;是带标题栏的。 记录下 修改标题栏名称 和 隐藏标题栏 的方法。 修改标题栏名称 Override protected void onCreate(Bundle savedInstanceState) {super.onCreate(savedInstanceState);setContentView(R…...

解决conda activate报错

解决方法 source ~/anaconda3/bin/activate或 source ~/miniconda3/bin/activate然后就可以使用 conda activate xxx环境了 问题解析 请参考github&#xff1a;https://github.com/conda/conda/issues/7980...

FreeMarker--表达式和运算符的用法(全面/有示例)

原文网址&#xff1a;FreeMarker--表达式和运算符的用法(全面/有示例)_IT利刃出鞘的博客-CSDN博客 简介 本文介绍FreeMarker的表达式和运算符的用法。 表达式是FreeMarker的核心功能。表达式放置在插值语法&#xff08;${...}&#xff09;之中时&#xff0c;表明需要输出表达…...

设计模式 -- 策略模式(传统面向对象与JavaScript 的对比实现)

设计模式 – 策略模式&#xff08;传统面向对象与JavaScript 的对比实现&#xff09; 文章目录 设计模式 -- 策略模式&#xff08;传统面向对象与JavaScript 的对比实现&#xff09;使用策略模式计算年终奖初级实现缺点 使用组合函数重构代码缺点 使用策略模式重构代码传统的面…...

非常详细的 Ceph 介绍、原理、架构

1. Ceph架构简介及使用场景介绍 1.1 Ceph简介 Ceph是一个统一的分布式存储系统&#xff0c;设计初衷是提供较好的性能、可靠性和可扩展性。 Ceph项目最早起源于Sage就读博士期间的工作&#xff08;最早的成果于2004年发表&#xff09;&#xff0c;并随后贡献给开源社区。在经过…...

js 的正则表达式(二)

1.正则表达式分类&#xff1a; 正则表达式分为普通字符和元字符。 普通字符&#xff1a; 仅能够描述它们本身&#xff0c;这些字符称作普通字符&#xff0c;例如所有的字母和数字。也就是说普通字符只能够匹配字符串中与它们相同的字符。 元字符&#xff1a; 是一些具有特殊含…...

星际争霸之小霸王之小蜜蜂(四)--事件监听-让小蜜蜂动起来

目录 前言 一、监听按键并作出判断 二、持续移动 三、左右移动 总结&#xff1a; 前言 今天开始正式操控我们的小蜜蜂了&#xff0c;之前学java的时候是有一个函数监听鼠标和键盘的操作&#xff0c;我们通过传过来不同的值进行判断&#xff0c;现在来看看python是否一样的实现…...

Visual Studio 2022 你必须知道的实用调试技巧

目录 1、什么是bug&#xff1f; 2.调试是什么&#xff1f;有多重要&#xff1f; 2.1我们是如何写代码的&#xff1f; 2.2又是如何排查出现的问题的呢&#xff1f; ​编辑 2.3 调试是什么&#xff1f; 2.4调试的基本步骤 2.5Debug和Release的介绍 3.Windows环境调试介绍…...

Webgl 存储限定符attribute、gl.getAttribLocation、gl.vertexAttrib3f及其同族函数和矢量版本的介绍

目录 attribute变量规范 获取attribute变量的存储位置 gl.getAttribLocation&#xff08;&#xff09;函数的规范&#xff1a; 向attribute变量赋值 gl.vertexAttrib3f&#xff08;&#xff09;的规范。 gl.vertexAttrib3f&#xff08;&#xff09;的同族函数 示例代码…...

postgresql跨库创建视图

需求&#xff1a; A库a表中的字段拆分1个到B库b表&#xff0c;所以b表中只保留唯一标识字段&#xff08;可以理解为id&#xff09;和另一个被拆分的字段 需要用到的拓展:CREATE EXTENSION dblink 使用dblink创建连接&#xff1a; SELECT dblink_connect(other_db, hostaddr【IP…...

FPGA时钟

几年前FPGA时钟只需要连接一个单端输入的晶振&#xff0c;非常容易。现在不同了&#xff0c;差分时钟输入&#xff0c;差分信号又分为LVDS和LVPECL&#xff0c;时钟芯片输出后还要经过直流或交流耦合才能接入FPGA&#xff0c;有点晕了&#xff0c;今天仔细研究一下。 FPGA输入…...

FifthOne:计算机视觉提示和技巧

一、说明 欢迎来到我们每周的FiftyOne提示和技巧博客&#xff0c;我们回顾了最近在Slack&#xff0c;GitHub&#xff0c;Stack Overflow和Reddit上弹出的问题和答案。FiftyOne是一个开源机器学习工具集&#xff0c;使数据科学团队能够通过帮助他们策划高质量数据集、评估模型、…...

Oracle19c-补丁升级报错合集(一)

前言: 本文主要介绍Oracle19c补丁升级遇到的问题&#xff0c;涉及安装补丁prepatch步骤&#xff0c;apply应用报错以及datapatch -verbose数据字典更新报错 问题一: 在执行补丁rootcrs.sh -prepatch操作时&#xff0c;发生执行检查命令cluutil -chkshare报错 CLSRSC-180: An …...

嵌入式:ARM Day6

作业:完成cortex-A7核UART总线实验 目的&#xff1a;1.输入a,显示b&#xff0c;将输入的字符的ASCII码下一位字符输出 2.原样输出输入的字符串 源码&#xff1a; uart4.h #ifndef __UART4_H__ #define __UART4_H__#include "stm32mp1xx_rcc.h" #incl…...

什么叫seo网站推广/初学者做电商怎么入手

信息系统集成有以下几个显著特点。(1)信息系统集成要以满足用户需求为根本出发点。(2)信息系统集成不只是设备选择和供应&#xff0c;更重要的&#xff0c;它是具有高技术含量的工程过程&#xff0c;要面向用户需求提供全面解决方案&#xff0c;其核心是软件。(3)系统集成的最终…...

局域网下怎么访问自己做的网站/产品推广计划

弹性模量越大说明什么(弹性模量和泊松比)轴向拉伸&#xff1a;杆件沿轴线方向的变形称为轴向变形或纵向变形&#xff0c;垂直于轴线方向的变形称为横向变形。杆的纵向绝对变形△l和横向绝对变形△d的计算公式&#xff1a;杆件变形程度的衡量方法&#xff1a;为了准确地反映变形…...

做视频网站每部电影都要版权/百度怎么提交收录

GroupBy是个Collector&#xff0c;它是用来进行Stream上的collect操作的。Collect是一个Mutable Reduction。所谓reduction&#xff0c;相当于把集合里的每一个元素依次带入一个函数&#xff0c;最终得到一个值。比如求一组int的和&#xff0c;可以用reduction写作。int sum n…...

网站建设有哪些技术/百度推广公司电话

在移动端需要安全算法时&#xff0c;直接使用开源库可能不合适(开源库都比较大&#xff0c;也可以自己抽取需要的代码)&#xff0c;本Demo是根据AES的原理来实现算法&#xff0c;采用ECB/PKCS5Padding&#xff0c;实现短小精悍&#xff01;&#xff01; 注意&#xff1a;本算法…...

还有哪些网站可以做淘宝活动吗/深圳网站设计公司

使用RMAN备份与恢复数据库&#xff08;2&#xff09;——参数文件的备份与恢复 Oracle有两类参数文件&#xff1a; &#xff08;1&#xff09;pfile&#xff1a;文本格式的参数文件&#xff0c;文件名通常为init.ora&#xff1b; &#xff08;2&#xff09;spfile&#xff1a;…...

如何建立一个公网可以访问的网站/2022年热点营销案例

首先下载安装git&#xff1a;https://git-scm.com/downloads/ 一路默认&#xff0c;安装完成后&#xff0c;打开文件夹C:\Users\Administrator\.ssh&#xff08;Administrator是当前用户名&#xff09;&#xff0c;在空白处点鼠标右键选择“Git Bush Here” &#xff0c;打开g…...