当前位置: 首页 > news >正文

OrienterNet: visual localization in 2D public maps with neural matching 论文阅读

论文信息

题目:OrienterNet: visual localization in 2D public maps with neural matching
作者:Paul-Edouard Sarlin, Daniel DeTone
项目地址:github.com/facebookresearch/OrienterNet
来源:CVPR
时间:2023

Abstract

人类可以使用简单的 2D 地图在 3D 环境中定位自己。不同的是,视觉定位算法主要依赖于复杂的 3D 点云,随着时间的推移,这些点云的构建、存储和维护成本高昂。

我们通过引入 OrienterNet 来弥补这一差距,这是第一个深度神经网络,可以使用与人类使用的相同的 2D 语义图以亚米级精度定位图像。 OrienterNet 通过将神经鸟瞰图与 OpenStreetMap 中开放且全局可用的地图进行匹配来估计查询图像的位置和方向,使任何人都可以在任何此类地图可用的地方进行本地化。 OrienterNet 仅受相机姿势监督,但学习以端到端的方式与各种地图元素进行语义匹配。为了实现这一目标,我们引入了一个大型众包图像数据集,其中包含从汽车、自行车和行人的不同角度拍摄的 12 个城市的图像。

在这里插入图片描述

Introduction

3D 地图的存储成本也很高,因为它们比基本 2D 地图大几个数量级。这会阻碍在设备上执行本地化,并且通常需要昂贵的云基础设施。

本文介绍了第一种方法,该方法可以在人类使用的相同地图的情况下以亚米级精度定位单个图像和图像序列。这些平面地图仅编码少数重要物体的位置和粗略二维形状,而不编码它们的外观或高度。此类地图非常紧凑,尺寸比 3D 地图小 104 倍,因此可以存储在移动设备上并用于大区域内的设备上定位。我们通过 OpenStreetMap (OSM) [46] 展示了这些功能,这是一个开放访问且由社区维护的世界地图,使任何人都可以免费在任何地方进行本地化。该解决方案不需要随着时间的推移构建和维护成本高昂的 3D 地图,也不需要收集潜在敏感的地图数据。

具体来说,我们的算法估计 2D 地图中校准图像的 3-DoF 位姿,即位置和航向。该估计是概率性的,因此可以与先前不准确的 GPS 融合,或者与多摄像机装备或图像序列的多个视图融合。由此产生的解决方案比消费级 GPS 传感器更准确,并且基于特征匹配达到更接近传统管道的精度水平 [57, 60]。

我们的方法称为 OrienterNet,是一种深度神经网络,它模仿人类在查看地图时在环境中定位自己的方式,即将度量二维地图与从视觉观察中得出的心理地图进行匹配 [37,45]。 OrienterNet 学习以端到端的方式比较视觉和语义数据,仅受相机姿势的监督。通过利用 OSM 公开的高度多样性的语义类(从道路和建筑物到长凳和垃圾桶等物体),可以产生准确的姿势估计。

OrienterNet 速度快且可解释性强。我们训练了一个单一模型,该模型可以很好地推广到以前未见过的城市以及各种相机从不同角度拍摄的图像,例如汽车、自行车或头戴式、专业或消费类相机。这些功能的关键是通过 Mapillary 平台从世界各地的城市众包的图像的新的大规模训练数据集。

我们的实验表明,OrienterNet 大大优于之前在驾驶场景中的定位方面的工作,并且在应用于 Aria 眼镜记录的数据时,大大提高了其在 AR 用例中的准确性。我们相信,我们的方法是朝着 AR 和机器人技术的连续、大规模、设备上本地化迈出的重要一步。

Related work

我们可以使用多种类型的地图表示来定位世界上的图像:根据地面图像构建的 3D 地图、2D 俯视卫星图像或来自 OpenStreetMap 的更简单的平面地图。表 1 总结了它们的差异
在这里插入图片描述

Mapping with ground-level images

使用地面图像绘制地图是迄今为止最常见的方法。通过图像检索进行地点识别可在给定一组参考图像的情况下提供粗略定位 [4,23,32,72]。为了估计厘米级精度的 6-DoF 姿势,基于特征匹配的算法需要 3D 地图 [31,39,57,60]。它们由稀疏点云组成,通常使用 Structure-fromMotion (SfM) [2,22,36,43,61,67] 从跨多个视图匹配的稀疏点构建 [9,38,53]。新查询图像的姿态由几何解算器 [10,26,33] 根据与地图的对应关系进行估计。虽然一些工作 [70, 79] 利用额外的传感器输入,例如粗略的 GPS 位置、重力方向和相机高度,但最近的定位系统非常准确且强大,这主要归功于学习的功能 [18, 19, 51, 58, 73 ]。

然而,这涉及具有大量内存占用的 3D 地图,因为它们存储具有高维视觉描述符的密集 3D 点云。个人数据泄露到地图中的风险也很高。

Localization with overhead imagery

通过假设世界大部分是平面并且重力方向通常由无处不在的机载惯性传感器给出,使用俯视图像进行定位可以将问题简化为估计 3-DoF 位姿。大量工作集中于跨视图地面到卫星定位。虽然卫星图像比 3D 地图更紧凑,但捕捉卫星图像的成本很高,通常不是免费的,而且以高分辨率存储仍然很繁重。大多数方法仅通过补丁检索来估计粗略位置[30,63,65,82]。此外,估计方向的工作并不准确[62,64,77],产生超过几米的误差。

Planimetric maps

平面地图丢弃任何外观和高度信息,仅保留地图元素的 2D 位置、形状和类型。 OSM 是此类地图的流行平台,因为它是免费的并且在全球范围内可用。给定一个查询区域,其开放 API 将地理特征列表公开为带有元数据的多边形,其中包括具有一千多种不同对象类型的细粒度语义信息。然而,过去的工作为单个或几个语义类设计检测器,缺乏鲁棒性。其中包括建筑轮廓 [5,6,15–17,74,75]、道路轮廓 [21,54] 或交叉口 [41,47,78]、车道标记 [25, 48]、街道设施 [14, 76] ,甚至文本[27]。

最近的工作通过使用端到端深度网络从地图图块计算更丰富的表示来利用更多线索[56, 80]。当他们检索具有全局图像描述符的地图图块时,他们仅估计粗略位置。在室内场景中,平面图是现有作品中常用的平面地图[28,42]。它们需要室外空间通常无法提供的高度或能见度信息。通过将射影几何的约束与端到端学习的表达能力相结合,利用 OSM 中提供的所有语义类,我们的方法在准确性和鲁棒性方面比之前的所有工作有了显着的进步。

Localizing single images in 2D maps

Problem formulation:在典型的定位场景中,我们的目标是估计图像在世界中的绝对 6-DoF 位姿。在现实的假设下,我们将这个问题简化为估计由位置 ( x , y ) ∈ R 2 (x, y) \in \mathbb{R}^2 (x,y)R2 和航向角 θ ∈ ( − π , π ] θ \in (−π, π] θ(π,π] 组成的 3-DoF 位姿 ξ = ( x , y , θ ) \xi = (x, y, θ) ξ=(x,y,θ)

这里我们考虑一个地心坐标系,其 x-y-z 轴对应于东西向垂直方向。

首先,我们可以很容易地假设知道重力的方向,这是人类从内耳自然拥有的信息,并且可以通过大多数设备中嵌入的惯性单元来估计。我们还观察到,我们的世界大多是平面的,室外空间中人和物体的运动大多局限于二维表面。在局部 SLAM 重建中,相机的精确高度始终可以估计为到地面的距离。

Input:我们考虑具有已知针孔相机校准的图像 I I I。图像通过根据已知重力计算出的单应性进行校正,使其横滚和倾斜为零——然后其主轴是水平的。我们还得到了先验 ξ p r i o r \xi _{prior} ξprior 的粗略位置。这可能是一个嘈杂的 GPS 位置或之前的定位估计,并且可能偏离 20 米以上。对于城市峡谷等多路径环境中的消费级传感器来说,这是一个现实的假设。

地图数据是从 OSM 查询的,作为以 ξ p r i o r \xi _{prior} ξprior 为中心的正方形区域,其大小取决于先验的噪声程度。数据由多边形、线和点的集合组成,每个多边形、线和点都具有给定的语义类,并且其坐标在同一局部参考系中给出。

Overview-Figure 2:OrienterNet 由三个模块组成:
1)图像 CNN 从图像中提取语义特征,并通过推断场景的 3D 结构将其提升为正交鸟瞰图 (BEV) 表示 T T T
2)OSM图由map-CNN编码为嵌入语义和几何信息的神经图 F F F
3) 我们通过将 BEV 与地图进行详尽匹配来估计相机姿态 ξ \xi ξ 上的概率分布。
在这里插入图片描述

Neural Bird’s-Eye View inference

Overview:从单个图像 I I I 中,我们推断出 BEV 表示 T ∈ R L × D × N T ∈ \mathbb{R}^{L×D×N} TRL×D×N,分布在与相机平截头体对齐的 L × D L×D L×D 网格上,并由 N 维特征组成。网格上的每个特征都被分配一个置信度,产生一个矩阵 C ∈ [ 0 , 1 ] L × D C ∈ [0, 1]^{L×D} C[0,1]L×D。这种 BEV 类似于人类在俯视图中进行自我定位时从环境中推断出的心理地图 [37, 45]。

图像和地图之间的跨模态匹配需要从视觉线索中提取语义信息。事实证明,单目深度估计可以依赖于语义线索 [3],并且这两项任务具有有益的协同作用 [29, 34]。因此,我们依靠单目推理将语义特征提升到 BEV 空间。

继过去处理语义任务的工作[49,52,55]之后,我们分两步获得神经 BEV:
i)我们通过将图像列映射到极射线将图像特征转移到极坐标表示,
ii)我们对极坐标网格重新采样成笛卡尔网格(图 3)。
在这里插入图片描述
Polar representation:CNN Φ i m a g e Φ_{image} Φimage 首先从图像中提取 U × V U×V U×V 特征图 X ∈ R U × V × N X ∈ \mathbb{R}^{U×V ×N} XRU×V×N。我们考虑在相机前面以规则间隔 Δ 采样的 D 个深度平面,即具有值 i ⋅ Δ ∣ i ∈ 1... D {i · Δ|i ∈ {1 ... D}} iΔ∣i1...D。由于图像是重力对齐的,因此 X 中的每个 U 列都对应于 3D 空间中的一个垂直平面。因此,我们将每一列映射到 U × D U×D U×D 极坐标表示中的一条射线 X ^ ∈ R U × D × N \hat{X} ∈ \mathbb{R}^{U×D×N} X^RU×D×N 。我们通过预测每个极像元 ( u , d ) (u, d) (u,d) 对应图像列中像素的概率分布 α u , d ∈ [ 0 , 1 ] V α_{u,d} ∈ [0, 1]^V αu,d[0,1]V 来实现此目的:
在这里插入图片描述
我们不是直接回归深度上的分布 α α α,而是回归独立于相机校准参数的尺度上的分布 S S S。比例尺是 3D 世界和图像 [3] 中物体大小的比率,等于焦距 f 和深度的比率。我们考虑一组 S S S 对数分布尺度
在这里插入图片描述
该公式相当于从极射线到图像列的注意机制,其分数从线性深度重新采样到对数尺度。当比例不明确且难以推断时,视觉特征沿着射线分布在多个深度上,但仍然为定位良好的地图点提供几何约束[35]。针对驾驶场景量身定制的作品 [49,52,55] 考虑具有相同模型的相机捕获的数据集并直接回归 α α α。因此,他们将焦距编码在网络权重中,学习从对象尺度到深度的映射。不同的是,通过假设焦距是系统的输入,我们的公式可以在测试时推广到任意相机。

BEV grid:我们通过沿横向从U极射线到以相同间隔Δ间隔的L列的线性插值,将极特征映射到尺寸为 L × D L×D L×D的笛卡尔网格。然后,生成的特征网格由小型 CNN Φ B E V Φ_{BEV} ΦBEV 处理,输出神经 BEV T T T 和置信度 C C C

Neural map encoding

我们将平面图编码为结合了几何和语义的 W × H W ×H W×H 神经图 F ∈ R W × H × N F ∈ \mathbb{R}^{W ×H×N} FRW×H×N

Map data:OpenStreetMap 元素根据其语义类定义为多边形区域、多段线或单点。区域的示例包括建筑物占地面积、草地、停车场;线包括道路或人行道中心线、建筑物轮廓;点包括树木、公交车站、商店等。附录 B.1 列出了所有类别。这些元素的准确定位提供了定位所需的几何约束,而它们丰富的语义多样性有助于消除不同姿势的歧义。

Preprocessing:我们首先将区域、线和点栅格化为具有固定地面采样距离 Δ 的 3 通道图像,例如50 厘米/像素。这种表示比以前的作品 [56, 80] 中执行的人类可读 OSM 切片的简单光栅化更丰富、更准确。

Encoding:我们将每个类与学习的 N 维嵌入相关联,产生 W × H × 3 N W×H×3N W×H×3N 特征图。然后通过 CNN Φ m a p Φ_{map} Φmap 将其编码到神经图 F 中,提取对定位有用的几何特征。 F 没有被归一化,因为我们让 Φ m a p Φ_{map} Φmap 调整它的范数作为匹配中的重要性权重。图 4 中的示例表明,F 通常看起来像一个距离场,我们可以在其中清楚地识别建筑物的拐角或相邻边界等独特特征。

Φ m a p Φ_{map} Φmap 还预测地图每个单元格的一元位置先验 Ω ∈ R W × H Ω ∈ \mathbb{R}^{W ×H} ΩRW×H。该分数反映了在每个位置拍摄图像的可能性。我们很少期望在河流或建筑物等地方拍摄图像。

Pose estimation by template matching

Probality volume:我们估计相机姿势 ξ \xi ξ 上的离散概率分布。这是可以解释的,并充分体现了估计的不确定性。因此,在不明确的场景中,分布是多模态的。图 4 显示了各种示例。这使得将姿态估计与 GPS 等附加传感器融合起来变得很容易。计算这个体积很容易处理,因为姿势空间已减少到 3 维。它被离散化为每个地图位置和定期采样的 K 个旋转。

这会产生一个 W × H × K W ×H×K W×H×K 概率体积 P,使得 P ( ξ ∣ I , m a p , ξ p r i o r ) = P [ ξ ] P (\xi|I, map, \xi_{prior}) = P[\xi] P(ξI,map,ξprior)=P[ξ]。它是图像映射匹配项 M M M 和位置先验 Ω Ω Ω 的组合:
P = s o f t m a x ( M + Ω ) P = softmax (M + Ω) P=softmax(M+Ω)
M 和 Ω 代表图像条件和图像无关的非归一化对数分数。 Ω 沿旋转维度传播,softmax 标准化概率分布。
在这里插入图片描述
Image-map matching: 彻底匹配神经映射 F F F 和 BEV T T T 产生分数体积 M M M。每个元素都是通过将 F F F 与相应姿势变换后的 T T T 相关联来计算的:
在这里插入图片描述
Pose inference:我们通过最大似然估计单个姿势: ξ ∗ = a r g m a x ξ P ( ξ ∣ I , m a p , ξ p r i o r ) \xi^* = argmax_{\xi} P (\xi|I, map, \xi_{prior}) ξ=argmaxξP(ξI,map,ξprior)。当分布主要是单峰时,我们可以获得不确定性的度量作为 P 围绕 ξ ∗ \xi^* ξ 的协方差[7]。

Sequence and muti-camera localization

在表现出很少的独特语义元素或重复模式的位置中,单图像定位是不明确的。当已知多个视图的相对姿势时,可以通过在多个视图上积累额外的线索来消除此类挑战的歧义。这些视图可以是来自 VI SLAM 的具有姿势的图像序列,也可以是来自校准的多摄像机装置的同步视图。

图 5 显示了此类困难场景的示例,该场景通过随时间累积的预测来消除歧义。不同的框架将姿势限制在不同的方向上,例如交叉路口之前和之后。融合较长的序列可获得更高的准确度(图 6)。

让我们将 ξ i \xi_i ξi 表示为视图 i 的未知绝对位姿,将 ξ ^ i , j \hat{\xi}_{i,j} ξ^i,j 表示为从视图 j 到 i 的已知相对位姿。对于任意参考视图 i,我们将所有单视图预测的联合似然表示为
在这里插入图片描述

Experiments

在这里插入图片描述

Conclusion

OrienterNet 是第一个能够在人类使用的相同 2D 平面地图中以亚米级精度定位图像的深度神经网络。 OrienterNet 通过将输入地图与从视觉观察中得出的心理地图进行匹配来模仿人类在环境中定位自己的方式。与机器迄今为止所依赖的大型且昂贵的 3D 地图相比,此类 2D 地图极其紧凑,因此最终能够在大型环境中实现设备上定位。 OrienterNet 基于 OpenStreetMap 的全球免费地图,任何人都可以使用它来定位世界任何地方。

我们提供了一个大型的众包训练数据集,帮助模型在驾驶和 AR 数据集上很好地泛化。 OrienterNet 显着改进了现有的 3-DoF 定位方法,大幅提升了现有技术水平。这为部署节能机器人和 AR 设备开辟了令人兴奋的前景,这些机器人和 AR 设备无需昂贵的云基础设施即可知道自己的位置。

相关文章:

OrienterNet: visual localization in 2D public maps with neural matching 论文阅读

论文信息 题目:OrienterNet: visual localization in 2D public maps with neural matching 作者:Paul-Edouard Sarlin, Daniel DeTone 项目地址:github.com/facebookresearch/OrienterNet 来源:CVPR 时间&#xff1a…...

iOS导航栏闪屏以及statusBar背景色的更改

1.如果导航栏有卡顿或者闪屏效果出现,多半是因为导航栏背景为透明色所致,可以给导航栏设置主题色,比如已白色为例 self.navigationController.navigationBar.backgroundColor [UIColor whiteColor]; 2.但是即使上述设置后,依然发…...

Centos开启防火墙和端口命令

Centos开启防火墙和端口命令 1. 开启查看关闭firewalld服务状态2. 查看端口是否开放3. 新增开放端口4. 查看开放的端口 1. 开启查看关闭firewalld服务状态 #启动/关闭firewall systemctl start/stop firewalld #查看防火墙状态 systemctl status firewalld #禁用或者启用 syst…...

基于微信小程序的宠物领养平台的设计与实现(Java+spring boot+微信小程序+MySQL)

获取源码或者论文请私信博主 演示视频: 基于微信小程序的宠物领养平台的设计与实现(Javaspring boot微信小程序MySQL) 使用技术: 前端:html css javascript jQuery ajax thymeleaf 微信小程序 后端:Java…...

Mongodb基础操作

一、简介 MongoDB是一个NoSQL型的数据库,基于分布式文档型储存数据库,由C语言编写,它的特点是开源、高性能、高可用、高扩展、易部署。支持 Golang、RUBY、PYTHON、JAVA、C、PHP等多种开发语言。 二、应用场景 MongoDB适用于高并发读写、数据…...

数据结构与算法:计算机科学的基石

文章目录 数据结构:构建数据的框架算法:问题的解决方案编程语言:实现数据结构的工具结论 🎉欢迎来到数据结构学习专栏~数据结构与算法:计算机科学的基石 ☆* o(≧▽≦)o *☆嗨~我是IT陈寒🍹✨博客主页&…...

曲线救国 | 双非渣硕的秋招路

作者 | 带带大兄弟 面试锦囊之面经分享系列,持续更新中 欢迎后台回复"面试"加入讨论组交流噢 一篇旧文,可以参考~ 写在前面 双非渣硕,0实习,3篇水文,三个给老板当打工仔的nlp横向项目,八月份开…...

气传导耳机怎么样?四款值得入手的气传导耳机推荐

​随着科技的进步,蓝牙耳机越来越受欢迎。类型也越来越多,其中气传导耳机因其不入耳设计,佩戴更舒适,音质更自然,能够提供更为清晰、自然的音质。面对还不知如何挑选气传导耳机的用户,在这里,我…...

HTML <svg> 标签

实例 画一个圆: <svg width="100" height="100"><circle cx="50" cy="50" r="40" stroke="green" stroke-width="4" fill="yellow" /> </svg>页面下方有更多 TIY 实例。…...

Python随机密码生成。编写程序,在26个字母大小写和10个数字随机生成10个8位密码。

题目&#xff1a;随机密码生成。编写程序&#xff0c;在26个字母大小写和10个数字随机生成10个8位密码。 样例&#xff1a;类似AB12cdHi的十组8位密码。 代码&#xff1a; import random def passwords():a, b, c ord(a), ord(A), ord(1)r list(range(a , a 26)) list(ra…...

数据结构作业——哈夫曼树

/*【基本要求】 &#xff08;1&#xff09; 从文件中读出一篇英文文章&#xff0c;包含字母和空格等字符。 &#xff08;2&#xff09; 统计各个字符出现的频度。 &#xff08;3&#xff09; 根据出现的频度&#xff0c;为每个出现的字符建立一个哈夫曼编码&#xff0c;并输出。…...

Python XML处理中级篇:深入探索lxml库

lxml库是Python中处理XML和HTML文档的强大库&#xff0c;提供了丰富的API以进行各种操作。在初级篇中&#xff0c;我们介绍了如何使用lxml库解析、访问和修改XML文档。在这篇中级篇中&#xff0c;我们将更深入地探讨如何使用lxml库&#xff0c;包括如何创建XML文档&#xff0c;…...

岩棉革新——洛科威推出NGF新一代岩棉产品

作为全球领先的岩棉制品生产商&#xff0c;洛科威公司基于在岩棉性能革新领域八十多年的深入研究和生产工艺的不断优化&#xff0c;在中国市场正式推出NGF新一代岩棉制品&#xff0c;并在上海国际绿色建筑建材博览会和2023国际绿色低碳技术展上正式发布。 洛科威NGF产品作为革…...

关于 docker 基础题目

1.安装docker服务&#xff0c;配置镜像加速器 http://t.csdn.cn/E3zQ8 2.下载系统镜像&#xff08;Ubuntu、 centos&#xff09; 执行该命令后&#xff0c;Docker会自动从Docker Hub镜像库中下载Ubuntu镜像&#xff0c;并将其保存到本地计算机上: [rootmaster ~]# docker pull …...

Skywalking全链路追踪【学习笔记】

Skywalking全链路追踪的服务搭建&#xff0c;使用docker进行安装。 搭建服务 搭建【ES】 # 拉取 docker pull docker.elastic.co/elasticsearch/elasticsearch:7.17.10 # 启动 docker run -p 127.0.0.1:9200:9200 -p 127.0.0.1:9300:9300 -e "discovery.typesingle-nod…...

Sphinx——Python生成API文档

1、简介 Sphinx是Python文档生成器&#xff0c;它基于reStructuredText标记语言&#xff0c;可自动根据项目生成HTML&#xff0c;PDF等格式的文档&#xff0c;无数著名项目的文档均用Sphinx生成&#xff0c;如机器学习库scikit-learn、交互式神器Jupyter Notebook sphinx是一…...

倒计时动效

1. 效果 2. html <div class"count"><span>3</span><span>2</span><span>1</span> </div>3. css body {width: 100vw;height: 100vh;overflow: hidden;display: flex;justify-content: center;align-items: cente…...

安卓主板定制_电磁屏/电容屏安卓平板基于MTK联发科方案定制

定制化行业平板 在各行各业中的地位越来越重要&#xff0c;甚至在行业转型和发展中发挥着不可替代的作用。随着工业化社会的快速发展&#xff0c;工业生产对智控设备要求越来越高&#xff0c;运用的范畴也越来越普遍广泛&#xff0c;工业级平板就是其中一种应用广泛的设备。 新…...

Unity 之 ScreenPointToRay() (将点转换成射线的方法)

文章目录 ScreenPointToRay() ScreenPointToRay() ScreenPointToRay() 是Unity中Camera类的一个方法&#xff0c;用于将屏幕上的一个点转换为一条射线。这条射线的起点是摄像机在屏幕上对应的点&#xff0c;方向是从摄像机出发指向那个点。这在进行射线命中检测时非常有用&…...

C++ 线程池

目录 一、线程池实现原理 二、定义线程池的结构 三、创建线程池实例 四、添加工作的线程的任务函数 五、管理者线程的任务函数 六、往线程池中添加任务 七、获取线程池工作的线程数量与活着的线程数量 八、线程池的销毁 一、线程池实现原理 线程池的组成主要分为3个部…...

测试框架pytest教程(6)钩子函数hook开发pytest插件

pytest hook 函数也叫钩子函数&#xff0c;pytest 提供了大量的钩子函数&#xff0c;可以在用例的不同生命周期自动调用。 比如&#xff0c;在测试用例收集阶段&#xff0c;可利用 hook 函数修改测试用例名称的编码。 pytest的hook是基于Python的插件系统实现的&#xff0c;使…...

【Rust】Rust学习 第十七章Rust 的面向对象特性

面向对象编程&#xff08;Object-Oriented Programming&#xff0c;OOP&#xff09;是一种模式化编程方式。对象&#xff08;Object&#xff09;来源于 20 世纪 60 年代的 Simula 编程语言。这些对象影响了 Alan Kay 的编程架构中对象之间的消息传递。他在 1967 年创造了 面向对…...

Redis系列(四):哨兵机制详解

首发博客地址 https://blog.zysicyj.top/ 前面我们说过&#xff0c;redis采用了读写分离的方式实现高可靠。后面我们说了&#xff0c;为了防止主节点压力过大&#xff0c;优化成了主-从-从模式 思考一个问题&#xff0c;主节点此时挂了怎么办 这里主从模式下涉及到的几个问题&a…...

一个滚动框高度动态计算解决方案

需求描述&#xff0c;一个嵌套了很多层div或者其他标签的内容框&#xff0c;而它的外层没有设置高度&#xff0c;或者使用百分比&#xff0c;而本容器需要设置高度来实现滚动&#xff0c;要么写死px高度&#xff0c;但是不能自适应&#xff0c;此时需要一个直系父容器&#xff…...

Android瀑布流

以下是一个简单的示例代码&#xff0c;演示如何在Android Studio中解析指定网页的图片URL&#xff0c;并展示在错乱瀑布流布局中&#xff1a; 1. 添加网络权限&#xff1a;在项目的AndroidManifest.xml文件中添加以下权限&#xff1a; <uses-permission android:name"…...

Ubuntu搭建CT_ICP里程计的环境暨CT-ICP部署

CT-ICP部署以及运行复现过程 0.下载资源&#xff0c;并按照github原网址的过程进行。1.查看所需要的各个部分的版本。2.安装clang编译器3.进行超级构建3.1标准进行3.2构建过程中遇到的问题 4.构建并安装CT-ICP库4.1标准进行4.2遇到的问题及解决办法 5.构建 CT-ICP 的 ROS 包装5…...

微信小程序全局事件订阅eventBus

微信小程序全局事件订阅 在Vue开发中&#xff0c;我们可能用过eventBus来解决全局范围内的事件订阅及触发逻辑&#xff0c;在微信小程序的开发中我们可能也也会遇到同样的需求&#xff0c;那么我们尝试下在小程序&#xff08;原生小程序开发&#xff09;中实现类似eventBus的事…...

华为云cce发布若依前后分离版:2.nginx镜像操作

下载nginx docker的官方镜像。 docker资源很难找,我在我的空间上传了一个,需要的话可以下载: https://download.csdn.net/download/axe6404/88225311 下载后,请用以下方法安装 2.1 导入docker 官方nginx镜像。 将镜像包nginx docker镜像包nginx-dockerimage.tar放…...

TCP协议报文结构

TCP是什么 TCP&#xff08;传输控制协议&#xff09;是一种面向连接的、可靠的、全双工的传输协议。它使用头部&#xff08;Header&#xff09;和数据&#xff08;Data&#xff09;来组织数据包&#xff0c;确保数据的可靠传输和按序传递。 TCP协议报文结构 下面详细阐述TCP…...

Day14-2-NodeJS后端开发流程

Day14-NodeJS后端工程化流程 一 apifox工具 apifox是目前最好的接口调试工具 1 环境搭建 安装登录创建项目接口里面创建对应文件夹在指定的文件夹里面创建接口2 GET请求 1 apifox发送GET请求 2 后端接收GET请求 router.get("/getUserinfo"...

计算机竞赛 基于CNN实现谣言检测 - python 深度学习 机器学习

文章目录 1 前言1.1 背景 2 数据集3 实现过程4 CNN网络实现5 模型训练部分6 模型评估7 预测结果8 最后 1 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 基于CNN实现谣言检测 该项目较为新颖&#xff0c;适合作为竞赛课题方向&#xff0c;学长非常推荐&am…...

框架(Git基础详解及Git在idea中集成步骤)

目录 基础&#xff1a; idea集成Git并添加项目到git仓库 1.idea集成git&#xff0c;集成.git.exe文件 2.初始化本地Git仓库项目 3. 将工作区代码添加到暂存区 4.将暂存区代码添加到本地仓库 5.Git本地库操作 Idea集成Gitee并提交代码到第三方库 1.setting里搜索gitee 2.添…...

0基础学习VR全景平台篇 第88篇:智慧眼-成员管理

一、功能说明 成员管理&#xff0c;是指管理智慧眼项目的成员&#xff0c;拥有相关权限的人可以进行添加成员、分配成员角色、设置成员分类、修改成员以及删除成员五项操作。但是仅限于管理自己的下级成员&#xff0c;上级成员无权管理。 二、前台操作页面 登录智慧眼后台操…...

DSO 系列文章(2)——DSO点帧管理策略

文章目录 1.点所构成的残差Residual的管理1.1.前端残差的状态1.2.后端点的残差的状态1.3.点的某个残差的删除 2.点Point的管理2.1.如何删除点——点Point的删除2.2.边缘化时删除哪些点&#xff1f; 3.帧FrameHessian的管理 DSO代码注释&#xff1a;https://github.com/Cc19245/…...

无需公网IP——搭建web站点

文章目录 概述使用 Raspberry Pi Imager 安装 Raspberry Pi OS设置 Apache Web 服务器测试 web 站点安装静态样例站点将web站点发布到公网安装 Cpolar内网穿透cpolar进行token认证生成cpolar随机域名网址生成cpolar二级子域名将参数保存到cpolar配置文件中测试修改后配置文件配…...

swift 项目集成友盟推送

1, 需要用桥接文件 , 不然引用不到依赖库 2, 可以用测试模式测试, 可以debug 3, 测试模式获取deviceToken, 添加测试设备 deviceToken获取方法 func application(_ application: UIApplication, didRegisterForRemoteNotificationsWithDeviceToken deviceToken: Data) { le…...

Unity之用Transform 数组加多个空物体-->简单地控制物体按照指定路线自动行驶

文章目录 **原理解释**&#xff1a;**带注释的代码**&#xff1a;实际运用 当你需要实现物体按照指定路线行驶时&#xff0c;你可以通过以下步骤来实现&#xff1a; 原理解释&#xff1a; 路径点&#xff1a;你需要定义一系列路径点&#xff0c;这些点将构成物体行驶的路线。每…...

交换机生成树STP

生成树协议&#xff08;spanning-tree-protocol,stp&#xff09;&#xff1a;在具有物理环路的交换机网络上生成没有回路的逻辑网络的方法&#xff0c;生成树协议使用生成树算法&#xff0c;在一个具有冗余路径的容错网络中计算出一个无环路的路径&#xff0c;使一部分端口处于…...

3.微服务概述

1.大型网络架构变迁 SOA与微服务最大的差别就是服务拆分的细度&#xff0c;目前大多数微服务实际上是SOA架构&#xff0c;真正的微服务应该是一个接口对应一个服务器&#xff0c;开发速度快、成本高&#xff1b; 微服务SOA能拆分的就拆分是整体的&#xff0c;服务能放一起的都…...

cloud_mall-notes02

1、多条件分页查询page ApiOperation("多条件分页查询xxxx")GetMapping("page")PreAuthorize("hasAuthority(模块权限:权限:page)")public ResponseEntity<Page<实体类>> loadxxxxPage(Page<实体类> page,实体类 domain) {pag…...

前端轻松实现文件预览(pdf、excel、word、图片)

需求&#xff1a;实现一个在线预览pdf、excel、word、图片等文件的功能。 介绍&#xff1a;支持pdf、xlsx、docx、jpg、png、jpeg。 以下使用Vue3代码实现所有功能&#xff0c;建议以下的预览文件标签可以在外层包裹一层弹窗。 图片预览 iframe标签能够将另一个HTML页面嵌入到…...

docker服务器、以及容器设置自动启动

一、docker服务设置自动启动 查看已启动的服务 systemctl list-units --typeservice 查看是否设置开机启动 systemctl list-unit-files | grep enable设置开机启动 systemctl enable docker.service关闭开机启动 systemctl disable docker.service 二、docker容器设置自…...

k8s集群证书过期后,如何更新k8s证书

对于版本 1.21.5&#xff0c;这是我的解决方案&#xff1a; 步骤1&#xff1a; ssh 到主节点&#xff0c;然后在步骤 2 中检查证书。 步骤2&#xff1a; 运行这个命令&#xff1a;kubeadm certs check-expiration rootkube-master-1:~# kubeadm certs check-expiration [c…...

5.6.webrtc三大线程

那今天呢&#xff1f;我们来介绍一下web rtc的三大线程&#xff0c;那为什么要介绍这三大线程呢&#xff1f;最关键的原因在于web rtc的所有其他线程都是由这三大线程所创建的。那当我们将这三个线程理解清楚之后呢&#xff1f;我们就知道其他线程与它们之间是怎样关系&#xf…...

@Slf4j报错:Not generating field log: A field with same name already exists

错误出处&#xff1a; 错误原因&#xff1a; 同时使用了Slf4j注解以及LittlecLogger private static final LittlecLogger log LittlecLoggerFactory.getLogger(TimeTrackController.class); 修复方法&#xff1a; 将log改为LOG&#xff0c;便于区分&#xff0c;代码即用到了…...

乖宝宠物上市,能否打破外资承包中国宠物口粮的现实

近日&#xff0c;乖宝宠物上市了&#xff0c;这是中国宠物行业成功挂牌的第三家公司。同时&#xff0c;昨日&#xff0c;宠物行业最大的盛事“亚洲宠物展”时隔3年&#xff0c;于昨日在上海成功回归。 这两件事情的叠加可谓是双喜临门&#xff0c;行业能够走到今天实属不易&…...

Ubuntu安装Apache+Php

环境&#xff1a;ubuntu 22.04 虚拟机 首先更新一下 sudo apt-get update sudo apt-get upgrade安装Apache2&#xff1a; sudo apt-get install apache2 输入y&#xff0c;继续。等着他恐龙抗浪抗浪的下载安装就好了 打开浏览器访问http://localhost/ 安装php&#xff1a; …...

open cv学习 (四)图像的几何变换

图像的几何变换 demo1 # dsize实现缩放 import cv2 img cv2.imread("./cat.jpg") dst1 cv2.resize(img, (100, 100)) dst2 cv2.resize(img, (400, 400)) # cv2.imshow("img", img) # cv2.imshow("dst1", dst1) # cv2.imshow("dst2&quo…...

matlab 检测点云中指定尺寸的矩形平面

目录 一、概述1、算法概述2、主要函数二、代码示例三、结果展示四、参数解析输入参数名称-值对应参数输出参数五、参考链接一、概述 1、算法概述 detectRectangularPlanePoints:检测点云中指定尺寸的矩形平面 <...

HCIP——STP配置案例

STP配置案例 一、简介二、实现说明1、华为实现说明2、其他厂商实现 三、STP原理1、协商原则2、角色和状态3、报文格式4、BPDU报文处理流程4.1 BPDU报文的分类4.2 BPDU报文的处理流程4.3 BPDU报文格式 四、使用注意事项五、配置举例1、组网需求2、配置思路3、操作步骤4、配置文件…...