Numpy入门(3)—线性代数
线性代数
线性代数(如矩阵乘法、矩阵分解、行列式以及其他方阵数学等)是任何数组库的重要组成部分,NumPy中实现了线性代数中常用的各种操作,并形成了numpy.linalg线性代数相关的模块。本节主要介绍如下函数:
diag:以一维数组的形式返回方阵的对角线(或非对角线)元素,或将一维数组转换为方阵(非对角线元素为0)。dot:矩阵乘法。trace:计算对角线元素的和。det:计算矩阵行列式。eig:计算方阵的特征值和特征向量。inv:计算方阵的逆。
向量与矩阵:
矩阵:有多行多列元素组成的一个集合,一个m*n的矩阵,有m行n列个元素
向量:如果一个矩阵只有一列,那么就是一个列向量;如果只有一行,那么就是一个行向量
从某个角度来说,矩阵就是由多个向量组成的
矩阵相乘:
A矩阵:m行
B矩阵:n列
前提:m=n
C矩阵:AB乘积
- 乘积C的第m行、n列 = 矩阵A的第m行的元素与矩阵B第n列元素的乘积之和
# 矩阵相乘
a = np.arange(12)
b = a.reshape([3, 4])
c = a.reshape([4, 3])
# 矩阵b的第二维大小,必须等于矩阵c的第一维大小
d = b.dot(c) # 等价于 np.dot(b, c)
print('a: \n{}'.format(a))
print('b: \n{}'.format(b))
print('c: \n{}'.format(c))
print('d: \n{}'.format(d))
a:
[ 0 1 2 3 4 5 6 7 8 9 10 11]
b:
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
c:
[[ 0 1 2]
[ 3 4 5]
[ 6 7 8]
[ 9 10 11]]
d:
[[ 42 48 54]
[114 136 158]
[186 224 262]]
# numpy.linalg 中有一组标准的矩阵分解运算以及诸如求逆和行列式之类的东西
# np.linalg.diag 以一维数组的形式返回方阵的对角线(或非对角线)元素,
# 或将一维数组转换为方阵(非对角线元素为0)
e = np.diag(d)
f = np.diag(e)
print('d: \n{}'.format(d))
print('e: \n{}'.format(e))
print('f: \n{}'.format(f))
d:
[[ 42 48 54]
[114 136 158]
[186 224 262]]
e:
[ 42 136 262]
f:
[[ 42 0 0]
[ 0 136 0]
[ 0 0 262]]
# trace, 计算对角线元素的和
g = np.trace(d)
g
440
# det,计算行列式
h = np.linalg.det(d)
h
1.3642420526593978e-11
# eig,计算特征值和特征向量
i = np.linalg.eig(d)
i
(array([4.36702561e+02, 3.29743887e+00, 3.13152204e-14]), array([[ 0.17716392, 0.77712552, 0.40824829], [ 0.5095763 , 0.07620532, -0.81649658], [ 0.84198868, -0.62471488, 0.40824829]]))
# inv,计算方阵的逆
tmp = np.random.rand(3, 3)
j = np.linalg.inv(tmp)
j
array([[-0.59449952, 1.39735912, -0.06654123], [ 1.56034184, -0.40734618, -0.48055062], [ 0.10659811, -0.62164179, 1.30437759]])
补充:矩阵的逆
矩阵的逆是指对于一个n维的矩阵A,存在一个n维的矩阵B,使得A乘以B等于单位矩阵E,即AB=BA=E。其逆矩阵求解方法,有以下几种:
伴随矩阵法: 伴随矩阵法是求解矩阵逆的一种方法。对于一个n维矩阵A,其逆矩阵可以用下式表示:A^(-1)=1/|A| * Adj(A),其中|A|表示A的行列式,Adj(A)表示A的伴随矩阵。伴随矩阵的求法是:先求出矩阵A的代数余子式,然后将其转置得到的矩阵即为伴随矩阵。
初等变换法: 初等变换法是求解矩阵逆的另一种方法。将待求逆的矩阵A和单位矩阵E按行合并成一个矩阵[A|E],然后对其进行初等变换,直到左边的矩阵变为单位矩阵,右边的矩阵即为所求的逆矩阵。
高斯-约旦消元法: 高斯-约旦消元法也是求解矩阵逆的一种方法。将待求逆的矩阵A和单位矩阵E按列合并成一个矩阵[A|E],然后对其进行高斯-约旦消元,直到左边的矩阵变为单位矩阵,右边的矩阵即为所求的逆矩阵。
分块矩阵法: 分块矩阵法适用于分块矩阵的求逆,即将一个大的矩阵分成多个小的矩阵。其方法是将大矩阵A分成四个小矩阵A11、A12、A21、A22,并根据矩阵分块公式求出逆矩阵。
代码合集
import numpy as npdef func1():a = np.arange(12)b = a.reshape([3, 4])c = a.reshape([4, 3])# 矩阵b的第二维大小,必须等于矩阵c的第一维大小d = b.dot(c) # 等价于 np.dot(b, c)# np.dot(b, c)print('a: \n{}'.format(a))print('b: \n{}'.format(b))print('c: \n{}'.format(c))print('d: \n{}'.format(d))# numpy.linalg 中有一组标准的矩阵分解运算以及诸如求逆和行列式之类的东西# np.linalg.diag 以一维数组的形式返回方阵的对角线(或非对角线)元素,# 或将一维数组转换为方阵(非对角线元素为0)print("=========linalg test=========")e = np.diag(d)f = np.diag(e)print('d: \n{}'.format(d))print('e: \n{}'.format(e))print('f: \n{}'.format(f))# 计算对角线元素之和g = np.trace(d)print(g)# det,计算行列式h = np.linalg.det(d)print(h)# eig,计算特征值和特征向量i = np.linalg.eig(d)print(i)def func2():# 计算方阵的逆# https://blog.51cto.com/u_15072903/3963066tmp = np.random.rand(3, 3)print(tmp)j = np.linalg.inv(tmp)print(j)print(tmp.dot(j))print(j.dot(tmp))if __name__ == "__main__":# func1()func2()相关文章:
Numpy入门(3)—线性代数
线性代数 线性代数(如矩阵乘法、矩阵分解、行列式以及其他方阵数学等)是任何数组库的重要组成部分,NumPy中实现了线性代数中常用的各种操作,并形成了numpy.linalg线性代数相关的模块。本节主要介绍如下函数: diag&am…...
php的openssl_encrypt是不是自动做了PKCS5Padding?
在PHP中,openssl_encrypt函数默认使用的是PKCS7填充(不是PKCS5填充)。PKCS7填充实际上是PKCS5填充的扩展,用于对不同块大小的数据进行填充。 当你使用openssl_encrypt函数进行加密时,如果你没有显式指定填充模式和填充…...
在本地创建repository及上传至github
文章目录 本地管理设定git的用户名与邮箱初始化添加修改提交修改设定分支问题一:error: insufficient permission for adding an object... 数据同步创建SSH keys创建并关联远程仓库上传改动至github问题二:Failed to connect to github.com port 443: Connection timed out问题…...
情人节特别定制:多种语言编写动态爱心网页(附完整代码)
写在前面案例1:HTML Three.js库案例2:HTML CSS JavaScript案例3:Python环境 Flask框架结语 写在前面 随着七夕节的临近,许多人都在寻找独特而令人难忘的方式来表达爱意。在这个数字时代,结合创意和技术࿰…...
Docker mysql主从同步安装
1. 构建master实例 docker run -p 3307:3306 --name mysql-master \ -v /mydata/mysql-master/log:/var/log/mysql \ -v /mydata/mysql-master/data:/var/lib/mysql \ -v /mydata/mysql-master/conf:/etc/mysql \ -e MYSQL_ROOT_PASSWORDroot \ -d mysql:5.7 2. 构建master配置…...
docker update 命令
docker update 更新一个或多个容器的配置。官方文档 用法 $ docker update [OPTIONS] CONTAINER [CONTAINER...]请参阅选项部分OPTIONS,了解此命令可用的概述。 描述 该docker update命令动态更新容器配置。您可以使用此命令来防止容器消耗 Docker 主机的过多资…...
阻塞和挂起的区别和联系
阻塞和挂起是进程两种不同的状态,其描述如下: 阻塞:正在执行的进程由于发生某时间(如I/O请求、申请缓冲区失败等)暂时无法继续执行。此时引起进程调度,OS把处理机分配给另一个就绪进程,而让受阻…...
水力发电厂测量装置配置选型及厂用电管理系统
《水力发电厂测量装置配置设计规范》对水电厂的测量装置配置做了详细要求和指导。测量装置是水力发电厂运行监测的重要环节,水电厂的测量主要分为电气量测量和非电量测量。电气测量指使用电的方式对电气实时参数进行测量,包括电流、电压、频率、功率因数…...
【RabbitMQ】RabbitMQ整合SpringBoot案例
文章目录 1、前情提要【RabbitMQ】2、RabbitMQ-SpringBoot案例 -fanout模式2.1 实现架构总览2.2 具体实现2.2.1生产者2.2.1消费者 1、前情提要【RabbitMQ】 【RabbitMQ】消息队列-RabbitMQ篇章 RabbitMQ实现流程 2、RabbitMQ-SpringBoot案例 -fanout模式 2.1 实现架构总览…...
如何在window下cmd窗口执行linux指令?
1.Git:https://git-scm.com/downloads(官网地址) 2.根据自己的实际路径,添加两个环境变量 3.重启电脑...
c++基础系列:字符串、向量和数组
字符串、向量和数组 命名空间的using声明 目前用到的库函数基本上都属于命名空间std;通过using声明(using declaration)实现更简单的途径使用到命名空间中的成员。 标准库类型string string表示可变长的字符序列,必须先包含st…...
docker 05(dockerfile)
一、docker镜像原理 镜像可以复用 二、容器转镜像 将容器保存为镜像[参考] docker commit -a -m 现有容器ID 保存后的名称:版本号 -a :提交的镜像作者; -c :使用Dockerfile指令来创建镜像; -m :提交时的说明文字; -p :…...
PostMan 测试项目是否支持跨域
使用PostMan可以方便快速的进行跨域测试。 只需要在请求头中手动添加一个Origin的标头,声明需要跨域跨到的域(IP:端口)就行,其余参数PostMan会自动生成。添加此标头后,请求会被做为一条跨域的请求来进行处…...
jsp 协同过滤 图书管理系统Myeclipse开发mysql数据库web结构java编程计算机网页项目
一、源码特点 JSP 协同过滤 图书管理系统是一套完善的java web信息管理系统,对理解JSP java编程开发语言有帮助,系统具有完整的源代码和数据库,系统主要采用B/S模式开发。开发环境 为TOMCAT7.0,Myeclipse8.5开发,数据库为My…...
商城-学习整理-高级-商城业务-商品上架es(十)
目录 一、商品上架1、sku在ES中存储模型分析2、nested数据类型场景3、构造基本数据(商品上架) 二、首页1、项目介绍2、整合thymeleaf(spring-boot下模板引擎)渲染页面3、页面修改不重启服务器实时更新4、渲染二级三级数据 三、搭建…...
【水文学法总结】河道内生态流量计算方法(含MATLAB实现代码)
生态流量(Ecological Flow, EF) 是指维持河道内生态环境所需要的水流流量。生态流量计算方法众多,主要分为水文学方法、栖息地模拟法、水力学方法、整体法等,各方法多用于计算维持河道生态平衡的最小生态流量(Minimum …...
特斯拉Model 3的七年狂飙
作者 | 张祥威 编辑 | 德新 发布一周拿下32万张订单,之后用时五年,交付量突破100万辆。粗略计算,自2016年发布至今,特斯拉Model 3已交付超150万辆。 放眼新能源赛道,如此战绩 别无二家。 Model 3踩中纯电动车的…...
物流签收异常,财务对账复杂,怎么解决?
电子商务行业的蓬勃发展为人们的购物体验带来了巨大的便利,然而,随之而来的物流签收异常和财务对账复杂问题却给电商企业的财务部门带来了一系列困扰。 每天大量的订单和货物流转,不可避免地导致了物流签收数据与财务记录之间的不一致和差异…...
docker之镜像与数据卷
镜像 简介 1.镜像是一种轻量级、可执行的独立软件包,用来打包软件运行环境和基于环境开发的软件,他包含运行某个软件所需的所有内容,包括代码、运行时库、环境变量、配置文件 2.将所有的应用和环境11,直接打包成docker镜像&…...
服务器为什么会被攻击?43.248.186.x
进入信息时代,各种行业对数据的安全和技术要求也越来越高,同时也遇到了各种各样的服务器故障问题,但是网络攻击才是最大的伤害,在这上面造成了企业不必要的损失,那么服务器为什么会被攻击,这里给大家讲解一下服务器被攻击有哪几种情况 一、服…...
HTML 语义化
目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案: 语义化标签: <header>:页头<nav>:导航<main>:主要内容<article>&#x…...
为什么需要建设工程项目管理?工程项目管理有哪些亮点功能?
在建筑行业,项目管理的重要性不言而喻。随着工程规模的扩大、技术复杂度的提升,传统的管理模式已经难以满足现代工程的需求。过去,许多企业依赖手工记录、口头沟通和分散的信息管理,导致效率低下、成本失控、风险频发。例如&#…...
大语言模型如何处理长文本?常用文本分割技术详解
为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...
376. Wiggle Subsequence
376. Wiggle Subsequence 代码 class Solution { public:int wiggleMaxLength(vector<int>& nums) {int n nums.size();int res 1;int prediff 0;int curdiff 0;for(int i 0;i < n-1;i){curdiff nums[i1] - nums[i];if( (prediff > 0 && curdif…...
MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...
sqlserver 根据指定字符 解析拼接字符串
DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...
MySQL用户和授权
开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务: test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...
纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join
纯 Java 项目(非 SpringBoot)集成 Mybatis-Plus 和 Mybatis-Plus-Join 1、依赖1.1、依赖版本1.2、pom.xml 2、代码2.1、SqlSession 构造器2.2、MybatisPlus代码生成器2.3、获取 config.yml 配置2.3.1、config.yml2.3.2、项目配置类 2.4、ftl 模板2.4.1、…...
数据结构:递归的种类(Types of Recursion)
目录 尾递归(Tail Recursion) 什么是 Loop(循环)? 复杂度分析 头递归(Head Recursion) 树形递归(Tree Recursion) 线性递归(Linear Recursion)…...
Python训练营-Day26-函数专题1:函数定义与参数
题目1:计算圆的面积 任务: 编写一个名为 calculate_circle_area 的函数,该函数接收圆的半径 radius 作为参数,并返回圆的面积。圆的面积 π * radius (可以使用 math.pi 作为 π 的值)要求:函数接收一个位置参数 radi…...
