PyTorch学习笔记(十六)——利用GPU训练
一、方式一
网络模型、损失函数、数据(包括输入、标注)
找到以上三种变量,调用它们的.cuda(),再返回即可
if torch.cuda.is_available():mynn = mynn.cuda()
if torch.cuda.is_available():loss_function = loss_function.cuda()
for data in train_dataloader:imgs,targets = dataif torch.cuda.is_available():imgs = imgs.cuda()targets = targets.cuda()
for data in test_dataloader:imgs,targets = dataif torch.cuda.is_available():imgs = imgs.cuda()targets = targets.cuda()
完整代码:
import torch
import torchvision
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import time
# from model import *# 准备数据集
train_data = torchvision.datasets.CIFAR10(root="../datasets",train=True,transform=torchvision.transforms.ToTensor(),download=False)
test_data = torchvision.datasets.CIFAR10(root="../datasets",train=False,transform=torchvision.transforms.ToTensor(),download=False)train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(test_data_size))# 利用dataloader来加载数据集
train_dataloader = DataLoader(train_data,batch_size=64)
test_dataloader = DataLoader(test_data,batch_size=64)# 创建网络模型
class MyNN(nn.Module):def __init__(self):super(MyNN, self).__init__()self.model = nn.Sequential(nn.Conv2d(3, 32, 5, 1, 2),nn.MaxPool2d(2),nn.Conv2d(32, 32, 5, 1, 2),nn.MaxPool2d(2),nn.Conv2d(32, 64, 5, 1, 2),nn.MaxPool2d(2),nn.Flatten(),nn.Linear(64 * 4 * 4, 64),nn.Linear(64, 10))def forward(self, x):x = self.model(x)return x
mynn = MyNN()
if torch.cuda.is_available():mynn = mynn.cuda()# 损失函数
loss_function = nn.CrossEntropyLoss()
if torch.cuda.is_available():loss_function = loss_function.cuda()
# 优化器
learning_rate = 1e-2
optimizer = torch.optim.SGD(mynn.parameters(), lr=learning_rate)# 设置训练网络的一些参数
total_train_step = 0 # 记录训练次数
total_test_step = 0 # 记录测试次数
epoch = 10 # 训练的轮数# 添加tensorboard
writer = SummaryWriter("../logs_train")start_time = time.time()
for i in range(epoch):print("----------第{}轮训练开始----------".format(i+1))# 训练步骤开始mynn.train()for data in train_dataloader:imgs,targets = dataif torch.cuda.is_available():imgs = imgs.cuda()targets = targets.cuda()outputs = mynn(imgs)loss = loss_function(outputs, targets)# 优化器优化模型optimizer.zero_grad()loss.backward()optimizer.step()total_train_step += 1if total_train_step % 100 == 0:end_time = time.time()print("所用时间:{}".format(end_time - start_time))print("训练次数:{},loss:{}".format(total_train_step, loss.item()))writer.add_scalar("train_loss",loss.item(),total_train_step)# 测试步骤开始mynn.eval()total_test_loss = 0total_accuracy = 0with torch.no_grad():for data in test_dataloader:imgs,targets = dataif torch.cuda.is_available():imgs = imgs.cuda()targets = targets.cuda()outputs = mynn(imgs)loss = loss_function(outputs, targets)total_test_loss += lossaccuracy = (outputs.argmax(1) == targets).sum()total_accuracy += accuracyprint("整体测试集上的loss:{}".format(total_test_loss))print("整体测试集上的正确率:{}".format(total_accuracy/test_data_size))writer.add_scalar("test_loss",total_test_loss,total_test_step)writer.add_scalar("test_accuracy",total_accuracy/test_data_size,total_test_step)total_test_step += 1torch.save(mynn,"mynn_{}.pth".format(i))# torch.save(mynn.state_dict(),"mynn_{}.pth".format(i))print("模型已保存")writer.close()
比较CPU和GPU的训练时间:
查看GPU信息:
在 终端里输入nvidia-smi
使用Google Colab:Google 为我们提供了一个免费的GPU
修改 ——> 笔记本设置 ——> 硬件加速器选择GPU(每周免费使用30h)
二、方式二(更常用)
定义训练设备
device = torch.device("cpu")
# 对于单显卡来说,以下两种方式没有区别
device = torch.device("cuda")
device = torch.device("cuda:0")
# 一种语法的简写,程序在 CPU 或 GPU/cuda 环境下都能运行
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
网络模型、损失函数、数据(包括输入、标注)
找到以上三种变量,.to(device),再返回即可
mynn = MyNN()
mynn = mynn.to(device)
# 这里可以不用再赋值给mynn,直接mynn.to(device) 也可以
loss_function = nn.CrossEntropyLoss()
loss_function = loss_function.to(device)
# 这里可以不用再赋值给loss_function ,直接loss_function .to(device) 也可以
for data in train_dataloader:imgs,targets = dataimgs = imgs.to(device)targets = targets.to(device)# 这里必须赋值
for data in test_dataloader:imgs,targets = dataimgs = imgs.to(device)targets = imgs.to(device)# 这里必须赋值
完整代码:
import torch
import torchvision
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
import time
# from model import *# 定义训练的设备
# device = torch.device("cpu")
# device = torch.device("cuda")
# device = torch.device("cuda:0")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")# 准备数据集
train_data = torchvision.datasets.CIFAR10(root="../datasets",train=True,transform=torchvision.transforms.ToTensor(),download=False)
test_data = torchvision.datasets.CIFAR10(root="../datasets",train=False,transform=torchvision.transforms.ToTensor(),download=False)train_data_size = len(train_data)
test_data_size = len(test_data)
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(test_data_size))# 利用dataloader来加载数据集
train_dataloader = DataLoader(train_data,batch_size=64)
test_dataloader = DataLoader(test_data,batch_size=64)# 创建网络模型
class MyNN(nn.Module):def __init__(self):super(MyNN, self).__init__()self.model = nn.Sequential(nn.Conv2d(3, 32, 5, 1, 2),nn.MaxPool2d(2),nn.Conv2d(32, 32, 5, 1, 2),nn.MaxPool2d(2),nn.Conv2d(32, 64, 5, 1, 2),nn.MaxPool2d(2),nn.Flatten(),nn.Linear(64 * 4 * 4, 64),nn.Linear(64, 10))def forward(self, x):x = self.model(x)return x
mynn = MyNN()
mynn.to(device)# 损失函数
loss_function = nn.CrossEntropyLoss()
loss_function.to(device)
# 优化器
learning_rate = 1e-2
optimizer = torch.optim.SGD(mynn.parameters(), lr=learning_rate)# 设置训练网络的一些参数
total_train_step = 0 # 记录训练次数
total_test_step = 0 # 记录测试次数
epoch = 10 # 训练的轮数# 添加tensorboard
writer = SummaryWriter("../logs_train")start_time = time.time()
for i in range(epoch):print("----------第{}轮训练开始----------".format(i+1))# 训练步骤开始mynn.train()for data in train_dataloader:imgs,targets = dataimgs = imgs.to(device)targets = targets.to(device)outputs = mynn(imgs)loss = loss_function(outputs, targets)# 优化器优化模型optimizer.zero_grad()loss.backward()optimizer.step()total_train_step += 1if total_train_step % 100 == 0:end_time = time.time()print("所用时间:{}".format(end_time - start_time))print("训练次数:{},loss:{}".format(total_train_step, loss.item()))writer.add_scalar("train_loss",loss.item(),total_train_step)# 测试步骤开始mynn.eval()total_test_loss = 0total_accuracy = 0with torch.no_grad():for data in test_dataloader:imgs,targets = dataimgs = imgs.to(device)targets = targets.to(device)outputs = mynn(imgs)loss = loss_function(outputs, targets)total_test_loss += lossaccuracy = (outputs.argmax(1) == targets).sum()total_accuracy += accuracyprint("整体测试集上的loss:{}".format(total_test_loss))print("整体测试集上的正确率:{}".format(total_accuracy/test_data_size))writer.add_scalar("test_loss",total_test_loss,total_test_step)writer.add_scalar("test_accuracy",total_accuracy/test_data_size,total_test_step)total_test_step += 1torch.save(mynn,"mynn_{}.pth".format(i))# torch.save(mynn.state_dict(),"mynn_{}.pth".format(i))print("模型已保存")writer.close()
相关文章:
PyTorch学习笔记(十六)——利用GPU训练
一、方式一 网络模型、损失函数、数据(包括输入、标注) 找到以上三种变量,调用它们的.cuda(),再返回即可 if torch.cuda.is_available():mynn mynn.cuda() if torch.cuda.is_available():loss_function loss_function.cuda(…...
【实战】十一、看板页面及任务组页面开发(三) —— React17+React Hook+TS4 最佳实践,仿 Jira 企业级项目(二十五)
文章目录 一、项目起航:项目初始化与配置二、React 与 Hook 应用:实现项目列表三、TS 应用:JS神助攻 - 强类型四、JWT、用户认证与异步请求五、CSS 其实很简单 - 用 CSS-in-JS 添加样式六、用户体验优化 - 加载中和错误状态处理七、Hook&…...
金额千位符自定义指令
自定义指令文件 moneyFormat.js /*** v-money 金额千分位转换*/export default {inserted: inputFormatter({// 格式化函数formatter(num, util) {if(num null || num || num undefined || typeof(num) undefined){return }if(util 万元 || util 万){return formatMone…...
请不要用 JSON 作为配置文件,使用JSON做配置文件的缺点
我最近关注到有的项目使用JSON作为配置文件。我觉得这不是个好主意。 这不是JSON的设计目的,因此也不是它擅长的。JSON旨在成为一种“轻量级数据交换格式”,并声称它“易于人类读写”和“易于机器解析和生成”。 作为一种数据交换格式,JSON是…...
Hadabot:从网络浏览器操作 ROS2 远程控制器
一、说明 Hadabot Hadabot是一个学习ROS2和机器人技术的机器人套件。使用 Hadabot,您将能够以最小的挫败感和恐吓来构建和编程物理 ROS2 机器人。Hadabot套件目前正在开发中。它将仅针对ROS2功能,并强调基于Web的用户界面。 随着开发的进展&a…...
Kotlin 协程
Kotlin 协程(Coroutines)是一种轻量级的并发编程解决方案,旨在简化异步操作和多线程编程。它提供了一种顺序和非阻塞的方式来处理并发任务,使得代码可以更加简洁和易于理解。Kotlin 协程通过提供一套高级 API,使并发代…...
maven 从官网下载指定版本
1. 进入官网下载页面 Maven – Download Apache Maven 点击下图所示链接 2. 进入文件页,选择需要的版本 3. 选binaries 4. 选文件,下载即可...
数据结构---串(赋值,求子串,比较,定位)
目录 一.初始化 顺序表中串的存储 串的链式存储 二.赋值操作:将str赋值给S 链式表 顺序表 三.复制操作:将chars复制到str中 链式表 顺序表 四.判空操作 链式表 顺序表 五.清空操作 六.串联结 链式表 顺序表 七.求子串 链式表 顺序表…...
WPF CommunityToolkit.Mvvm
文章目录 前言ToolkitNuget安装简单使用SetProperty,通知更新RealyCommandCanExecute 新功能,代码生成器ObservablePropertyNotifyCanExecuteChangedForRelayCommand其他功能对应关系 NotifyPropertyChangedFor 前言 CommunityToolkit.Mvvm(…...
Vue开发中如何解决国际化语言切换问题
Vue开发中如何解决国际化语言切换问题 引言: 在如今的全球化时代,应用程序的国际化变得越来越重要。为了让不同地区的用户能够更好地使用应用程序,我们需要对内容进行本地化,以适应不同语言和文化环境。对于使用Vue进行开发的应用…...
基于springboot+vue的流动人口登记系统(前后端分离)
博主主页:猫头鹰源码 博主简介:Java领域优质创作者、CSDN博客专家、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战 主要内容:毕业设计(Javaweb项目|小程序等)、简历模板、学习资料、面试题库、技术咨询 文末联系获取 项目介绍…...
Stable Diffusion的使用以及各种资源
Stable Diffsuion资源目录 SD简述sd安装模型下载关键词,描述语句插件管理controlNet自己训练模型 SD简述 Stable Diffusion是2022年发布的深度学习文本到图像生成模型。它主要用于根据文本的描述产生详细图像,尽管它也可以应用于其他任务,如…...
Redis 分布式锁的实现方式
一般来说,在对数据进行“加锁”时,程序首先需要通过获取(acquire)锁来得到对数据排他性访问的能力,然后才能对数据执行一系列操作,最后还要将锁释放(release)给其他程序。 对于能够…...
VMware上搭建的虚拟机突然本地无法连接服务器
长时间没有使用VMware 虚拟机了,今天突然登录上去,启动虚拟服务器后发现本地等不了了, 经过排查发现是开启了:VirtualBox Host-Only Network 关闭之后就本机就可以直连服务器了...
JDBC回顾
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 JDBC回顾 前言一、JDBC1.JDBC是什么?2.如何使用?(1)注册驱动(2)获取连接(3)操作…...
mq 消息队列 mqtt emqx ActiveMQ RabbitMQ RocketMQ
省流: 十几年前,淘宝的notify,借鉴ActiveMQ。京东的ActiveMQ集群几百台,后面改成JMQ。 Linkedin的kafka,因为是scala,国内很多人不熟。淘宝的人把kafka用java写了一遍,取名metaq,后…...
沃尔玛卖家必看!解决订单被Kan、Feng号问题的终极方案!
近期有很多沃尔玛卖家和工作室联系到我提到说在沃尔玛平台上下单,买家号出现副款义常订单被k掉,是什么原因、我们该如何去解决呢? 以下是一些可能导至你的测评订单被k单的原因: 1.技术问题:有时,网站或系…...
浅谈日常使用的 Docker 底层原理-三大底座
适合的读者,对Docker有过简单了解的朋友,想要进一步了解Docker容器的朋友。 前言 回想我这两年,一直都是在使用 Docker,看过的视频、拜读过的博客,大都是在介绍 Docker 的由来、使用、优点和发展趋势,但对…...
前端面试:【DOM】编织网页的魔法
嘿,亲爱的代码魔法师!在JavaScript的奇幻世界里,有一项强大的技能,那就是DOM操作。DOM(文档对象模型)操作允许你选择、修改和创建网页元素,就像是在编织一个魔法的网页。 1. 什么是DOMÿ…...
基于MATLAB开发AUTOSAR软件应用层Code mapping专题-part 2 Inport和Outports 标签页介绍
上篇我们介绍了Function页的内容,这篇我们介绍Inports和Outports页的内容,这里我们再次强调一个概念,code mapping是以simulink的角度去看的,就是先要在模型中建立simulink模块,在code mapping里映射他要对应的autosar的元素,之后生成代码时的c语言的名字是以Autosar的元…...
第9步---MySQL的索引和存储引擎
第9步---MySQL的索引和存储引擎 1.索引 1.1分类 索引可以快速的找出具有特定值的行。不用从头开始进行寻找了。 类别 hash和btree hash 根据字段值生生成一个hash的值 快速的进行定位到对应的行的值 可能会出现相同的值,找到对应的空间会出现对应的值 btree树…...
Numpy入门(3)—线性代数
线性代数 线性代数(如矩阵乘法、矩阵分解、行列式以及其他方阵数学等)是任何数组库的重要组成部分,NumPy中实现了线性代数中常用的各种操作,并形成了numpy.linalg线性代数相关的模块。本节主要介绍如下函数: diag&am…...
php的openssl_encrypt是不是自动做了PKCS5Padding?
在PHP中,openssl_encrypt函数默认使用的是PKCS7填充(不是PKCS5填充)。PKCS7填充实际上是PKCS5填充的扩展,用于对不同块大小的数据进行填充。 当你使用openssl_encrypt函数进行加密时,如果你没有显式指定填充模式和填充…...
在本地创建repository及上传至github
文章目录 本地管理设定git的用户名与邮箱初始化添加修改提交修改设定分支问题一:error: insufficient permission for adding an object... 数据同步创建SSH keys创建并关联远程仓库上传改动至github问题二:Failed to connect to github.com port 443: Connection timed out问题…...
情人节特别定制:多种语言编写动态爱心网页(附完整代码)
写在前面案例1:HTML Three.js库案例2:HTML CSS JavaScript案例3:Python环境 Flask框架结语 写在前面 随着七夕节的临近,许多人都在寻找独特而令人难忘的方式来表达爱意。在这个数字时代,结合创意和技术࿰…...
Docker mysql主从同步安装
1. 构建master实例 docker run -p 3307:3306 --name mysql-master \ -v /mydata/mysql-master/log:/var/log/mysql \ -v /mydata/mysql-master/data:/var/lib/mysql \ -v /mydata/mysql-master/conf:/etc/mysql \ -e MYSQL_ROOT_PASSWORDroot \ -d mysql:5.7 2. 构建master配置…...
docker update 命令
docker update 更新一个或多个容器的配置。官方文档 用法 $ docker update [OPTIONS] CONTAINER [CONTAINER...]请参阅选项部分OPTIONS,了解此命令可用的概述。 描述 该docker update命令动态更新容器配置。您可以使用此命令来防止容器消耗 Docker 主机的过多资…...
阻塞和挂起的区别和联系
阻塞和挂起是进程两种不同的状态,其描述如下: 阻塞:正在执行的进程由于发生某时间(如I/O请求、申请缓冲区失败等)暂时无法继续执行。此时引起进程调度,OS把处理机分配给另一个就绪进程,而让受阻…...
水力发电厂测量装置配置选型及厂用电管理系统
《水力发电厂测量装置配置设计规范》对水电厂的测量装置配置做了详细要求和指导。测量装置是水力发电厂运行监测的重要环节,水电厂的测量主要分为电气量测量和非电量测量。电气测量指使用电的方式对电气实时参数进行测量,包括电流、电压、频率、功率因数…...
【RabbitMQ】RabbitMQ整合SpringBoot案例
文章目录 1、前情提要【RabbitMQ】2、RabbitMQ-SpringBoot案例 -fanout模式2.1 实现架构总览2.2 具体实现2.2.1生产者2.2.1消费者 1、前情提要【RabbitMQ】 【RabbitMQ】消息队列-RabbitMQ篇章 RabbitMQ实现流程 2、RabbitMQ-SpringBoot案例 -fanout模式 2.1 实现架构总览…...
西安政府做网站/广州推广seo
调试环境:ASIHTTPRequest版本1.8.1-61 2011-9-19修复版Xcode版本4.2.1iOS5.0Mac OS X10.7.1在此代码仅仅捣鼓异步的初步处理1、需要实现协议接口 ASIHTTPRequestDelegate 主要requestFailed,requestFinished之类的接口2、调用的时候,建议启动异步request…...
代做网站 猪八戒网/友情链接购买网站
1、获取数组最后一个位置的值 比较常规的是:$arr[count($arr)-1]; 貌似还有一个数组函数end();可以直接获取最后一个元素的值。相应的还有reset(),next(),current(),prev(); 本文转自 努力的C 51CTO博客,原文链接:http://blog.51cto.com/fulin0532/1966245...
义马网站开发/浙江百度推广开户
vue2 npm run dev 卡住 今天遇到了很惊奇的一件事,就是我在改了我的代码之后,发现我的页面卡住了,然后去看了一下发现卡在了98% 这里,关闭重新来过也没有用。 后来仔细检查了代码之后发现,是因为我自己在 import 的时…...
网站建设视频教程。/短视频拍摄剪辑培训班
money_text (EditText) findViewById(R.id.money_text);// 代码中实现点击回车键,完成输入软键盘消失,也可以在布局中实现了money_text.setOnKeyListener(new OnKeyListener() {Overridepublic boolean onKey(View v, int keyCode, KeyEvent event) {if…...
网站加载页面怎么做/班级优化大师怎么加入班级
如果你不想用浏览器的js性能测试工具,可以用下面这个简单的函数测试一下(1毫秒一下的就测不出来了) function testFn(fn,param){var start new Date().getTime();fn(param);var end new Date().getTime();console.log(fn.name"耗时:"(end - …...
查找手机网站/代写文章
Python教程全套,现在分享给大家,入门到精通(Python全栈开发教程) 黑马程序员Python教程_600集Python从入门到精通教程 [小甲鱼]零基础入门学习Python 更多资料请关注公众号:计算机视觉与图形学实战 Python教程全套,现在分享给大…...