Pytorch-day08-模型进阶训练技巧-checkpoint
PyTorch 模型进阶训练技巧
- 自定义损失函数
- 动态调整学习率
典型案例:loss上下震荡
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-BndMyRX0-1692613806232)(attachment:image-2.png)]
1、自定义损失函数
- 1、PyTorch已经提供了很多常用的损失函数,但是有些非通用的损失函数并未提供,比如:DiceLoss、HuberLoss…等
- 2、模型如果出现loss震荡,在经过调整数据集或超参后,现象依然存在,非通用损失函数或自定义损失函数针对特定模型会有更好的效果
比如:DiceLoss是医学影像分割常用的损失函数,定义如下:
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-Fsl0SyZ6-1692613806233)(attachment:image-2.png)]
- Dice系数, 是一种集合相似度度量函数,通常用于计算两个样本的相似度(值范围为 [0, 1]):
- ∣X∩Y∣表示X和Y之间的交集,∣ X ∣ 和∣ Y ∣ 分别表示X和Y的元素个数,其中,分子中的系数 2,是因为分母存在重复计算 X 和 Y 之间的共同元素的原因.
import torch
import torch.nn.functional as F
import torch.nn as nn
from torch.optim.lr_scheduler import LambdaLR
from torch.optim.lr_scheduler import StepLR
import torchvision
from torch.utils.data import Dataset, DataLoader
from torchvision.transforms import transforms
import matplotlib.pyplot as plt
from torch.utils.tensorboard import SummaryWriter
import time
import numpy as np
#DiceLoss 实现 Vnet 医学影像分割模型的损失函数
class DiceLoss(nn.Module):def __init__(self, weight=None, size_average=True):super(DiceLoss, self).__init__()def forward(self, inputs, targets, smooth=1):inputs = F.sigmoid(inputs) inputs = inputs.view(-1)targets = targets.view(-1)intersection = (inputs * targets).sum() dice_loss = 1 - (2.*intersection + smooth)/(inputs.sum() + targets.sum() + smooth)return dice_loss
#自定义实现多分类损失函数 处理多分类
# cross_entropy + L2正则化
class MyLoss(torch.nn.Module):def __init__(self, weight_decay=0.01):super(MyLoss, self).__init__()self.weight_decay = weight_decaydef forward(self, inputs, targets):ce_loss = F.cross_entropy(inputs, targets)l2_loss = torch.tensor(0., requires_grad=True).to(inputs.device)for name, param in self.named_parameters():if 'weight' in name:l2_loss += torch.norm(param)loss = ce_loss + self.weight_decay * l2_lossreturn loss
注:
- 在自定义损失函数时,涉及到数学运算时,我们最好全程使用PyTorch提供的张量计算接口
- 利用Pytorch张量自带的求导机制
#超参数定义
# 批次的大小
batch_size = 16 #可选32、64、128
# 优化器的学习率
lr = 1e-4
#运行epoch
max_epochs = 2
# 方案二:使用“device”,后续对要使用GPU的变量用.to(device)即可
device = torch.device("cuda:1" if torch.cuda.is_available() else "cpu") # 指明调用的GPU为1号
# 数据读取
#cifar10数据集为例给出构建Dataset类的方式
from torchvision import datasets#“data_transform”可以对图像进行一定的变换,如翻转、裁剪、归一化等操作,可自己定义
data_transform=transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5,0.5,0.5),(0.5,0.5,0.5))])train_cifar_dataset = datasets.CIFAR10('cifar10',train=True, download=False,transform=data_transform)
test_cifar_dataset = datasets.CIFAR10('cifar10',train=False, download=False,transform=data_transform)#构建好Dataset后,就可以使用DataLoader来按批次读入数据了
train_loader = torch.utils.data.DataLoader(train_cifar_dataset, batch_size=batch_size, num_workers=4, shuffle=True, drop_last=True)test_loader = torch.utils.data.DataLoader(test_cifar_dataset, batch_size=batch_size, num_workers=4, shuffle=False)
# restnet50 pretrained
Resnet50 = torchvision.models.resnet50(pretrained=True)
Resnet50.fc.out_features=10
print(Resnet50)
D:\Users\xulele\Anaconda3\lib\site-packages\torchvision\models\_utils.py:208: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and may be removed in the future, please use 'weights' instead.warnings.warn(
D:\Users\xulele\Anaconda3\lib\site-packages\torchvision\models\_utils.py:223: UserWarning: Arguments other than a weight enum or `None` for 'weights' are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing `weights=ResNet50_Weights.IMAGENET1K_V1`. You can also use `weights=ResNet50_Weights.DEFAULT` to get the most up-to-date weights.warnings.warn(msg)ResNet((conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)(layer1): Sequential((0): Bottleneck((conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(downsample): Sequential((0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(1): Bottleneck((conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(2): Bottleneck((conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)))(layer2): Sequential((0): Bottleneck((conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(downsample): Sequential((0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(1): Bottleneck((conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(2): Bottleneck((conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(3): Bottleneck((conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)))(layer3): Sequential((0): Bottleneck((conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(downsample): Sequential((0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False)(1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(1): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(2): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(3): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(4): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(5): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)))(layer4): Sequential((0): Bottleneck((conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(downsample): Sequential((0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False)(1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(1): Bottleneck((conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(2): Bottleneck((conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)))(avgpool): AdaptiveAvgPool2d(output_size=(1, 1))(fc): Linear(in_features=2048, out_features=10, bias=True)
)
#训练&验证# 定义损失函数和优化器
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# 损失函数:自定义损失函数
criterion = MyLoss()
# 优化器
optimizer = torch.optim.Adam(Resnet50.parameters(), lr=lr)
epoch = max_epochs
Resnet50 = Resnet50.to(device)
total_step = len(train_loader)
train_all_loss = []
test_all_loss = []for i in range(epoch):Resnet50.train()train_total_loss = 0train_total_num = 0train_total_correct = 0for iter, (images,labels) in enumerate(train_loader):images = images.to(device)labels = labels.to(device)outputs = Resnet50(images)loss = criterion(outputs,labels)train_total_correct += (outputs.argmax(1) == labels).sum().item()#backwordoptimizer.zero_grad()loss.backward()optimizer.step()train_total_num += labels.shape[0]train_total_loss += loss.item()print("Epoch [{}/{}], Iter [{}/{}], train_loss:{:4f}".format(i+1,epoch,iter+1,total_step,loss.item()/labels.shape[0]))Resnet50.eval()test_total_loss = 0test_total_correct = 0test_total_num = 0for iter,(images,labels) in enumerate(test_loader):images = images.to(device)labels = labels.to(device)outputs = Resnet50(images)loss = criterion(outputs,labels)test_total_correct += (outputs.argmax(1) == labels).sum().item()test_total_loss += loss.item()test_total_num += labels.shape[0]print("Epoch [{}/{}], train_loss:{:.4f}, train_acc:{:.4f}%, test_loss:{:.4f}, test_acc:{:.4f}%".format(i+1, epoch, train_total_loss / train_total_num, train_total_correct / train_total_num * 100, test_total_loss / test_total_num, test_total_correct / test_total_num * 100))train_all_loss.append(np.round(train_total_loss / train_total_num,4))test_all_loss.append(np.round(test_total_loss / test_total_num,4))
Epoch [1/10], Iter [1/3125], train_loss:0.710159
Epoch [1/10], Iter [2/3125], train_loss:0.761919
Epoch [1/10], Iter [3/3125], train_loss:0.748266
Epoch [1/10], Iter [4/3125], train_loss:0.777146
Epoch [1/10], Iter [5/3125], train_loss:0.699766
Epoch [1/10], Iter [6/3125], train_loss:0.741773
Epoch [1/10], Iter [7/3125], train_loss:0.687201
Epoch [1/10], Iter [8/3125], train_loss:0.618017
Epoch [1/10], Iter [9/3125], train_loss:0.653016
Epoch [1/10], Iter [10/3125], train_loss:0.690120
Epoch [1/10], Iter [11/3125], train_loss:0.648009
Epoch [1/10], Iter [12/3125], train_loss:0.694650
Epoch [1/10], Iter [13/3125], train_loss:0.502452
Epoch [1/10], Iter [14/3125], train_loss:0.538519
Epoch [1/10], Iter [15/3125], train_loss:0.596250
Epoch [1/10], Iter [16/3125], train_loss:0.607648
Epoch [1/10], Iter [17/3125], train_loss:0.574751
Epoch [1/10], Iter [18/3125], train_loss:0.584658
Epoch [1/10], Iter [19/3125], train_loss:0.428719
Epoch [1/10], Iter [20/3125], train_loss:0.530868
Epoch [1/10], Iter [21/3125], train_loss:0.496522
Epoch [1/10], Iter [22/3125], train_loss:0.463315
Epoch [1/10], Iter [23/3125], train_loss:0.453258
Epoch [1/10], Iter [24/3125], train_loss:0.409726
Epoch [1/10], Iter [25/3125], train_loss:0.422388
Epoch [1/10], Iter [26/3125], train_loss:0.414946
Epoch [1/10], Iter [27/3125], train_loss:0.512142
Epoch [1/10], Iter [28/3125], train_loss:0.400936
Epoch [1/10], Iter [29/3125], train_loss:0.405139
Epoch [1/10], Iter [30/3125], train_loss:0.346599
Epoch [1/10], Iter [31/3125], train_loss:0.388829
Epoch [1/10], Iter [32/3125], train_loss:0.389818
Epoch [1/10], Iter [33/3125], train_loss:0.420276
Epoch [1/10], Iter [34/3125], train_loss:0.376930
Epoch [1/10], Iter [35/3125], train_loss:0.385421
Epoch [1/10], Iter [36/3125], train_loss:0.308666
Epoch [1/10], Iter [37/3125], train_loss:0.287350
Epoch [1/10], Iter [38/3125], train_loss:0.235770
Epoch [1/10], Iter [39/3125], train_loss:0.238073
Epoch [1/10], Iter [40/3125], train_loss:0.255732
Epoch [1/10], Iter [41/3125], train_loss:0.351971
Epoch [1/10], Iter [42/3125], train_loss:0.255061
Epoch [1/10], Iter [43/3125], train_loss:0.372930
Epoch [1/10], Iter [44/3125], train_loss:0.294059
Epoch [1/10], Iter [45/3125], train_loss:0.291519
Epoch [1/10], Iter [46/3125], train_loss:0.293720
Epoch [1/10], Iter [47/3125], train_loss:0.313904
Epoch [1/10], Iter [48/3125], train_loss:0.468409
Epoch [1/10], Iter [49/3125], train_loss:0.289942
Epoch [1/10], Iter [50/3125], train_loss:0.314422
Epoch [1/10], Iter [51/3125], train_loss:0.193365
Epoch [1/10], Iter [52/3125], train_loss:0.280942
Epoch [1/10], Iter [53/3125], train_loss:0.194293
Epoch [1/10], Iter [54/3125], train_loss:0.271868
Epoch [1/10], Iter [55/3125], train_loss:0.244220
Epoch [1/10], Iter [56/3125], train_loss:0.203591
Epoch [1/10], Iter [57/3125], train_loss:0.253909
Epoch [1/10], Iter [58/3125], train_loss:0.189856
Epoch [1/10], Iter [59/3125], train_loss:0.251850
Epoch [1/10], Iter [60/3125], train_loss:0.231074
Epoch [1/10], Iter [61/3125], train_loss:0.226731
Epoch [1/10], Iter [62/3125], train_loss:0.175667
Epoch [1/10], Iter [63/3125], train_loss:0.184940
Epoch [1/10], Iter [64/3125], train_loss:0.210438
Epoch [1/10], Iter [65/3125], train_loss:0.190574
Epoch [1/10], Iter [66/3125], train_loss:0.238683
Epoch [1/10], Iter [67/3125], train_loss:0.195508
Epoch [1/10], Iter [68/3125], train_loss:0.152640
Epoch [1/10], Iter [69/3125], train_loss:0.240555
Epoch [1/10], Iter [70/3125], train_loss:0.134351
Epoch [1/10], Iter [71/3125], train_loss:0.183020
Epoch [1/10], Iter [72/3125], train_loss:0.211488
Epoch [1/10], Iter [73/3125], train_loss:0.140310
Epoch [1/10], Iter [74/3125], train_loss:0.162346
Epoch [1/10], Iter [75/3125], train_loss:0.175559
Epoch [1/10], Iter [76/3125], train_loss:0.165264
Epoch [1/10], Iter [77/3125], train_loss:0.232803
Epoch [1/10], Iter [78/3125], train_loss:0.175323
Epoch [1/10], Iter [79/3125], train_loss:0.215453
Epoch [1/10], Iter [80/3125], train_loss:0.229922
Epoch [1/10], Iter [81/3125], train_loss:0.166971
Epoch [1/10], Iter [82/3125], train_loss:0.252459
Epoch [1/10], Iter [83/3125], train_loss:0.175405
Epoch [1/10], Iter [84/3125], train_loss:0.174851
Epoch [1/10], Iter [85/3125], train_loss:0.219277
Epoch [1/10], Iter [86/3125], train_loss:0.200698
Epoch [1/10], Iter [87/3125], train_loss:0.164529
Epoch [1/10], Iter [88/3125], train_loss:0.223835
Epoch [1/10], Iter [89/3125], train_loss:0.132322
Epoch [1/10], Iter [90/3125], train_loss:0.185210
Epoch [1/10], Iter [91/3125], train_loss:0.125042
Epoch [1/10], Iter [92/3125], train_loss:0.127481
Epoch [1/10], Iter [93/3125], train_loss:0.213097
Epoch [1/10], Iter [94/3125], train_loss:0.191506
Epoch [1/10], Iter [95/3125], train_loss:0.169901
Epoch [1/10], Iter [96/3125], train_loss:0.177843
Epoch [1/10], Iter [97/3125], train_loss:0.192217
Epoch [1/10], Iter [98/3125], train_loss:0.186991
Epoch [1/10], Iter [99/3125], train_loss:0.127605
Epoch [1/10], Iter [100/3125], train_loss:0.130038
Epoch [1/10], Iter [101/3125], train_loss:0.139159
Epoch [1/10], Iter [102/3125], train_loss:0.152760
Epoch [1/10], Iter [103/3125], train_loss:0.152227
Epoch [1/10], Iter [104/3125], train_loss:0.128511
Epoch [1/10], Iter [105/3125], train_loss:0.126772
Epoch [1/10], Iter [106/3125], train_loss:0.220105
Epoch [1/10], Iter [107/3125], train_loss:0.163889
Epoch [1/10], Iter [108/3125], train_loss:0.205263
Epoch [1/10], Iter [109/3125], train_loss:0.181927
Epoch [1/10], Iter [110/3125], train_loss:0.126500
Epoch [1/10], Iter [111/3125], train_loss:0.154556
Epoch [1/10], Iter [112/3125], train_loss:0.169978
Epoch [1/10], Iter [113/3125], train_loss:0.166387
Epoch [1/10], Iter [114/3125], train_loss:0.160409
Epoch [1/10], Iter [115/3125], train_loss:0.123102
Epoch [1/10], Iter [116/3125], train_loss:0.133461
Epoch [1/10], Iter [117/3125], train_loss:0.136813
Epoch [1/10], Iter [118/3125], train_loss:0.100353
Epoch [1/10], Iter [119/3125], train_loss:0.126170
Epoch [1/10], Iter [120/3125], train_loss:0.141422
Epoch [1/10], Iter [121/3125], train_loss:0.157280
Epoch [1/10], Iter [122/3125], train_loss:0.113595
Epoch [1/10], Iter [123/3125], train_loss:0.159074
Epoch [1/10], Iter [124/3125], train_loss:0.108684
Epoch [1/10], Iter [125/3125], train_loss:0.175729
Epoch [1/10], Iter [126/3125], train_loss:0.071910
Epoch [1/10], Iter [127/3125], train_loss:0.124298
Epoch [1/10], Iter [128/3125], train_loss:0.115980
Epoch [1/10], Iter [129/3125], train_loss:0.132223
Epoch [1/10], Iter [130/3125], train_loss:0.114184
Epoch [1/10], Iter [131/3125], train_loss:0.123914
Epoch [1/10], Iter [132/3125], train_loss:0.150845
Epoch [1/10], Iter [133/3125], train_loss:0.208639
Epoch [1/10], Iter [134/3125], train_loss:0.106705
Epoch [1/10], Iter [135/3125], train_loss:0.177262
Epoch [1/10], Iter [136/3125], train_loss:0.157350
Epoch [1/10], Iter [137/3125], train_loss:0.149479
Epoch [1/10], Iter [138/3125], train_loss:0.096941
Epoch [1/10], Iter [139/3125], train_loss:0.174548
Epoch [1/10], Iter [140/3125], train_loss:0.156214
Epoch [1/10], Iter [141/3125], train_loss:0.135187
Epoch [1/10], Iter [142/3125], train_loss:0.136901
Epoch [1/10], Iter [143/3125], train_loss:0.122161
Epoch [1/10], Iter [144/3125], train_loss:0.139143
Epoch [1/10], Iter [145/3125], train_loss:0.119795
Epoch [1/10], Iter [146/3125], train_loss:0.122523
Epoch [1/10], Iter [147/3125], train_loss:0.136952
Epoch [1/10], Iter [148/3125], train_loss:0.175852
Epoch [1/10], Iter [149/3125], train_loss:0.107031
Epoch [1/10], Iter [150/3125], train_loss:0.175130
Epoch [1/10], Iter [151/3125], train_loss:0.159306
Epoch [1/10], Iter [152/3125], train_loss:0.149552
Epoch [1/10], Iter [153/3125], train_loss:0.166173
Epoch [1/10], Iter [154/3125], train_loss:0.165044
Epoch [1/10], Iter [155/3125], train_loss:0.116875
Epoch [1/10], Iter [156/3125], train_loss:0.104037
Epoch [1/10], Iter [157/3125], train_loss:0.129057
Epoch [1/10], Iter [158/3125], train_loss:0.141920
Epoch [1/10], Iter [159/3125], train_loss:0.102720
Epoch [1/10], Iter [160/3125], train_loss:0.097012
Epoch [1/10], Iter [161/3125], train_loss:0.157148
Epoch [1/10], Iter [162/3125], train_loss:0.117710
Epoch [1/10], Iter [163/3125], train_loss:0.112908
Epoch [1/10], Iter [164/3125], train_loss:0.096563
Epoch [1/10], Iter [165/3125], train_loss:0.076501
Epoch [1/10], Iter [166/3125], train_loss:0.147476
Epoch [1/10], Iter [167/3125], train_loss:0.177934
Epoch [1/10], Iter [168/3125], train_loss:0.121549
Epoch [1/10], Iter [169/3125], train_loss:0.124102
Epoch [1/10], Iter [170/3125], train_loss:0.097225
Epoch [1/10], Iter [171/3125], train_loss:0.104199
Epoch [1/10], Iter [172/3125], train_loss:0.150368
Epoch [1/10], Iter [173/3125], train_loss:0.098011
Epoch [1/10], Iter [174/3125], train_loss:0.131318
Epoch [1/10], Iter [175/3125], train_loss:0.120925
Epoch [1/10], Iter [176/3125], train_loss:0.120460
Epoch [1/10], Iter [177/3125], train_loss:0.106729
Epoch [1/10], Iter [178/3125], train_loss:0.161727
Epoch [1/10], Iter [179/3125], train_loss:0.169705
Epoch [1/10], Iter [180/3125], train_loss:0.142939
Epoch [1/10], Iter [181/3125], train_loss:0.120374
Epoch [1/10], Iter [182/3125], train_loss:0.120579
Epoch [1/10], Iter [183/3125], train_loss:0.093452
Epoch [1/10], Iter [184/3125], train_loss:0.102697
Epoch [1/10], Iter [185/3125], train_loss:0.129010
Epoch [1/10], Iter [186/3125], train_loss:0.127772
Epoch [1/10], Iter [187/3125], train_loss:0.121482
Epoch [1/10], Iter [188/3125], train_loss:0.153874
Epoch [1/10], Iter [189/3125], train_loss:0.122253
Epoch [1/10], Iter [190/3125], train_loss:0.135232
Epoch [1/10], Iter [191/3125], train_loss:0.095962
Epoch [1/10], Iter [192/3125], train_loss:0.159813
Epoch [1/10], Iter [193/3125], train_loss:0.110215
Epoch [1/10], Iter [194/3125], train_loss:0.103142
Epoch [1/10], Iter [195/3125], train_loss:0.106792
Epoch [1/10], Iter [196/3125], train_loss:0.108262
Epoch [1/10], Iter [197/3125], train_loss:0.109841
Epoch [1/10], Iter [198/3125], train_loss:0.141134
Epoch [1/10], Iter [199/3125], train_loss:0.104478
Epoch [1/10], Iter [200/3125], train_loss:0.119154
Epoch [1/10], Iter [201/3125], train_loss:0.143389
Epoch [1/10], Iter [202/3125], train_loss:0.106533
Epoch [1/10], Iter [203/3125], train_loss:0.104834
Epoch [1/10], Iter [204/3125], train_loss:0.096285
Epoch [1/10], Iter [205/3125], train_loss:0.192590
Epoch [1/10], Iter [206/3125], train_loss:0.131787
Epoch [1/10], Iter [207/3125], train_loss:0.093841
Epoch [1/10], Iter [208/3125], train_loss:0.093261
Epoch [1/10], Iter [209/3125], train_loss:0.090215
Epoch [1/10], Iter [210/3125], train_loss:0.062551
Epoch [1/10], Iter [211/3125], train_loss:0.103201
Epoch [1/10], Iter [212/3125], train_loss:0.101281
Epoch [1/10], Iter [213/3125], train_loss:0.112832
Epoch [1/10], Iter [214/3125], train_loss:0.109726
Epoch [1/10], Iter [215/3125], train_loss:0.193847
Epoch [1/10], Iter [216/3125], train_loss:0.114712
Epoch [1/10], Iter [217/3125], train_loss:0.096408
Epoch [1/10], Iter [218/3125], train_loss:0.104277
Epoch [1/10], Iter [219/3125], train_loss:0.101230
Epoch [1/10], Iter [220/3125], train_loss:0.088779
Epoch [1/10], Iter [221/3125], train_loss:0.122967
Epoch [1/10], Iter [222/3125], train_loss:0.132155
Epoch [1/10], Iter [223/3125], train_loss:0.106906
Epoch [1/10], Iter [224/3125], train_loss:0.101865
Epoch [1/10], Iter [225/3125], train_loss:0.094080
Epoch [1/10], Iter [226/3125], train_loss:0.117470
Epoch [1/10], Iter [227/3125], train_loss:0.107198
Epoch [1/10], Iter [228/3125], train_loss:0.113856
Epoch [1/10], Iter [229/3125], train_loss:0.113308
Epoch [1/10], Iter [230/3125], train_loss:0.136503
Epoch [1/10], Iter [231/3125], train_loss:0.096320
Epoch [1/10], Iter [232/3125], train_loss:0.131607
Epoch [1/10], Iter [233/3125], train_loss:0.140338
Epoch [1/10], Iter [234/3125], train_loss:0.125807
Epoch [1/10], Iter [235/3125], train_loss:0.109107
Epoch [1/10], Iter [236/3125], train_loss:0.104653
Epoch [1/10], Iter [237/3125], train_loss:0.112867
Epoch [1/10], Iter [238/3125], train_loss:0.096239
Epoch [1/10], Iter [239/3125], train_loss:0.113070
Epoch [1/10], Iter [240/3125], train_loss:0.138504
Epoch [1/10], Iter [241/3125], train_loss:0.116264
Epoch [1/10], Iter [242/3125], train_loss:0.140497
Epoch [1/10], Iter [243/3125], train_loss:0.111269
Epoch [1/10], Iter [244/3125], train_loss:0.126607
Epoch [1/10], Iter [245/3125], train_loss:0.166210
Epoch [1/10], Iter [246/3125], train_loss:0.114601
Epoch [1/10], Iter [247/3125], train_loss:0.086945
Epoch [1/10], Iter [248/3125], train_loss:0.117582
Epoch [1/10], Iter [249/3125], train_loss:0.103387
Epoch [1/10], Iter [250/3125], train_loss:0.105529
Epoch [1/10], Iter [251/3125], train_loss:0.095726
Epoch [1/10], Iter [252/3125], train_loss:0.099371
Epoch [1/10], Iter [253/3125], train_loss:0.086019
Epoch [1/10], Iter [254/3125], train_loss:0.117785
Epoch [1/10], Iter [255/3125], train_loss:0.095674
Epoch [1/10], Iter [256/3125], train_loss:0.107202
Epoch [1/10], Iter [257/3125], train_loss:0.106855
Epoch [1/10], Iter [258/3125], train_loss:0.089076
Epoch [1/10], Iter [259/3125], train_loss:0.085481
Epoch [1/10], Iter [260/3125], train_loss:0.105372
Epoch [1/10], Iter [261/3125], train_loss:0.135841
Epoch [1/10], Iter [262/3125], train_loss:0.091050
Epoch [1/10], Iter [263/3125], train_loss:0.104396
Epoch [1/10], Iter [264/3125], train_loss:0.085995
Epoch [1/10], Iter [265/3125], train_loss:0.082015
Epoch [1/10], Iter [266/3125], train_loss:0.101983
Epoch [1/10], Iter [267/3125], train_loss:0.082330
Epoch [1/10], Iter [268/3125], train_loss:0.096020
Epoch [1/10], Iter [269/3125], train_loss:0.107438
Epoch [1/10], Iter [270/3125], train_loss:0.108927
Epoch [1/10], Iter [271/3125], train_loss:0.090110
Epoch [1/10], Iter [272/3125], train_loss:0.082612
Epoch [1/10], Iter [273/3125], train_loss:0.124343
Epoch [1/10], Iter [274/3125], train_loss:0.134607
Epoch [1/10], Iter [275/3125], train_loss:0.103530
Epoch [1/10], Iter [276/3125], train_loss:0.088286
Epoch [1/10], Iter [277/3125], train_loss:0.120471
Epoch [1/10], Iter [278/3125], train_loss:0.090534
Epoch [1/10], Iter [279/3125], train_loss:0.098560
Epoch [1/10], Iter [280/3125], train_loss:0.093890
Epoch [1/10], Iter [281/3125], train_loss:0.114845
Epoch [1/10], Iter [282/3125], train_loss:0.155583
Epoch [1/10], Iter [283/3125], train_loss:0.084580
Epoch [1/10], Iter [284/3125], train_loss:0.078266
Epoch [1/10], Iter [285/3125], train_loss:0.089209
Epoch [1/10], Iter [286/3125], train_loss:0.129949
Epoch [1/10], Iter [287/3125], train_loss:0.068909
Epoch [1/10], Iter [288/3125], train_loss:0.120867
Epoch [1/10], Iter [289/3125], train_loss:0.107639
Epoch [1/10], Iter [290/3125], train_loss:0.099353
Epoch [1/10], Iter [291/3125], train_loss:0.132016
Epoch [1/10], Iter [292/3125], train_loss:0.090960
Epoch [1/10], Iter [293/3125], train_loss:0.101058
Epoch [1/10], Iter [294/3125], train_loss:0.096238
Epoch [1/10], Iter [295/3125], train_loss:0.084716
Epoch [1/10], Iter [296/3125], train_loss:0.079769
Epoch [1/10], Iter [297/3125], train_loss:0.124798
Epoch [1/10], Iter [298/3125], train_loss:0.096835
Epoch [1/10], Iter [299/3125], train_loss:0.089952
Epoch [1/10], Iter [300/3125], train_loss:0.095460
Epoch [1/10], Iter [301/3125], train_loss:0.086470
Epoch [1/10], Iter [302/3125], train_loss:0.105848
Epoch [1/10], Iter [303/3125], train_loss:0.130099
Epoch [1/10], Iter [304/3125], train_loss:0.131335
Epoch [1/10], Iter [305/3125], train_loss:0.103911
Epoch [1/10], Iter [306/3125], train_loss:0.092839
Epoch [1/10], Iter [307/3125], train_loss:0.128423
Epoch [1/10], Iter [308/3125], train_loss:0.101717
Epoch [1/10], Iter [309/3125], train_loss:0.102042
Epoch [1/10], Iter [310/3125], train_loss:0.108195
Epoch [1/10], Iter [311/3125], train_loss:0.116109
Epoch [1/10], Iter [312/3125], train_loss:0.107782
Epoch [1/10], Iter [313/3125], train_loss:0.102813
Epoch [1/10], Iter [314/3125], train_loss:0.095960
Epoch [1/10], Iter [315/3125], train_loss:0.086566
Epoch [1/10], Iter [316/3125], train_loss:0.081492
Epoch [1/10], Iter [317/3125], train_loss:0.077582
Epoch [1/10], Iter [318/3125], train_loss:0.053461
Epoch [1/10], Iter [319/3125], train_loss:0.084671
Epoch [1/10], Iter [320/3125], train_loss:0.088476
Epoch [1/10], Iter [321/3125], train_loss:0.105547
Epoch [1/10], Iter [322/3125], train_loss:0.079457
Epoch [1/10], Iter [323/3125], train_loss:0.080500
Epoch [1/10], Iter [324/3125], train_loss:0.116692
Epoch [1/10], Iter [325/3125], train_loss:0.095060
Epoch [1/10], Iter [326/3125], train_loss:0.090416
Epoch [1/10], Iter [327/3125], train_loss:0.068069
Epoch [1/10], Iter [328/3125], train_loss:0.110763
Epoch [1/10], Iter [329/3125], train_loss:0.060889
Epoch [1/10], Iter [330/3125], train_loss:0.110807
Epoch [1/10], Iter [331/3125], train_loss:0.122002
Epoch [1/10], Iter [332/3125], train_loss:0.115815
Epoch [1/10], Iter [333/3125], train_loss:0.067004
Epoch [1/10], Iter [334/3125], train_loss:0.063815
Epoch [1/10], Iter [335/3125], train_loss:0.120017
Epoch [1/10], Iter [336/3125], train_loss:0.104086
Epoch [1/10], Iter [337/3125], train_loss:0.091577
Epoch [1/10], Iter [338/3125], train_loss:0.084077
Epoch [1/10], Iter [339/3125], train_loss:0.113410
Epoch [1/10], Iter [340/3125], train_loss:0.061866
Epoch [1/10], Iter [341/3125], train_loss:0.101881
Epoch [1/10], Iter [342/3125], train_loss:0.107144
Epoch [1/10], Iter [343/3125], train_loss:0.142906
Epoch [1/10], Iter [344/3125], train_loss:0.072013
Epoch [1/10], Iter [345/3125], train_loss:0.088949
Epoch [1/10], Iter [346/3125], train_loss:0.067578
Epoch [1/10], Iter [347/3125], train_loss:0.086871
Epoch [1/10], Iter [348/3125], train_loss:0.068842
Epoch [1/10], Iter [349/3125], train_loss:0.086257
Epoch [1/10], Iter [350/3125], train_loss:0.112828
Epoch [1/10], Iter [351/3125], train_loss:0.090362
Epoch [1/10], Iter [352/3125], train_loss:0.092230
Epoch [1/10], Iter [353/3125], train_loss:0.058990
Epoch [1/10], Iter [354/3125], train_loss:0.114826
Epoch [1/10], Iter [355/3125], train_loss:0.076303
Epoch [1/10], Iter [356/3125], train_loss:0.115605
Epoch [1/10], Iter [357/3125], train_loss:0.083856
Epoch [1/10], Iter [358/3125], train_loss:0.114196
Epoch [1/10], Iter [359/3125], train_loss:0.154424
Epoch [1/10], Iter [360/3125], train_loss:0.103248
Epoch [1/10], Iter [361/3125], train_loss:0.093536
Epoch [1/10], Iter [362/3125], train_loss:0.064217
Epoch [1/10], Iter [363/3125], train_loss:0.103777
Epoch [1/10], Iter [364/3125], train_loss:0.049145
Epoch [1/10], Iter [365/3125], train_loss:0.085676
Epoch [1/10], Iter [366/3125], train_loss:0.095860
Epoch [1/10], Iter [367/3125], train_loss:0.045282
Epoch [1/10], Iter [368/3125], train_loss:0.102015
Epoch [1/10], Iter [369/3125], train_loss:0.073394
Epoch [1/10], Iter [370/3125], train_loss:0.080284
Epoch [1/10], Iter [371/3125], train_loss:0.094347
Epoch [1/10], Iter [372/3125], train_loss:0.085500
Epoch [1/10], Iter [373/3125], train_loss:0.119371
Epoch [1/10], Iter [374/3125], train_loss:0.095046
Epoch [1/10], Iter [375/3125], train_loss:0.118757
Epoch [1/10], Iter [376/3125], train_loss:0.107976
Epoch [1/10], Iter [377/3125], train_loss:0.090448
Epoch [1/10], Iter [378/3125], train_loss:0.085898
Epoch [1/10], Iter [379/3125], train_loss:0.110092
Epoch [1/10], Iter [380/3125], train_loss:0.093738
Epoch [1/10], Iter [381/3125], train_loss:0.094126
Epoch [1/10], Iter [382/3125], train_loss:0.087205
Epoch [1/10], Iter [383/3125], train_loss:0.083657
Epoch [1/10], Iter [384/3125], train_loss:0.080641
Epoch [1/10], Iter [385/3125], train_loss:0.101648
Epoch [1/10], Iter [386/3125], train_loss:0.102539
Epoch [1/10], Iter [387/3125], train_loss:0.090064
Epoch [1/10], Iter [388/3125], train_loss:0.140402
Epoch [1/10], Iter [389/3125], train_loss:0.100177
Epoch [1/10], Iter [390/3125], train_loss:0.106683
Epoch [1/10], Iter [391/3125], train_loss:0.072911
Epoch [1/10], Iter [392/3125], train_loss:0.094680
Epoch [1/10], Iter [393/3125], train_loss:0.097260
Epoch [1/10], Iter [394/3125], train_loss:0.104942
Epoch [1/10], Iter [395/3125], train_loss:0.133387
Epoch [1/10], Iter [396/3125], train_loss:0.131581
Epoch [1/10], Iter [397/3125], train_loss:0.107176
Epoch [1/10], Iter [398/3125], train_loss:0.076420
Epoch [1/10], Iter [399/3125], train_loss:0.071057
Epoch [1/10], Iter [400/3125], train_loss:0.102585
Epoch [1/10], Iter [401/3125], train_loss:0.071347
Epoch [1/10], Iter [402/3125], train_loss:0.104381
Epoch [1/10], Iter [403/3125], train_loss:0.111743
Epoch [1/10], Iter [404/3125], train_loss:0.081141
Epoch [1/10], Iter [405/3125], train_loss:0.071977
Epoch [1/10], Iter [406/3125], train_loss:0.095490
Epoch [1/10], Iter [407/3125], train_loss:0.085300
Epoch [1/10], Iter [408/3125], train_loss:0.068072
Epoch [1/10], Iter [409/3125], train_loss:0.068445
Epoch [1/10], Iter [410/3125], train_loss:0.092671
Epoch [1/10], Iter [411/3125], train_loss:0.066765
Epoch [1/10], Iter [412/3125], train_loss:0.107009
Epoch [1/10], Iter [413/3125], train_loss:0.072693
Epoch [1/10], Iter [414/3125], train_loss:0.088150
Epoch [1/10], Iter [415/3125], train_loss:0.090847
Epoch [1/10], Iter [416/3125], train_loss:0.077029
Epoch [1/10], Iter [417/3125], train_loss:0.102404
Epoch [1/10], Iter [418/3125], train_loss:0.138703
Epoch [1/10], Iter [419/3125], train_loss:0.074720
Epoch [1/10], Iter [420/3125], train_loss:0.103256
Epoch [1/10], Iter [421/3125], train_loss:0.091416
Epoch [1/10], Iter [422/3125], train_loss:0.104568
Epoch [1/10], Iter [423/3125], train_loss:0.077688
Epoch [1/10], Iter [424/3125], train_loss:0.090047
Epoch [1/10], Iter [425/3125], train_loss:0.127545
Epoch [1/10], Iter [426/3125], train_loss:0.088344
Epoch [1/10], Iter [427/3125], train_loss:0.101759
Epoch [1/10], Iter [428/3125], train_loss:0.079185
Epoch [1/10], Iter [429/3125], train_loss:0.063097
Epoch [1/10], Iter [430/3125], train_loss:0.121180
Epoch [1/10], Iter [431/3125], train_loss:0.101340
Epoch [1/10], Iter [432/3125], train_loss:0.128714
Epoch [1/10], Iter [433/3125], train_loss:0.062577
Epoch [1/10], Iter [434/3125], train_loss:0.091420
Epoch [1/10], Iter [435/3125], train_loss:0.090504
Epoch [1/10], Iter [436/3125], train_loss:0.119372
Epoch [1/10], Iter [437/3125], train_loss:0.066290
Epoch [1/10], Iter [438/3125], train_loss:0.119662
Epoch [1/10], Iter [439/3125], train_loss:0.110264
Epoch [1/10], Iter [440/3125], train_loss:0.079450
Epoch [1/10], Iter [441/3125], train_loss:0.111833
Epoch [1/10], Iter [442/3125], train_loss:0.094980
Epoch [1/10], Iter [443/3125], train_loss:0.111621
Epoch [1/10], Iter [444/3125], train_loss:0.082750
Epoch [1/10], Iter [445/3125], train_loss:0.104502
Epoch [1/10], Iter [446/3125], train_loss:0.114041
Epoch [1/10], Iter [447/3125], train_loss:0.071238
Epoch [1/10], Iter [448/3125], train_loss:0.088294
Epoch [1/10], Iter [449/3125], train_loss:0.069142
Epoch [1/10], Iter [450/3125], train_loss:0.129054
Epoch [1/10], Iter [451/3125], train_loss:0.091864
Epoch [1/10], Iter [452/3125], train_loss:0.080189
Epoch [1/10], Iter [453/3125], train_loss:0.060313
Epoch [1/10], Iter [454/3125], train_loss:0.129373
Epoch [1/10], Iter [455/3125], train_loss:0.073149
Epoch [1/10], Iter [456/3125], train_loss:0.073206
Epoch [1/10], Iter [457/3125], train_loss:0.088790
Epoch [1/10], Iter [458/3125], train_loss:0.066144
Epoch [1/10], Iter [459/3125], train_loss:0.103504
Epoch [1/10], Iter [460/3125], train_loss:0.060709
Epoch [1/10], Iter [461/3125], train_loss:0.108793
Epoch [1/10], Iter [462/3125], train_loss:0.093702
Epoch [1/10], Iter [463/3125], train_loss:0.116326
Epoch [1/10], Iter [464/3125], train_loss:0.104743
Epoch [1/10], Iter [465/3125], train_loss:0.082492
Epoch [1/10], Iter [466/3125], train_loss:0.092319
Epoch [1/10], Iter [467/3125], train_loss:0.065833
Epoch [1/10], Iter [468/3125], train_loss:0.051208
Epoch [1/10], Iter [469/3125], train_loss:0.093229
Epoch [1/10], Iter [470/3125], train_loss:0.095329
Epoch [1/10], Iter [471/3125], train_loss:0.099470
Epoch [1/10], Iter [472/3125], train_loss:0.072319
Epoch [1/10], Iter [473/3125], train_loss:0.062743
Epoch [1/10], Iter [474/3125], train_loss:0.108008
Epoch [1/10], Iter [475/3125], train_loss:0.046297
Epoch [1/10], Iter [476/3125], train_loss:0.077335
Epoch [1/10], Iter [477/3125], train_loss:0.088254
Epoch [1/10], Iter [478/3125], train_loss:0.101036
Epoch [1/10], Iter [479/3125], train_loss:0.083029
Epoch [1/10], Iter [480/3125], train_loss:0.097751
Epoch [1/10], Iter [481/3125], train_loss:0.096469
Epoch [1/10], Iter [482/3125], train_loss:0.087993
Epoch [1/10], Iter [483/3125], train_loss:0.099732
Epoch [1/10], Iter [484/3125], train_loss:0.073528
Epoch [1/10], Iter [485/3125], train_loss:0.101679
Epoch [1/10], Iter [486/3125], train_loss:0.100552
Epoch [1/10], Iter [487/3125], train_loss:0.087380
Epoch [1/10], Iter [488/3125], train_loss:0.121468
Epoch [1/10], Iter [489/3125], train_loss:0.097617
Epoch [1/10], Iter [490/3125], train_loss:0.104743
Epoch [1/10], Iter [491/3125], train_loss:0.078716
Epoch [1/10], Iter [492/3125], train_loss:0.098265
Epoch [1/10], Iter [493/3125], train_loss:0.082094
Epoch [1/10], Iter [494/3125], train_loss:0.087327
Epoch [1/10], Iter [495/3125], train_loss:0.069399
Epoch [1/10], Iter [496/3125], train_loss:0.066200
Epoch [1/10], Iter [497/3125], train_loss:0.068601
Epoch [1/10], Iter [498/3125], train_loss:0.126001
Epoch [1/10], Iter [499/3125], train_loss:0.085090
Epoch [1/10], Iter [500/3125], train_loss:0.109014
Epoch [1/10], Iter [501/3125], train_loss:0.106699
Epoch [1/10], Iter [502/3125], train_loss:0.082973
Epoch [1/10], Iter [503/3125], train_loss:0.095683
Epoch [1/10], Iter [504/3125], train_loss:0.113937
Epoch [1/10], Iter [505/3125], train_loss:0.032092
Epoch [1/10], Iter [506/3125], train_loss:0.071751
Epoch [1/10], Iter [507/3125], train_loss:0.082614
Epoch [1/10], Iter [508/3125], train_loss:0.076657
Epoch [1/10], Iter [509/3125], train_loss:0.078356
Epoch [1/10], Iter [510/3125], train_loss:0.109523
Epoch [1/10], Iter [511/3125], train_loss:0.108152
Epoch [1/10], Iter [512/3125], train_loss:0.092030
Epoch [1/10], Iter [513/3125], train_loss:0.115947
Epoch [1/10], Iter [514/3125], train_loss:0.108748
Epoch [1/10], Iter [515/3125], train_loss:0.091761
Epoch [1/10], Iter [516/3125], train_loss:0.073188
Epoch [1/10], Iter [517/3125], train_loss:0.120827
Epoch [1/10], Iter [518/3125], train_loss:0.067271
Epoch [1/10], Iter [519/3125], train_loss:0.050369
Epoch [1/10], Iter [520/3125], train_loss:0.070868
Epoch [1/10], Iter [521/3125], train_loss:0.113249
Epoch [1/10], Iter [522/3125], train_loss:0.090670
Epoch [1/10], Iter [523/3125], train_loss:0.104130
Epoch [1/10], Iter [524/3125], train_loss:0.095427
Epoch [1/10], Iter [525/3125], train_loss:0.141192
Epoch [1/10], Iter [526/3125], train_loss:0.076236
Epoch [1/10], Iter [527/3125], train_loss:0.117406
Epoch [1/10], Iter [528/3125], train_loss:0.114006
Epoch [1/10], Iter [529/3125], train_loss:0.066016
Epoch [1/10], Iter [530/3125], train_loss:0.093731
Epoch [1/10], Iter [531/3125], train_loss:0.072306
Epoch [1/10], Iter [532/3125], train_loss:0.074725
Epoch [1/10], Iter [533/3125], train_loss:0.090788
Epoch [1/10], Iter [534/3125], train_loss:0.071732
Epoch [1/10], Iter [535/3125], train_loss:0.083744
Epoch [1/10], Iter [536/3125], train_loss:0.066183
Epoch [1/10], Iter [537/3125], train_loss:0.116836
Epoch [1/10], Iter [538/3125], train_loss:0.086225
Epoch [1/10], Iter [539/3125], train_loss:0.097140
Epoch [1/10], Iter [540/3125], train_loss:0.076652
Epoch [1/10], Iter [541/3125], train_loss:0.058895
Epoch [1/10], Iter [542/3125], train_loss:0.068447
Epoch [1/10], Iter [543/3125], train_loss:0.071758
Epoch [1/10], Iter [544/3125], train_loss:0.055181
Epoch [1/10], Iter [545/3125], train_loss:0.058409
Epoch [1/10], Iter [546/3125], train_loss:0.101034
Epoch [1/10], Iter [547/3125], train_loss:0.078014
Epoch [1/10], Iter [548/3125], train_loss:0.101554
Epoch [1/10], Iter [549/3125], train_loss:0.099358
Epoch [1/10], Iter [550/3125], train_loss:0.086353
Epoch [1/10], Iter [551/3125], train_loss:0.087590
Epoch [1/10], Iter [552/3125], train_loss:0.050383
Epoch [1/10], Iter [553/3125], train_loss:0.100233
Epoch [1/10], Iter [554/3125], train_loss:0.095480
Epoch [1/10], Iter [555/3125], train_loss:0.093082
Epoch [1/10], Iter [556/3125], train_loss:0.077300
Epoch [1/10], Iter [557/3125], train_loss:0.097098
Epoch [1/10], Iter [558/3125], train_loss:0.108629
Epoch [1/10], Iter [559/3125], train_loss:0.080039
Epoch [1/10], Iter [560/3125], train_loss:0.086488
Epoch [1/10], Iter [561/3125], train_loss:0.105568
Epoch [1/10], Iter [562/3125], train_loss:0.079867
Epoch [1/10], Iter [563/3125], train_loss:0.094058
Epoch [1/10], Iter [564/3125], train_loss:0.071488
Epoch [1/10], Iter [565/3125], train_loss:0.068944
Epoch [1/10], Iter [566/3125], train_loss:0.107989
Epoch [1/10], Iter [567/3125], train_loss:0.072702
Epoch [1/10], Iter [568/3125], train_loss:0.092457
Epoch [1/10], Iter [569/3125], train_loss:0.116950
Epoch [1/10], Iter [570/3125], train_loss:0.057468
Epoch [1/10], Iter [571/3125], train_loss:0.067517
Epoch [1/10], Iter [572/3125], train_loss:0.069241
Epoch [1/10], Iter [573/3125], train_loss:0.112788
Epoch [1/10], Iter [574/3125], train_loss:0.135044
Epoch [1/10], Iter [575/3125], train_loss:0.139375
Epoch [1/10], Iter [576/3125], train_loss:0.083855
Epoch [1/10], Iter [577/3125], train_loss:0.111794
Epoch [1/10], Iter [578/3125], train_loss:0.087120
Epoch [1/10], Iter [579/3125], train_loss:0.089663
Epoch [1/10], Iter [580/3125], train_loss:0.074575
Epoch [1/10], Iter [581/3125], train_loss:0.064921
Epoch [1/10], Iter [582/3125], train_loss:0.192595
Epoch [1/10], Iter [583/3125], train_loss:0.107797
Epoch [1/10], Iter [584/3125], train_loss:0.077203
Epoch [1/10], Iter [585/3125], train_loss:0.123417
Epoch [1/10], Iter [586/3125], train_loss:0.082694
Epoch [1/10], Iter [587/3125], train_loss:0.075541
Epoch [1/10], Iter [588/3125], train_loss:0.097291
Epoch [1/10], Iter [589/3125], train_loss:0.052539
Epoch [1/10], Iter [590/3125], train_loss:0.066947
Epoch [1/10], Iter [591/3125], train_loss:0.061442
Epoch [1/10], Iter [592/3125], train_loss:0.066907
Epoch [1/10], Iter [593/3125], train_loss:0.059535
Epoch [1/10], Iter [594/3125], train_loss:0.074935
Epoch [1/10], Iter [595/3125], train_loss:0.084690
Epoch [1/10], Iter [596/3125], train_loss:0.063918
Epoch [1/10], Iter [597/3125], train_loss:0.063785
Epoch [1/10], Iter [598/3125], train_loss:0.108638
Epoch [1/10], Iter [599/3125], train_loss:0.086835
Epoch [1/10], Iter [600/3125], train_loss:0.098556
Epoch [1/10], Iter [601/3125], train_loss:0.075705
Epoch [1/10], Iter [602/3125], train_loss:0.059754
Epoch [1/10], Iter [603/3125], train_loss:0.054489
Epoch [1/10], Iter [604/3125], train_loss:0.073924
Epoch [1/10], Iter [605/3125], train_loss:0.094530
Epoch [1/10], Iter [606/3125], train_loss:0.053714
Epoch [1/10], Iter [607/3125], train_loss:0.090675
Epoch [1/10], Iter [608/3125], train_loss:0.078084
Epoch [1/10], Iter [609/3125], train_loss:0.066804
Epoch [1/10], Iter [610/3125], train_loss:0.100219
Epoch [1/10], Iter [611/3125], train_loss:0.075962
Epoch [1/10], Iter [612/3125], train_loss:0.070294
Epoch [1/10], Iter [613/3125], train_loss:0.071478
Epoch [1/10], Iter [614/3125], train_loss:0.096717
Epoch [1/10], Iter [615/3125], train_loss:0.086769
Epoch [1/10], Iter [616/3125], train_loss:0.104664
Epoch [1/10], Iter [617/3125], train_loss:0.072344
Epoch [1/10], Iter [618/3125], train_loss:0.074144
Epoch [1/10], Iter [619/3125], train_loss:0.084967
Epoch [1/10], Iter [620/3125], train_loss:0.095983
Epoch [1/10], Iter [621/3125], train_loss:0.068011
Epoch [1/10], Iter [622/3125], train_loss:0.051430
Epoch [1/10], Iter [623/3125], train_loss:0.072359
Epoch [1/10], Iter [624/3125], train_loss:0.051836
Epoch [1/10], Iter [625/3125], train_loss:0.103024
Epoch [1/10], Iter [626/3125], train_loss:0.088216
Epoch [1/10], Iter [627/3125], train_loss:0.061990
Epoch [1/10], Iter [628/3125], train_loss:0.107665
Epoch [1/10], Iter [629/3125], train_loss:0.076811
Epoch [1/10], Iter [630/3125], train_loss:0.123782
Epoch [1/10], Iter [631/3125], train_loss:0.094078
Epoch [1/10], Iter [632/3125], train_loss:0.059769
Epoch [1/10], Iter [633/3125], train_loss:0.066241
Epoch [1/10], Iter [634/3125], train_loss:0.071580
Epoch [1/10], Iter [635/3125], train_loss:0.076411
Epoch [1/10], Iter [636/3125], train_loss:0.110754
Epoch [1/10], Iter [637/3125], train_loss:0.065504
Epoch [1/10], Iter [638/3125], train_loss:0.083259
Epoch [1/10], Iter [639/3125], train_loss:0.107182
Epoch [1/10], Iter [640/3125], train_loss:0.060376
Epoch [1/10], Iter [641/3125], train_loss:0.077829
Epoch [1/10], Iter [642/3125], train_loss:0.100774
Epoch [1/10], Iter [643/3125], train_loss:0.087143
Epoch [1/10], Iter [644/3125], train_loss:0.060597
Epoch [1/10], Iter [645/3125], train_loss:0.101928
Epoch [1/10], Iter [646/3125], train_loss:0.092720
Epoch [1/10], Iter [647/3125], train_loss:0.081452
Epoch [1/10], Iter [648/3125], train_loss:0.097151
Epoch [1/10], Iter [649/3125], train_loss:0.070104
Epoch [1/10], Iter [650/3125], train_loss:0.094944
Epoch [1/10], Iter [651/3125], train_loss:0.056059
Epoch [1/10], Iter [652/3125], train_loss:0.065773
Epoch [1/10], Iter [653/3125], train_loss:0.087860
Epoch [1/10], Iter [654/3125], train_loss:0.088647
Epoch [1/10], Iter [655/3125], train_loss:0.074508
Epoch [1/10], Iter [656/3125], train_loss:0.078260
Epoch [1/10], Iter [657/3125], train_loss:0.068859
Epoch [1/10], Iter [658/3125], train_loss:0.080638
Epoch [1/10], Iter [659/3125], train_loss:0.101420
Epoch [1/10], Iter [660/3125], train_loss:0.084931
Epoch [1/10], Iter [661/3125], train_loss:0.066806
Epoch [1/10], Iter [662/3125], train_loss:0.105629
Epoch [1/10], Iter [663/3125], train_loss:0.084870
Epoch [1/10], Iter [664/3125], train_loss:0.071970
Epoch [1/10], Iter [665/3125], train_loss:0.087836
Epoch [1/10], Iter [666/3125], train_loss:0.100669
Epoch [1/10], Iter [667/3125], train_loss:0.077280
Epoch [1/10], Iter [668/3125], train_loss:0.116738
Epoch [1/10], Iter [669/3125], train_loss:0.061395
Epoch [1/10], Iter [670/3125], train_loss:0.090685
Epoch [1/10], Iter [671/3125], train_loss:0.080947
Epoch [1/10], Iter [672/3125], train_loss:0.095348
Epoch [1/10], Iter [673/3125], train_loss:0.092972
Epoch [1/10], Iter [674/3125], train_loss:0.107024
Epoch [1/10], Iter [675/3125], train_loss:0.084352
Epoch [1/10], Iter [676/3125], train_loss:0.059006
Epoch [1/10], Iter [677/3125], train_loss:0.092779
Epoch [1/10], Iter [678/3125], train_loss:0.077512
Epoch [1/10], Iter [679/3125], train_loss:0.096963
Epoch [1/10], Iter [680/3125], train_loss:0.096011
Epoch [1/10], Iter [681/3125], train_loss:0.079866
Epoch [1/10], Iter [682/3125], train_loss:0.075723
Epoch [1/10], Iter [683/3125], train_loss:0.085611
Epoch [1/10], Iter [684/3125], train_loss:0.123355
Epoch [1/10], Iter [685/3125], train_loss:0.069978
Epoch [1/10], Iter [686/3125], train_loss:0.077491
Epoch [1/10], Iter [687/3125], train_loss:0.055490
Epoch [1/10], Iter [688/3125], train_loss:0.067270
Epoch [1/10], Iter [689/3125], train_loss:0.114452
Epoch [1/10], Iter [690/3125], train_loss:0.079901
Epoch [1/10], Iter [691/3125], train_loss:0.090492
Epoch [1/10], Iter [692/3125], train_loss:0.072870
Epoch [1/10], Iter [693/3125], train_loss:0.065780
Epoch [1/10], Iter [694/3125], train_loss:0.078856
Epoch [1/10], Iter [695/3125], train_loss:0.062660
Epoch [1/10], Iter [696/3125], train_loss:0.094964
Epoch [1/10], Iter [697/3125], train_loss:0.085245
Epoch [1/10], Iter [698/3125], train_loss:0.096854
Epoch [1/10], Iter [699/3125], train_loss:0.056521
Epoch [1/10], Iter [700/3125], train_loss:0.064707
Epoch [1/10], Iter [701/3125], train_loss:0.102361
Epoch [1/10], Iter [702/3125], train_loss:0.083936
Epoch [1/10], Iter [703/3125], train_loss:0.071545
Epoch [1/10], Iter [704/3125], train_loss:0.056376
Epoch [1/10], Iter [705/3125], train_loss:0.075224
Epoch [1/10], Iter [706/3125], train_loss:0.088155
Epoch [1/10], Iter [707/3125], train_loss:0.075692
Epoch [1/10], Iter [708/3125], train_loss:0.077199
Epoch [1/10], Iter [709/3125], train_loss:0.069121
Epoch [1/10], Iter [710/3125], train_loss:0.077576
Epoch [1/10], Iter [711/3125], train_loss:0.069567
Epoch [1/10], Iter [712/3125], train_loss:0.075430
Epoch [1/10], Iter [713/3125], train_loss:0.070002
Epoch [1/10], Iter [714/3125], train_loss:0.083099
Epoch [1/10], Iter [715/3125], train_loss:0.129424
Epoch [1/10], Iter [716/3125], train_loss:0.076017
Epoch [1/10], Iter [717/3125], train_loss:0.093424
Epoch [1/10], Iter [718/3125], train_loss:0.046105
Epoch [1/10], Iter [719/3125], train_loss:0.103817
Epoch [1/10], Iter [720/3125], train_loss:0.063443
Epoch [1/10], Iter [721/3125], train_loss:0.068008
Epoch [1/10], Iter [722/3125], train_loss:0.080830
Epoch [1/10], Iter [723/3125], train_loss:0.063206
Epoch [1/10], Iter [724/3125], train_loss:0.046125
Epoch [1/10], Iter [725/3125], train_loss:0.098638
Epoch [1/10], Iter [726/3125], train_loss:0.059091
Epoch [1/10], Iter [727/3125], train_loss:0.104707
Epoch [1/10], Iter [728/3125], train_loss:0.060244
Epoch [1/10], Iter [729/3125], train_loss:0.056369
Epoch [1/10], Iter [730/3125], train_loss:0.066725
Epoch [1/10], Iter [731/3125], train_loss:0.078067
Epoch [1/10], Iter [732/3125], train_loss:0.074055
Epoch [1/10], Iter [733/3125], train_loss:0.035916
Epoch [1/10], Iter [734/3125], train_loss:0.066059
Epoch [1/10], Iter [735/3125], train_loss:0.118576
Epoch [1/10], Iter [736/3125], train_loss:0.095265
Epoch [1/10], Iter [737/3125], train_loss:0.085072
Epoch [1/10], Iter [738/3125], train_loss:0.076775
Epoch [1/10], Iter [739/3125], train_loss:0.077835
Epoch [1/10], Iter [740/3125], train_loss:0.071196
Epoch [1/10], Iter [741/3125], train_loss:0.068851
Epoch [1/10], Iter [742/3125], train_loss:0.041999
Epoch [1/10], Iter [743/3125], train_loss:0.074546
Epoch [1/10], Iter [744/3125], train_loss:0.098691
Epoch [1/10], Iter [745/3125], train_loss:0.100539
Epoch [1/10], Iter [746/3125], train_loss:0.079695
Epoch [1/10], Iter [747/3125], train_loss:0.078971
Epoch [1/10], Iter [748/3125], train_loss:0.081766
Epoch [1/10], Iter [749/3125], train_loss:0.089490
Epoch [1/10], Iter [750/3125], train_loss:0.077093
Epoch [1/10], Iter [751/3125], train_loss:0.077361
Epoch [1/10], Iter [752/3125], train_loss:0.114653
Epoch [1/10], Iter [753/3125], train_loss:0.047497
Epoch [1/10], Iter [754/3125], train_loss:0.121098
Epoch [1/10], Iter [755/3125], train_loss:0.070111
Epoch [1/10], Iter [756/3125], train_loss:0.069042
Epoch [1/10], Iter [757/3125], train_loss:0.073422
Epoch [1/10], Iter [758/3125], train_loss:0.070171
Epoch [1/10], Iter [759/3125], train_loss:0.104445
Epoch [1/10], Iter [760/3125], train_loss:0.075994
Epoch [1/10], Iter [761/3125], train_loss:0.057151
Epoch [1/10], Iter [762/3125], train_loss:0.086842
Epoch [1/10], Iter [763/3125], train_loss:0.050175
Epoch [1/10], Iter [764/3125], train_loss:0.114565
Epoch [1/10], Iter [765/3125], train_loss:0.088730
Epoch [1/10], Iter [766/3125], train_loss:0.084020
Epoch [1/10], Iter [767/3125], train_loss:0.055446
Epoch [1/10], Iter [768/3125], train_loss:0.073858
Epoch [1/10], Iter [769/3125], train_loss:0.076490
Epoch [1/10], Iter [770/3125], train_loss:0.117408
Epoch [1/10], Iter [771/3125], train_loss:0.074123
Epoch [1/10], Iter [772/3125], train_loss:0.091184
Epoch [1/10], Iter [773/3125], train_loss:0.101151
Epoch [1/10], Iter [774/3125], train_loss:0.069927
Epoch [1/10], Iter [775/3125], train_loss:0.078611
Epoch [1/10], Iter [776/3125], train_loss:0.076168
Epoch [1/10], Iter [777/3125], train_loss:0.098598
Epoch [1/10], Iter [778/3125], train_loss:0.080934
Epoch [1/10], Iter [779/3125], train_loss:0.065147
Epoch [1/10], Iter [780/3125], train_loss:0.092266
Epoch [1/10], Iter [781/3125], train_loss:0.088162
Epoch [1/10], Iter [782/3125], train_loss:0.048683
Epoch [1/10], Iter [783/3125], train_loss:0.068024
Epoch [1/10], Iter [784/3125], train_loss:0.061430
Epoch [1/10], Iter [785/3125], train_loss:0.084588
Epoch [1/10], Iter [786/3125], train_loss:0.055528
Epoch [1/10], Iter [787/3125], train_loss:0.069858
Epoch [1/10], Iter [788/3125], train_loss:0.066797
Epoch [1/10], Iter [789/3125], train_loss:0.055900
Epoch [1/10], Iter [790/3125], train_loss:0.081083
Epoch [1/10], Iter [791/3125], train_loss:0.104611
Epoch [1/10], Iter [792/3125], train_loss:0.069633
Epoch [1/10], Iter [793/3125], train_loss:0.076716
Epoch [1/10], Iter [794/3125], train_loss:0.058692
Epoch [1/10], Iter [795/3125], train_loss:0.071644
Epoch [1/10], Iter [796/3125], train_loss:0.075141
Epoch [1/10], Iter [797/3125], train_loss:0.057095
Epoch [1/10], Iter [798/3125], train_loss:0.091708
Epoch [1/10], Iter [799/3125], train_loss:0.082720
Epoch [1/10], Iter [800/3125], train_loss:0.082454
Epoch [1/10], Iter [801/3125], train_loss:0.062604
Epoch [1/10], Iter [802/3125], train_loss:0.064724
Epoch [1/10], Iter [803/3125], train_loss:0.070556
Epoch [1/10], Iter [804/3125], train_loss:0.062924
Epoch [1/10], Iter [805/3125], train_loss:0.068634
Epoch [1/10], Iter [806/3125], train_loss:0.125406
Epoch [1/10], Iter [807/3125], train_loss:0.105064
Epoch [1/10], Iter [808/3125], train_loss:0.094673
Epoch [1/10], Iter [809/3125], train_loss:0.058413
Epoch [1/10], Iter [810/3125], train_loss:0.068775
Epoch [1/10], Iter [811/3125], train_loss:0.082067
Epoch [1/10], Iter [812/3125], train_loss:0.069499
Epoch [1/10], Iter [813/3125], train_loss:0.046804
Epoch [1/10], Iter [814/3125], train_loss:0.052497
Epoch [1/10], Iter [815/3125], train_loss:0.039903
Epoch [1/10], Iter [816/3125], train_loss:0.075335
Epoch [1/10], Iter [817/3125], train_loss:0.118900
Epoch [1/10], Iter [818/3125], train_loss:0.095827
Epoch [1/10], Iter [819/3125], train_loss:0.080276
Epoch [1/10], Iter [820/3125], train_loss:0.078976
Epoch [1/10], Iter [821/3125], train_loss:0.067389
Epoch [1/10], Iter [822/3125], train_loss:0.039839
Epoch [1/10], Iter [823/3125], train_loss:0.084257
Epoch [1/10], Iter [824/3125], train_loss:0.086442
Epoch [1/10], Iter [825/3125], train_loss:0.067308
Epoch [1/10], Iter [826/3125], train_loss:0.065607
Epoch [1/10], Iter [827/3125], train_loss:0.076576
Epoch [1/10], Iter [828/3125], train_loss:0.059056
Epoch [1/10], Iter [829/3125], train_loss:0.045432
Epoch [1/10], Iter [830/3125], train_loss:0.097930
Epoch [1/10], Iter [831/3125], train_loss:0.029969
Epoch [1/10], Iter [832/3125], train_loss:0.089879
Epoch [1/10], Iter [833/3125], train_loss:0.065557
Epoch [1/10], Iter [834/3125], train_loss:0.055370
Epoch [1/10], Iter [835/3125], train_loss:0.078189
Epoch [1/10], Iter [836/3125], train_loss:0.078902
Epoch [1/10], Iter [837/3125], train_loss:0.049187
Epoch [1/10], Iter [838/3125], train_loss:0.073233
Epoch [1/10], Iter [839/3125], train_loss:0.042756
Epoch [1/10], Iter [840/3125], train_loss:0.095991
Epoch [1/10], Iter [841/3125], train_loss:0.054647
Epoch [1/10], Iter [842/3125], train_loss:0.090404
Epoch [1/10], Iter [843/3125], train_loss:0.084048
Epoch [1/10], Iter [844/3125], train_loss:0.042351
Epoch [1/10], Iter [845/3125], train_loss:0.110720
Epoch [1/10], Iter [846/3125], train_loss:0.058698
Epoch [1/10], Iter [847/3125], train_loss:0.065574
Epoch [1/10], Iter [848/3125], train_loss:0.103704
Epoch [1/10], Iter [849/3125], train_loss:0.092518
Epoch [1/10], Iter [850/3125], train_loss:0.105825
Epoch [1/10], Iter [851/3125], train_loss:0.092112
Epoch [1/10], Iter [852/3125], train_loss:0.060410
Epoch [1/10], Iter [853/3125], train_loss:0.053077
Epoch [1/10], Iter [854/3125], train_loss:0.096419
Epoch [1/10], Iter [855/3125], train_loss:0.070295
Epoch [1/10], Iter [856/3125], train_loss:0.038191
Epoch [1/10], Iter [857/3125], train_loss:0.067107
Epoch [1/10], Iter [858/3125], train_loss:0.068591
Epoch [1/10], Iter [859/3125], train_loss:0.118834
Epoch [1/10], Iter [860/3125], train_loss:0.057502
Epoch [1/10], Iter [861/3125], train_loss:0.112667
Epoch [1/10], Iter [862/3125], train_loss:0.068514
Epoch [1/10], Iter [863/3125], train_loss:0.078345
Epoch [1/10], Iter [864/3125], train_loss:0.086322
Epoch [1/10], Iter [865/3125], train_loss:0.060227
Epoch [1/10], Iter [866/3125], train_loss:0.069537
Epoch [1/10], Iter [867/3125], train_loss:0.051423
Epoch [1/10], Iter [868/3125], train_loss:0.065481
Epoch [1/10], Iter [869/3125], train_loss:0.078509
Epoch [1/10], Iter [870/3125], train_loss:0.087949
Epoch [1/10], Iter [871/3125], train_loss:0.089137
Epoch [1/10], Iter [872/3125], train_loss:0.097406
Epoch [1/10], Iter [873/3125], train_loss:0.058960
Epoch [1/10], Iter [874/3125], train_loss:0.058738
Epoch [1/10], Iter [875/3125], train_loss:0.061488
Epoch [1/10], Iter [876/3125], train_loss:0.066018
Epoch [1/10], Iter [877/3125], train_loss:0.074891
Epoch [1/10], Iter [878/3125], train_loss:0.086487
Epoch [1/10], Iter [879/3125], train_loss:0.036267
Epoch [1/10], Iter [880/3125], train_loss:0.052825
Epoch [1/10], Iter [881/3125], train_loss:0.086232
Epoch [1/10], Iter [882/3125], train_loss:0.067304
Epoch [1/10], Iter [883/3125], train_loss:0.090174
Epoch [1/10], Iter [884/3125], train_loss:0.074173
Epoch [1/10], Iter [885/3125], train_loss:0.103388
Epoch [1/10], Iter [886/3125], train_loss:0.063061
Epoch [1/10], Iter [887/3125], train_loss:0.111390
Epoch [1/10], Iter [888/3125], train_loss:0.082873
Epoch [1/10], Iter [889/3125], train_loss:0.067860
Epoch [1/10], Iter [890/3125], train_loss:0.069580
Epoch [1/10], Iter [891/3125], train_loss:0.071146
Epoch [1/10], Iter [892/3125], train_loss:0.046750
Epoch [1/10], Iter [893/3125], train_loss:0.069989
Epoch [1/10], Iter [894/3125], train_loss:0.054033
Epoch [1/10], Iter [895/3125], train_loss:0.091311
Epoch [1/10], Iter [896/3125], train_loss:0.089567
Epoch [1/10], Iter [897/3125], train_loss:0.082130
Epoch [1/10], Iter [898/3125], train_loss:0.115708
Epoch [1/10], Iter [899/3125], train_loss:0.099699
Epoch [1/10], Iter [900/3125], train_loss:0.084736
Epoch [1/10], Iter [901/3125], train_loss:0.099145
Epoch [1/10], Iter [902/3125], train_loss:0.096519
Epoch [1/10], Iter [903/3125], train_loss:0.070268
Epoch [1/10], Iter [904/3125], train_loss:0.048972
Epoch [1/10], Iter [905/3125], train_loss:0.055735
Epoch [1/10], Iter [906/3125], train_loss:0.092406
Epoch [1/10], Iter [907/3125], train_loss:0.094186
Epoch [1/10], Iter [908/3125], train_loss:0.058645
Epoch [1/10], Iter [909/3125], train_loss:0.059716
Epoch [1/10], Iter [910/3125], train_loss:0.066300
Epoch [1/10], Iter [911/3125], train_loss:0.055384
Epoch [1/10], Iter [912/3125], train_loss:0.063149
Epoch [1/10], Iter [913/3125], train_loss:0.078833
Epoch [1/10], Iter [914/3125], train_loss:0.047108
Epoch [1/10], Iter [915/3125], train_loss:0.095854
Epoch [1/10], Iter [916/3125], train_loss:0.067950
Epoch [1/10], Iter [917/3125], train_loss:0.089043
Epoch [1/10], Iter [918/3125], train_loss:0.091433
Epoch [1/10], Iter [919/3125], train_loss:0.071309
Epoch [1/10], Iter [920/3125], train_loss:0.064289
Epoch [1/10], Iter [921/3125], train_loss:0.075466
Epoch [1/10], Iter [922/3125], train_loss:0.041136
Epoch [1/10], Iter [923/3125], train_loss:0.069332
Epoch [1/10], Iter [924/3125], train_loss:0.103374
Epoch [1/10], Iter [925/3125], train_loss:0.048819
Epoch [1/10], Iter [926/3125], train_loss:0.102714
Epoch [1/10], Iter [927/3125], train_loss:0.059707
Epoch [1/10], Iter [928/3125], train_loss:0.103872
Epoch [1/10], Iter [929/3125], train_loss:0.071671
Epoch [1/10], Iter [930/3125], train_loss:0.043527
Epoch [1/10], Iter [931/3125], train_loss:0.101342
Epoch [1/10], Iter [932/3125], train_loss:0.090892
Epoch [1/10], Iter [933/3125], train_loss:0.084326
Epoch [1/10], Iter [934/3125], train_loss:0.085523
Epoch [1/10], Iter [935/3125], train_loss:0.104836
Epoch [1/10], Iter [936/3125], train_loss:0.071485
Epoch [1/10], Iter [937/3125], train_loss:0.075505
Epoch [1/10], Iter [938/3125], train_loss:0.055048
Epoch [1/10], Iter [939/3125], train_loss:0.052603
Epoch [1/10], Iter [940/3125], train_loss:0.052872
Epoch [1/10], Iter [941/3125], train_loss:0.046744
Epoch [1/10], Iter [942/3125], train_loss:0.084774
Epoch [1/10], Iter [943/3125], train_loss:0.089809
Epoch [1/10], Iter [944/3125], train_loss:0.077171
Epoch [1/10], Iter [945/3125], train_loss:0.053297
Epoch [1/10], Iter [946/3125], train_loss:0.048126
Epoch [1/10], Iter [947/3125], train_loss:0.069072
Epoch [1/10], Iter [948/3125], train_loss:0.081771
Epoch [1/10], Iter [949/3125], train_loss:0.086464
Epoch [1/10], Iter [950/3125], train_loss:0.078226
Epoch [1/10], Iter [951/3125], train_loss:0.070242
Epoch [1/10], Iter [952/3125], train_loss:0.065498
Epoch [1/10], Iter [953/3125], train_loss:0.057135
Epoch [1/10], Iter [954/3125], train_loss:0.087012
Epoch [1/10], Iter [955/3125], train_loss:0.087501
Epoch [1/10], Iter [956/3125], train_loss:0.076051
Epoch [1/10], Iter [957/3125], train_loss:0.093375
Epoch [1/10], Iter [958/3125], train_loss:0.098896
Epoch [1/10], Iter [959/3125], train_loss:0.094898
Epoch [1/10], Iter [960/3125], train_loss:0.051544
Epoch [1/10], Iter [961/3125], train_loss:0.112901
Epoch [1/10], Iter [962/3125], train_loss:0.064911
Epoch [1/10], Iter [963/3125], train_loss:0.127530
Epoch [1/10], Iter [964/3125], train_loss:0.060438
Epoch [1/10], Iter [965/3125], train_loss:0.073689
Epoch [1/10], Iter [966/3125], train_loss:0.058125
Epoch [1/10], Iter [967/3125], train_loss:0.076736
Epoch [1/10], Iter [968/3125], train_loss:0.076557
Epoch [1/10], Iter [969/3125], train_loss:0.064269
Epoch [1/10], Iter [970/3125], train_loss:0.078429
Epoch [1/10], Iter [971/3125], train_loss:0.053220
Epoch [1/10], Iter [972/3125], train_loss:0.059810
Epoch [1/10], Iter [973/3125], train_loss:0.061482
Epoch [1/10], Iter [974/3125], train_loss:0.059918
Epoch [1/10], Iter [975/3125], train_loss:0.095541
Epoch [1/10], Iter [976/3125], train_loss:0.066343
Epoch [1/10], Iter [977/3125], train_loss:0.063362
Epoch [1/10], Iter [978/3125], train_loss:0.049746
Epoch [1/10], Iter [979/3125], train_loss:0.076230
Epoch [1/10], Iter [980/3125], train_loss:0.085253
Epoch [1/10], Iter [981/3125], train_loss:0.055329
Epoch [1/10], Iter [982/3125], train_loss:0.073866
Epoch [1/10], Iter [983/3125], train_loss:0.090456
Epoch [1/10], Iter [984/3125], train_loss:0.065264
Epoch [1/10], Iter [985/3125], train_loss:0.094808
Epoch [1/10], Iter [986/3125], train_loss:0.083755
Epoch [1/10], Iter [987/3125], train_loss:0.100000
Epoch [1/10], Iter [988/3125], train_loss:0.044194
Epoch [1/10], Iter [989/3125], train_loss:0.089688
Epoch [1/10], Iter [990/3125], train_loss:0.061354
Epoch [1/10], Iter [991/3125], train_loss:0.072798
Epoch [1/10], Iter [992/3125], train_loss:0.055077
Epoch [1/10], Iter [993/3125], train_loss:0.066739
Epoch [1/10], Iter [994/3125], train_loss:0.085635
Epoch [1/10], Iter [995/3125], train_loss:0.062349
Epoch [1/10], Iter [996/3125], train_loss:0.055486
Epoch [1/10], Iter [997/3125], train_loss:0.061249
Epoch [1/10], Iter [998/3125], train_loss:0.046875
Epoch [1/10], Iter [999/3125], train_loss:0.078696
Epoch [1/10], Iter [1000/3125], train_loss:0.071514
Epoch [1/10], Iter [1001/3125], train_loss:0.084848
Epoch [1/10], Iter [1002/3125], train_loss:0.051532
Epoch [1/10], Iter [1003/3125], train_loss:0.084807
Epoch [1/10], Iter [1004/3125], train_loss:0.088694
Epoch [1/10], Iter [1005/3125], train_loss:0.081654
Epoch [1/10], Iter [1006/3125], train_loss:0.067032
Epoch [1/10], Iter [1007/3125], train_loss:0.124414
Epoch [1/10], Iter [1008/3125], train_loss:0.080349
Epoch [1/10], Iter [1009/3125], train_loss:0.036862
Epoch [1/10], Iter [1010/3125], train_loss:0.076840
Epoch [1/10], Iter [1011/3125], train_loss:0.042844
Epoch [1/10], Iter [1012/3125], train_loss:0.078605
Epoch [1/10], Iter [1013/3125], train_loss:0.044502
Epoch [1/10], Iter [1014/3125], train_loss:0.080783
Epoch [1/10], Iter [1015/3125], train_loss:0.071481
Epoch [1/10], Iter [1016/3125], train_loss:0.085543
Epoch [1/10], Iter [1017/3125], train_loss:0.107438
Epoch [1/10], Iter [1018/3125], train_loss:0.076212
Epoch [1/10], Iter [1019/3125], train_loss:0.078109
Epoch [1/10], Iter [1020/3125], train_loss:0.047839
Epoch [1/10], Iter [1021/3125], train_loss:0.090297
Epoch [1/10], Iter [1022/3125], train_loss:0.060652
Epoch [1/10], Iter [1023/3125], train_loss:0.107761
Epoch [1/10], Iter [1024/3125], train_loss:0.075100
Epoch [1/10], Iter [1025/3125], train_loss:0.065084
Epoch [1/10], Iter [1026/3125], train_loss:0.086126
Epoch [1/10], Iter [1027/3125], train_loss:0.076870
Epoch [1/10], Iter [1028/3125], train_loss:0.090435
Epoch [1/10], Iter [1029/3125], train_loss:0.071291
Epoch [1/10], Iter [1030/3125], train_loss:0.072460
Epoch [1/10], Iter [1031/3125], train_loss:0.065093
Epoch [1/10], Iter [1032/3125], train_loss:0.046128
Epoch [1/10], Iter [1033/3125], train_loss:0.081843
Epoch [1/10], Iter [1034/3125], train_loss:0.098334
Epoch [1/10], Iter [1035/3125], train_loss:0.044121
Epoch [1/10], Iter [1036/3125], train_loss:0.067291
Epoch [1/10], Iter [1037/3125], train_loss:0.055147
Epoch [1/10], Iter [1038/3125], train_loss:0.075272
Epoch [1/10], Iter [1039/3125], train_loss:0.097143
Epoch [1/10], Iter [1040/3125], train_loss:0.083308
Epoch [1/10], Iter [1041/3125], train_loss:0.083002
Epoch [1/10], Iter [1042/3125], train_loss:0.074888
Epoch [1/10], Iter [1043/3125], train_loss:0.097697
Epoch [1/10], Iter [1044/3125], train_loss:0.049311
Epoch [1/10], Iter [1045/3125], train_loss:0.081692
Epoch [1/10], Iter [1046/3125], train_loss:0.064942
Epoch [1/10], Iter [1047/3125], train_loss:0.044580
Epoch [1/10], Iter [1048/3125], train_loss:0.085176
Epoch [1/10], Iter [1049/3125], train_loss:0.063269
Epoch [1/10], Iter [1050/3125], train_loss:0.077601
Epoch [1/10], Iter [1051/3125], train_loss:0.105948
Epoch [1/10], Iter [1052/3125], train_loss:0.059415
Epoch [1/10], Iter [1053/3125], train_loss:0.094063
Epoch [1/10], Iter [1054/3125], train_loss:0.092959
Epoch [1/10], Iter [1055/3125], train_loss:0.092067
Epoch [1/10], Iter [1056/3125], train_loss:0.067009
Epoch [1/10], Iter [1057/3125], train_loss:0.098917
Epoch [1/10], Iter [1058/3125], train_loss:0.057587
Epoch [1/10], Iter [1059/3125], train_loss:0.130291
Epoch [1/10], Iter [1060/3125], train_loss:0.067882
Epoch [1/10], Iter [1061/3125], train_loss:0.060654
Epoch [1/10], Iter [1062/3125], train_loss:0.055052
Epoch [1/10], Iter [1063/3125], train_loss:0.113558
Epoch [1/10], Iter [1064/3125], train_loss:0.092149
Epoch [1/10], Iter [1065/3125], train_loss:0.080471
Epoch [1/10], Iter [1066/3125], train_loss:0.077791
Epoch [1/10], Iter [1067/3125], train_loss:0.064857
Epoch [1/10], Iter [1068/3125], train_loss:0.061791
Epoch [1/10], Iter [1069/3125], train_loss:0.092346
Epoch [1/10], Iter [1070/3125], train_loss:0.061829
Epoch [1/10], Iter [1071/3125], train_loss:0.052066
Epoch [1/10], Iter [1072/3125], train_loss:0.060261
Epoch [1/10], Iter [1073/3125], train_loss:0.052576
Epoch [1/10], Iter [1074/3125], train_loss:0.091335
Epoch [1/10], Iter [1075/3125], train_loss:0.085970
Epoch [1/10], Iter [1076/3125], train_loss:0.051026
Epoch [1/10], Iter [1077/3125], train_loss:0.054480
Epoch [1/10], Iter [1078/3125], train_loss:0.076401
Epoch [1/10], Iter [1079/3125], train_loss:0.067915
Epoch [1/10], Iter [1080/3125], train_loss:0.080814
Epoch [1/10], Iter [1081/3125], train_loss:0.079265
Epoch [1/10], Iter [1082/3125], train_loss:0.064177
Epoch [1/10], Iter [1083/3125], train_loss:0.070294
Epoch [1/10], Iter [1084/3125], train_loss:0.076654
Epoch [1/10], Iter [1085/3125], train_loss:0.048900
Epoch [1/10], Iter [1086/3125], train_loss:0.080051
Epoch [1/10], Iter [1087/3125], train_loss:0.062221
Epoch [1/10], Iter [1088/3125], train_loss:0.053528
Epoch [1/10], Iter [1089/3125], train_loss:0.078500
Epoch [1/10], Iter [1090/3125], train_loss:0.054167
Epoch [1/10], Iter [1091/3125], train_loss:0.060830
Epoch [1/10], Iter [1092/3125], train_loss:0.070064
Epoch [1/10], Iter [1093/3125], train_loss:0.059513
Epoch [1/10], Iter [1094/3125], train_loss:0.064300
Epoch [1/10], Iter [1095/3125], train_loss:0.064953
Epoch [1/10], Iter [1096/3125], train_loss:0.098469
Epoch [1/10], Iter [1097/3125], train_loss:0.070608
Epoch [1/10], Iter [1098/3125], train_loss:0.063558
Epoch [1/10], Iter [1099/3125], train_loss:0.047807
Epoch [1/10], Iter [1100/3125], train_loss:0.040138
Epoch [1/10], Iter [1101/3125], train_loss:0.054244
Epoch [1/10], Iter [1102/3125], train_loss:0.094688
Epoch [1/10], Iter [1103/3125], train_loss:0.040553
Epoch [1/10], Iter [1104/3125], train_loss:0.054478
Epoch [1/10], Iter [1105/3125], train_loss:0.051893
Epoch [1/10], Iter [1106/3125], train_loss:0.063331
Epoch [1/10], Iter [1107/3125], train_loss:0.092488
Epoch [1/10], Iter [1108/3125], train_loss:0.079674
Epoch [1/10], Iter [1109/3125], train_loss:0.082050
Epoch [1/10], Iter [1110/3125], train_loss:0.053623
Epoch [1/10], Iter [1111/3125], train_loss:0.142942
Epoch [1/10], Iter [1112/3125], train_loss:0.071629
Epoch [1/10], Iter [1113/3125], train_loss:0.070982
Epoch [1/10], Iter [1114/3125], train_loss:0.096225
Epoch [1/10], Iter [1115/3125], train_loss:0.071539
Epoch [1/10], Iter [1116/3125], train_loss:0.058115
Epoch [1/10], Iter [1117/3125], train_loss:0.069117
Epoch [1/10], Iter [1118/3125], train_loss:0.048873
Epoch [1/10], Iter [1119/3125], train_loss:0.041571
Epoch [1/10], Iter [1120/3125], train_loss:0.062927
Epoch [1/10], Iter [1121/3125], train_loss:0.060754
Epoch [1/10], Iter [1122/3125], train_loss:0.072750
Epoch [1/10], Iter [1123/3125], train_loss:0.112615
Epoch [1/10], Iter [1124/3125], train_loss:0.051256
Epoch [1/10], Iter [1125/3125], train_loss:0.086577
Epoch [1/10], Iter [1126/3125], train_loss:0.058549
Epoch [1/10], Iter [1127/3125], train_loss:0.038518
Epoch [1/10], Iter [1128/3125], train_loss:0.080108
Epoch [1/10], Iter [1129/3125], train_loss:0.088471
Epoch [1/10], Iter [1130/3125], train_loss:0.062608
Epoch [1/10], Iter [1131/3125], train_loss:0.029030
Epoch [1/10], Iter [1132/3125], train_loss:0.102873
Epoch [1/10], Iter [1133/3125], train_loss:0.044108
Epoch [1/10], Iter [1134/3125], train_loss:0.062481
Epoch [1/10], Iter [1135/3125], train_loss:0.070823
Epoch [1/10], Iter [1136/3125], train_loss:0.056807
Epoch [1/10], Iter [1137/3125], train_loss:0.086398
Epoch [1/10], Iter [1138/3125], train_loss:0.070901
Epoch [1/10], Iter [1139/3125], train_loss:0.057244
Epoch [1/10], Iter [1140/3125], train_loss:0.084820
Epoch [1/10], Iter [1141/3125], train_loss:0.060651
Epoch [1/10], Iter [1142/3125], train_loss:0.050026
Epoch [1/10], Iter [1143/3125], train_loss:0.051782
Epoch [1/10], Iter [1144/3125], train_loss:0.078317
Epoch [1/10], Iter [1145/3125], train_loss:0.101919
Epoch [1/10], Iter [1146/3125], train_loss:0.066825
Epoch [1/10], Iter [1147/3125], train_loss:0.058590
Epoch [1/10], Iter [1148/3125], train_loss:0.065694
Epoch [1/10], Iter [1149/3125], train_loss:0.073218
Epoch [1/10], Iter [1150/3125], train_loss:0.055545
Epoch [1/10], Iter [1151/3125], train_loss:0.091100
Epoch [1/10], Iter [1152/3125], train_loss:0.064072
Epoch [1/10], Iter [1153/3125], train_loss:0.056346
Epoch [1/10], Iter [1154/3125], train_loss:0.051450
Epoch [1/10], Iter [1155/3125], train_loss:0.092154
Epoch [1/10], Iter [1156/3125], train_loss:0.042432
Epoch [1/10], Iter [1157/3125], train_loss:0.089265
Epoch [1/10], Iter [1158/3125], train_loss:0.060625
Epoch [1/10], Iter [1159/3125], train_loss:0.099431
Epoch [1/10], Iter [1160/3125], train_loss:0.083928
Epoch [1/10], Iter [1161/3125], train_loss:0.035615
Epoch [1/10], Iter [1162/3125], train_loss:0.085633
Epoch [1/10], Iter [1163/3125], train_loss:0.072629
Epoch [1/10], Iter [1164/3125], train_loss:0.025984
Epoch [1/10], Iter [1165/3125], train_loss:0.039261
Epoch [1/10], Iter [1166/3125], train_loss:0.069321
Epoch [1/10], Iter [1167/3125], train_loss:0.069004
Epoch [1/10], Iter [1168/3125], train_loss:0.089742
Epoch [1/10], Iter [1169/3125], train_loss:0.079844
Epoch [1/10], Iter [1170/3125], train_loss:0.072411
Epoch [1/10], Iter [1171/3125], train_loss:0.067221
Epoch [1/10], Iter [1172/3125], train_loss:0.042146
Epoch [1/10], Iter [1173/3125], train_loss:0.057201
Epoch [1/10], Iter [1174/3125], train_loss:0.080315
Epoch [1/10], Iter [1175/3125], train_loss:0.071066
Epoch [1/10], Iter [1176/3125], train_loss:0.052890
Epoch [1/10], Iter [1177/3125], train_loss:0.068389
Epoch [1/10], Iter [1178/3125], train_loss:0.064046
Epoch [1/10], Iter [1179/3125], train_loss:0.077891
Epoch [1/10], Iter [1180/3125], train_loss:0.048555
Epoch [1/10], Iter [1181/3125], train_loss:0.050501
Epoch [1/10], Iter [1182/3125], train_loss:0.048259
Epoch [1/10], Iter [1183/3125], train_loss:0.062327
Epoch [1/10], Iter [1184/3125], train_loss:0.109548
Epoch [1/10], Iter [1185/3125], train_loss:0.065658
Epoch [1/10], Iter [1186/3125], train_loss:0.093734
Epoch [1/10], Iter [1187/3125], train_loss:0.063664
Epoch [1/10], Iter [1188/3125], train_loss:0.037065
Epoch [1/10], Iter [1189/3125], train_loss:0.057139
Epoch [1/10], Iter [1190/3125], train_loss:0.036839
Epoch [1/10], Iter [1191/3125], train_loss:0.067464
Epoch [1/10], Iter [1192/3125], train_loss:0.066957
Epoch [1/10], Iter [1193/3125], train_loss:0.084686
Epoch [1/10], Iter [1194/3125], train_loss:0.052129
Epoch [1/10], Iter [1195/3125], train_loss:0.088091
Epoch [1/10], Iter [1196/3125], train_loss:0.108515
Epoch [1/10], Iter [1197/3125], train_loss:0.066917
Epoch [1/10], Iter [1198/3125], train_loss:0.081250
Epoch [1/10], Iter [1199/3125], train_loss:0.060395
Epoch [1/10], Iter [1200/3125], train_loss:0.111344
Epoch [1/10], Iter [1201/3125], train_loss:0.067042
Epoch [1/10], Iter [1202/3125], train_loss:0.056118
Epoch [1/10], Iter [1203/3125], train_loss:0.100409
Epoch [1/10], Iter [1204/3125], train_loss:0.079419
Epoch [1/10], Iter [1205/3125], train_loss:0.044308
Epoch [1/10], Iter [1206/3125], train_loss:0.053429
Epoch [1/10], Iter [1207/3125], train_loss:0.045393
Epoch [1/10], Iter [1208/3125], train_loss:0.056517
Epoch [1/10], Iter [1209/3125], train_loss:0.051357
Epoch [1/10], Iter [1210/3125], train_loss:0.074712
Epoch [1/10], Iter [1211/3125], train_loss:0.067255
Epoch [1/10], Iter [1212/3125], train_loss:0.066072
Epoch [1/10], Iter [1213/3125], train_loss:0.036946
Epoch [1/10], Iter [1214/3125], train_loss:0.074870
Epoch [1/10], Iter [1215/3125], train_loss:0.095798
Epoch [1/10], Iter [1216/3125], train_loss:0.058114
Epoch [1/10], Iter [1217/3125], train_loss:0.067285
Epoch [1/10], Iter [1218/3125], train_loss:0.076193
Epoch [1/10], Iter [1219/3125], train_loss:0.069693
Epoch [1/10], Iter [1220/3125], train_loss:0.072604
Epoch [1/10], Iter [1221/3125], train_loss:0.064588
Epoch [1/10], Iter [1222/3125], train_loss:0.070116
Epoch [1/10], Iter [1223/3125], train_loss:0.078694
Epoch [1/10], Iter [1224/3125], train_loss:0.073832
Epoch [1/10], Iter [1225/3125], train_loss:0.057916
Epoch [1/10], Iter [1226/3125], train_loss:0.074006
Epoch [1/10], Iter [1227/3125], train_loss:0.094362
Epoch [1/10], Iter [1228/3125], train_loss:0.052954
Epoch [1/10], Iter [1229/3125], train_loss:0.066249
Epoch [1/10], Iter [1230/3125], train_loss:0.037475
Epoch [1/10], Iter [1231/3125], train_loss:0.037161
Epoch [1/10], Iter [1232/3125], train_loss:0.080392
Epoch [1/10], Iter [1233/3125], train_loss:0.064337
Epoch [1/10], Iter [1234/3125], train_loss:0.036732
Epoch [1/10], Iter [1235/3125], train_loss:0.080269
Epoch [1/10], Iter [1236/3125], train_loss:0.073352
Epoch [1/10], Iter [1237/3125], train_loss:0.071526
Epoch [1/10], Iter [1238/3125], train_loss:0.064553
Epoch [1/10], Iter [1239/3125], train_loss:0.094893
Epoch [1/10], Iter [1240/3125], train_loss:0.061000
Epoch [1/10], Iter [1241/3125], train_loss:0.069262
Epoch [1/10], Iter [1242/3125], train_loss:0.079779
Epoch [1/10], Iter [1243/3125], train_loss:0.066429
Epoch [1/10], Iter [1244/3125], train_loss:0.046146
Epoch [1/10], Iter [1245/3125], train_loss:0.054782
Epoch [1/10], Iter [1246/3125], train_loss:0.080050
Epoch [1/10], Iter [1247/3125], train_loss:0.081471
Epoch [1/10], Iter [1248/3125], train_loss:0.065746
Epoch [1/10], Iter [1249/3125], train_loss:0.037090
Epoch [1/10], Iter [1250/3125], train_loss:0.076876
Epoch [1/10], Iter [1251/3125], train_loss:0.051030
Epoch [1/10], Iter [1252/3125], train_loss:0.042274
Epoch [1/10], Iter [1253/3125], train_loss:0.068953
Epoch [1/10], Iter [1254/3125], train_loss:0.077853
Epoch [1/10], Iter [1255/3125], train_loss:0.078600
Epoch [1/10], Iter [1256/3125], train_loss:0.029034
Epoch [1/10], Iter [1257/3125], train_loss:0.067805
Epoch [1/10], Iter [1258/3125], train_loss:0.105204
Epoch [1/10], Iter [1259/3125], train_loss:0.044573
Epoch [1/10], Iter [1260/3125], train_loss:0.098438
Epoch [1/10], Iter [1261/3125], train_loss:0.044922
Epoch [1/10], Iter [1262/3125], train_loss:0.077494
Epoch [1/10], Iter [1263/3125], train_loss:0.068515
Epoch [1/10], Iter [1264/3125], train_loss:0.082361
Epoch [1/10], Iter [1265/3125], train_loss:0.065620
Epoch [1/10], Iter [1266/3125], train_loss:0.061101
Epoch [1/10], Iter [1267/3125], train_loss:0.072236
Epoch [1/10], Iter [1268/3125], train_loss:0.057902
Epoch [1/10], Iter [1269/3125], train_loss:0.078264
Epoch [1/10], Iter [1270/3125], train_loss:0.053628
Epoch [1/10], Iter [1271/3125], train_loss:0.076903
Epoch [1/10], Iter [1272/3125], train_loss:0.055117
Epoch [1/10], Iter [1273/3125], train_loss:0.122055
Epoch [1/10], Iter [1274/3125], train_loss:0.041958
Epoch [1/10], Iter [1275/3125], train_loss:0.110160
Epoch [1/10], Iter [1276/3125], train_loss:0.080354
Epoch [1/10], Iter [1277/3125], train_loss:0.036007
Epoch [1/10], Iter [1278/3125], train_loss:0.051821
Epoch [1/10], Iter [1279/3125], train_loss:0.103632
Epoch [1/10], Iter [1280/3125], train_loss:0.105166
Epoch [1/10], Iter [1281/3125], train_loss:0.068429
Epoch [1/10], Iter [1282/3125], train_loss:0.072354
Epoch [1/10], Iter [1283/3125], train_loss:0.058038
Epoch [1/10], Iter [1284/3125], train_loss:0.071881
Epoch [1/10], Iter [1285/3125], train_loss:0.033587
Epoch [1/10], Iter [1286/3125], train_loss:0.041231
Epoch [1/10], Iter [1287/3125], train_loss:0.072158
Epoch [1/10], Iter [1288/3125], train_loss:0.037460
Epoch [1/10], Iter [1289/3125], train_loss:0.052904
Epoch [1/10], Iter [1290/3125], train_loss:0.051290
Epoch [1/10], Iter [1291/3125], train_loss:0.076521
Epoch [1/10], Iter [1292/3125], train_loss:0.045308
Epoch [1/10], Iter [1293/3125], train_loss:0.077797
Epoch [1/10], Iter [1294/3125], train_loss:0.050401
Epoch [1/10], Iter [1295/3125], train_loss:0.054285
Epoch [1/10], Iter [1296/3125], train_loss:0.071456
Epoch [1/10], Iter [1297/3125], train_loss:0.069530
Epoch [1/10], Iter [1298/3125], train_loss:0.063551
Epoch [1/10], Iter [1299/3125], train_loss:0.060730
Epoch [1/10], Iter [1300/3125], train_loss:0.054880
Epoch [1/10], Iter [1301/3125], train_loss:0.049532
Epoch [1/10], Iter [1302/3125], train_loss:0.069171
Epoch [1/10], Iter [1303/3125], train_loss:0.061904
Epoch [1/10], Iter [1304/3125], train_loss:0.047012
Epoch [1/10], Iter [1305/3125], train_loss:0.045866
Epoch [1/10], Iter [1306/3125], train_loss:0.042385
Epoch [1/10], Iter [1307/3125], train_loss:0.050176
Epoch [1/10], Iter [1308/3125], train_loss:0.082048
Epoch [1/10], Iter [1309/3125], train_loss:0.042563
Epoch [1/10], Iter [1310/3125], train_loss:0.078971
Epoch [1/10], Iter [1311/3125], train_loss:0.086524
Epoch [1/10], Iter [1312/3125], train_loss:0.056474
Epoch [1/10], Iter [1313/3125], train_loss:0.037732
Epoch [1/10], Iter [1314/3125], train_loss:0.078819
Epoch [1/10], Iter [1315/3125], train_loss:0.082700
Epoch [1/10], Iter [1316/3125], train_loss:0.092105
Epoch [1/10], Iter [1317/3125], train_loss:0.059939
Epoch [1/10], Iter [1318/3125], train_loss:0.073690
Epoch [1/10], Iter [1319/3125], train_loss:0.049467
Epoch [1/10], Iter [1320/3125], train_loss:0.086146
Epoch [1/10], Iter [1321/3125], train_loss:0.061879
Epoch [1/10], Iter [1322/3125], train_loss:0.093417
Epoch [1/10], Iter [1323/3125], train_loss:0.041446
Epoch [1/10], Iter [1324/3125], train_loss:0.055495
Epoch [1/10], Iter [1325/3125], train_loss:0.061338
Epoch [1/10], Iter [1326/3125], train_loss:0.057086
Epoch [1/10], Iter [1327/3125], train_loss:0.051174
Epoch [1/10], Iter [1328/3125], train_loss:0.054015
Epoch [1/10], Iter [1329/3125], train_loss:0.061765
Epoch [1/10], Iter [1330/3125], train_loss:0.066730
Epoch [1/10], Iter [1331/3125], train_loss:0.054490
Epoch [1/10], Iter [1332/3125], train_loss:0.057822
Epoch [1/10], Iter [1333/3125], train_loss:0.063132
Epoch [1/10], Iter [1334/3125], train_loss:0.069564
Epoch [1/10], Iter [1335/3125], train_loss:0.044150
Epoch [1/10], Iter [1336/3125], train_loss:0.080780
Epoch [1/10], Iter [1337/3125], train_loss:0.058406
Epoch [1/10], Iter [1338/3125], train_loss:0.049550
Epoch [1/10], Iter [1339/3125], train_loss:0.044474
Epoch [1/10], Iter [1340/3125], train_loss:0.055215
Epoch [1/10], Iter [1341/3125], train_loss:0.097746
Epoch [1/10], Iter [1342/3125], train_loss:0.071166
Epoch [1/10], Iter [1343/3125], train_loss:0.050535
Epoch [1/10], Iter [1344/3125], train_loss:0.065595
Epoch [1/10], Iter [1345/3125], train_loss:0.069312
Epoch [1/10], Iter [1346/3125], train_loss:0.068984
Epoch [1/10], Iter [1347/3125], train_loss:0.114133
Epoch [1/10], Iter [1348/3125], train_loss:0.053902
Epoch [1/10], Iter [1349/3125], train_loss:0.039486
Epoch [1/10], Iter [1350/3125], train_loss:0.077412
Epoch [1/10], Iter [1351/3125], train_loss:0.105866
Epoch [1/10], Iter [1352/3125], train_loss:0.036934
Epoch [1/10], Iter [1353/3125], train_loss:0.028790
Epoch [1/10], Iter [1354/3125], train_loss:0.044115
Epoch [1/10], Iter [1355/3125], train_loss:0.050180
Epoch [1/10], Iter [1356/3125], train_loss:0.035173
Epoch [1/10], Iter [1357/3125], train_loss:0.066359
Epoch [1/10], Iter [1358/3125], train_loss:0.061649
Epoch [1/10], Iter [1359/3125], train_loss:0.090383
Epoch [1/10], Iter [1360/3125], train_loss:0.094560
Epoch [1/10], Iter [1361/3125], train_loss:0.051187
Epoch [1/10], Iter [1362/3125], train_loss:0.051535
Epoch [1/10], Iter [1363/3125], train_loss:0.086489
Epoch [1/10], Iter [1364/3125], train_loss:0.064312
Epoch [1/10], Iter [1365/3125], train_loss:0.035589
Epoch [1/10], Iter [1366/3125], train_loss:0.074556
Epoch [1/10], Iter [1367/3125], train_loss:0.095972
Epoch [1/10], Iter [1368/3125], train_loss:0.079113
Epoch [1/10], Iter [1369/3125], train_loss:0.075476
Epoch [1/10], Iter [1370/3125], train_loss:0.055053
Epoch [1/10], Iter [1371/3125], train_loss:0.036419
Epoch [1/10], Iter [1372/3125], train_loss:0.082008
Epoch [1/10], Iter [1373/3125], train_loss:0.035035
Epoch [1/10], Iter [1374/3125], train_loss:0.061965
Epoch [1/10], Iter [1375/3125], train_loss:0.090616
Epoch [1/10], Iter [1376/3125], train_loss:0.071584
Epoch [1/10], Iter [1377/3125], train_loss:0.062969
Epoch [1/10], Iter [1378/3125], train_loss:0.049597
Epoch [1/10], Iter [1379/3125], train_loss:0.042371
Epoch [1/10], Iter [1380/3125], train_loss:0.058470
Epoch [1/10], Iter [1381/3125], train_loss:0.089132
Epoch [1/10], Iter [1382/3125], train_loss:0.042923
Epoch [1/10], Iter [1383/3125], train_loss:0.066922
Epoch [1/10], Iter [1384/3125], train_loss:0.055818
Epoch [1/10], Iter [1385/3125], train_loss:0.077349
Epoch [1/10], Iter [1386/3125], train_loss:0.034871
Epoch [1/10], Iter [1387/3125], train_loss:0.034735
Epoch [1/10], Iter [1388/3125], train_loss:0.041610
Epoch [1/10], Iter [1389/3125], train_loss:0.078672
Epoch [1/10], Iter [1390/3125], train_loss:0.079922
Epoch [1/10], Iter [1391/3125], train_loss:0.053695
Epoch [1/10], Iter [1392/3125], train_loss:0.094359
Epoch [1/10], Iter [1393/3125], train_loss:0.066231
Epoch [1/10], Iter [1394/3125], train_loss:0.053103
Epoch [1/10], Iter [1395/3125], train_loss:0.054961
Epoch [1/10], Iter [1396/3125], train_loss:0.069908
Epoch [1/10], Iter [1397/3125], train_loss:0.036498
Epoch [1/10], Iter [1398/3125], train_loss:0.070611
Epoch [1/10], Iter [1399/3125], train_loss:0.046233
Epoch [1/10], Iter [1400/3125], train_loss:0.045637
Epoch [1/10], Iter [1401/3125], train_loss:0.026635
Epoch [1/10], Iter [1402/3125], train_loss:0.051463
Epoch [1/10], Iter [1403/3125], train_loss:0.072863
Epoch [1/10], Iter [1404/3125], train_loss:0.039532
Epoch [1/10], Iter [1405/3125], train_loss:0.094029
Epoch [1/10], Iter [1406/3125], train_loss:0.107056
Epoch [1/10], Iter [1407/3125], train_loss:0.068884
Epoch [1/10], Iter [1408/3125], train_loss:0.045376
Epoch [1/10], Iter [1409/3125], train_loss:0.035768
Epoch [1/10], Iter [1410/3125], train_loss:0.058423
Epoch [1/10], Iter [1411/3125], train_loss:0.105580
Epoch [1/10], Iter [1412/3125], train_loss:0.059442
Epoch [1/10], Iter [1413/3125], train_loss:0.056727
Epoch [1/10], Iter [1414/3125], train_loss:0.046670
Epoch [1/10], Iter [1415/3125], train_loss:0.052132
Epoch [1/10], Iter [1416/3125], train_loss:0.086853
Epoch [1/10], Iter [1417/3125], train_loss:0.053923
Epoch [1/10], Iter [1418/3125], train_loss:0.043211
Epoch [1/10], Iter [1419/3125], train_loss:0.042907
Epoch [1/10], Iter [1420/3125], train_loss:0.044250
Epoch [1/10], Iter [1421/3125], train_loss:0.084763
Epoch [1/10], Iter [1422/3125], train_loss:0.063013
Epoch [1/10], Iter [1423/3125], train_loss:0.031712
Epoch [1/10], Iter [1424/3125], train_loss:0.066372
Epoch [1/10], Iter [1425/3125], train_loss:0.079808
Epoch [1/10], Iter [1426/3125], train_loss:0.070664
Epoch [1/10], Iter [1427/3125], train_loss:0.042726
Epoch [1/10], Iter [1428/3125], train_loss:0.047623
Epoch [1/10], Iter [1429/3125], train_loss:0.054263
Epoch [1/10], Iter [1430/3125], train_loss:0.065956
Epoch [1/10], Iter [1431/3125], train_loss:0.067826
Epoch [1/10], Iter [1432/3125], train_loss:0.049903
Epoch [1/10], Iter [1433/3125], train_loss:0.058264
Epoch [1/10], Iter [1434/3125], train_loss:0.082112
Epoch [1/10], Iter [1435/3125], train_loss:0.048372
Epoch [1/10], Iter [1436/3125], train_loss:0.089613
Epoch [1/10], Iter [1437/3125], train_loss:0.070496
Epoch [1/10], Iter [1438/3125], train_loss:0.048467
Epoch [1/10], Iter [1439/3125], train_loss:0.048719
Epoch [1/10], Iter [1440/3125], train_loss:0.051029
Epoch [1/10], Iter [1441/3125], train_loss:0.066726
Epoch [1/10], Iter [1442/3125], train_loss:0.074743
Epoch [1/10], Iter [1443/3125], train_loss:0.062530
Epoch [1/10], Iter [1444/3125], train_loss:0.031921
Epoch [1/10], Iter [1445/3125], train_loss:0.082468
Epoch [1/10], Iter [1446/3125], train_loss:0.066029
Epoch [1/10], Iter [1447/3125], train_loss:0.079104
Epoch [1/10], Iter [1448/3125], train_loss:0.050547
Epoch [1/10], Iter [1449/3125], train_loss:0.070847
Epoch [1/10], Iter [1450/3125], train_loss:0.066685
Epoch [1/10], Iter [1451/3125], train_loss:0.062502
Epoch [1/10], Iter [1452/3125], train_loss:0.039792
Epoch [1/10], Iter [1453/3125], train_loss:0.074898
Epoch [1/10], Iter [1454/3125], train_loss:0.082731
Epoch [1/10], Iter [1455/3125], train_loss:0.051062
Epoch [1/10], Iter [1456/3125], train_loss:0.081949
Epoch [1/10], Iter [1457/3125], train_loss:0.048781
Epoch [1/10], Iter [1458/3125], train_loss:0.031672
Epoch [1/10], Iter [1459/3125], train_loss:0.081797
Epoch [1/10], Iter [1460/3125], train_loss:0.043624
Epoch [1/10], Iter [1461/3125], train_loss:0.042655
Epoch [1/10], Iter [1462/3125], train_loss:0.065425
Epoch [1/10], Iter [1463/3125], train_loss:0.051312
Epoch [1/10], Iter [1464/3125], train_loss:0.069975
Epoch [1/10], Iter [1465/3125], train_loss:0.054417
Epoch [1/10], Iter [1466/3125], train_loss:0.068450
Epoch [1/10], Iter [1467/3125], train_loss:0.055852
Epoch [1/10], Iter [1468/3125], train_loss:0.056495
Epoch [1/10], Iter [1469/3125], train_loss:0.048216
Epoch [1/10], Iter [1470/3125], train_loss:0.116062
Epoch [1/10], Iter [1471/3125], train_loss:0.076963
Epoch [1/10], Iter [1472/3125], train_loss:0.061780
Epoch [1/10], Iter [1473/3125], train_loss:0.057824
Epoch [1/10], Iter [1474/3125], train_loss:0.051863
Epoch [1/10], Iter [1475/3125], train_loss:0.064877
Epoch [1/10], Iter [1476/3125], train_loss:0.026023
Epoch [1/10], Iter [1477/3125], train_loss:0.071512
Epoch [1/10], Iter [1478/3125], train_loss:0.046893
Epoch [1/10], Iter [1479/3125], train_loss:0.086675
Epoch [1/10], Iter [1480/3125], train_loss:0.056367
Epoch [1/10], Iter [1481/3125], train_loss:0.086944
Epoch [1/10], Iter [1482/3125], train_loss:0.059426
Epoch [1/10], Iter [1483/3125], train_loss:0.062180
Epoch [1/10], Iter [1484/3125], train_loss:0.036093
Epoch [1/10], Iter [1485/3125], train_loss:0.053832
Epoch [1/10], Iter [1486/3125], train_loss:0.059764
Epoch [1/10], Iter [1487/3125], train_loss:0.069709
Epoch [1/10], Iter [1488/3125], train_loss:0.058866
Epoch [1/10], Iter [1489/3125], train_loss:0.042857
Epoch [1/10], Iter [1490/3125], train_loss:0.051318
Epoch [1/10], Iter [1491/3125], train_loss:0.046036
Epoch [1/10], Iter [1492/3125], train_loss:0.067652
Epoch [1/10], Iter [1493/3125], train_loss:0.068058
Epoch [1/10], Iter [1494/3125], train_loss:0.058382
Epoch [1/10], Iter [1495/3125], train_loss:0.071653
Epoch [1/10], Iter [1496/3125], train_loss:0.030701
Epoch [1/10], Iter [1497/3125], train_loss:0.085657
Epoch [1/10], Iter [1498/3125], train_loss:0.051193
Epoch [1/10], Iter [1499/3125], train_loss:0.047368
Epoch [1/10], Iter [1500/3125], train_loss:0.056843
Epoch [1/10], Iter [1501/3125], train_loss:0.077672
Epoch [1/10], Iter [1502/3125], train_loss:0.046002
Epoch [1/10], Iter [1503/3125], train_loss:0.050379
Epoch [1/10], Iter [1504/3125], train_loss:0.067272
Epoch [1/10], Iter [1505/3125], train_loss:0.039557
Epoch [1/10], Iter [1506/3125], train_loss:0.072687
Epoch [1/10], Iter [1507/3125], train_loss:0.049326
Epoch [1/10], Iter [1508/3125], train_loss:0.072209
Epoch [1/10], Iter [1509/3125], train_loss:0.092582
Epoch [1/10], Iter [1510/3125], train_loss:0.049500
Epoch [1/10], Iter [1511/3125], train_loss:0.037127
Epoch [1/10], Iter [1512/3125], train_loss:0.062338
Epoch [1/10], Iter [1513/3125], train_loss:0.047520
Epoch [1/10], Iter [1514/3125], train_loss:0.069938
Epoch [1/10], Iter [1515/3125], train_loss:0.058069
Epoch [1/10], Iter [1516/3125], train_loss:0.070114
Epoch [1/10], Iter [1517/3125], train_loss:0.071238
Epoch [1/10], Iter [1518/3125], train_loss:0.036374
Epoch [1/10], Iter [1519/3125], train_loss:0.067921
Epoch [1/10], Iter [1520/3125], train_loss:0.103123
Epoch [1/10], Iter [1521/3125], train_loss:0.084642
Epoch [1/10], Iter [1522/3125], train_loss:0.052527
Epoch [1/10], Iter [1523/3125], train_loss:0.060209
Epoch [1/10], Iter [1524/3125], train_loss:0.078986
Epoch [1/10], Iter [1525/3125], train_loss:0.055619
Epoch [1/10], Iter [1526/3125], train_loss:0.035694
Epoch [1/10], Iter [1527/3125], train_loss:0.067099
Epoch [1/10], Iter [1528/3125], train_loss:0.058410
Epoch [1/10], Iter [1529/3125], train_loss:0.073605
Epoch [1/10], Iter [1530/3125], train_loss:0.048546
Epoch [1/10], Iter [1531/3125], train_loss:0.059657
Epoch [1/10], Iter [1532/3125], train_loss:0.064168
Epoch [1/10], Iter [1533/3125], train_loss:0.037178
Epoch [1/10], Iter [1534/3125], train_loss:0.053720
Epoch [1/10], Iter [1535/3125], train_loss:0.076513
Epoch [1/10], Iter [1536/3125], train_loss:0.058834
Epoch [1/10], Iter [1537/3125], train_loss:0.071573
Epoch [1/10], Iter [1538/3125], train_loss:0.060269
Epoch [1/10], Iter [1539/3125], train_loss:0.052749
Epoch [1/10], Iter [1540/3125], train_loss:0.037708
Epoch [1/10], Iter [1541/3125], train_loss:0.066439
Epoch [1/10], Iter [1542/3125], train_loss:0.090691
Epoch [1/10], Iter [1543/3125], train_loss:0.056245
Epoch [1/10], Iter [1544/3125], train_loss:0.055924
Epoch [1/10], Iter [1545/3125], train_loss:0.041803
Epoch [1/10], Iter [1546/3125], train_loss:0.048068
Epoch [1/10], Iter [1547/3125], train_loss:0.036092
Epoch [1/10], Iter [1548/3125], train_loss:0.043875
Epoch [1/10], Iter [1549/3125], train_loss:0.079322
Epoch [1/10], Iter [1550/3125], train_loss:0.039852
Epoch [1/10], Iter [1551/3125], train_loss:0.103905
Epoch [1/10], Iter [1552/3125], train_loss:0.091744
Epoch [1/10], Iter [1553/3125], train_loss:0.055681
Epoch [1/10], Iter [1554/3125], train_loss:0.092191
Epoch [1/10], Iter [1555/3125], train_loss:0.062235
Epoch [1/10], Iter [1556/3125], train_loss:0.057970
Epoch [1/10], Iter [1557/3125], train_loss:0.067547
Epoch [1/10], Iter [1558/3125], train_loss:0.055146
Epoch [1/10], Iter [1559/3125], train_loss:0.054776
Epoch [1/10], Iter [1560/3125], train_loss:0.027517
Epoch [1/10], Iter [1561/3125], train_loss:0.072663
Epoch [1/10], Iter [1562/3125], train_loss:0.058465
Epoch [1/10], Iter [1563/3125], train_loss:0.046655
Epoch [1/10], Iter [1564/3125], train_loss:0.119325
Epoch [1/10], Iter [1565/3125], train_loss:0.054731
Epoch [1/10], Iter [1566/3125], train_loss:0.081642
Epoch [1/10], Iter [1567/3125], train_loss:0.048881
Epoch [1/10], Iter [1568/3125], train_loss:0.058173
Epoch [1/10], Iter [1569/3125], train_loss:0.069358
Epoch [1/10], Iter [1570/3125], train_loss:0.061475
Epoch [1/10], Iter [1571/3125], train_loss:0.065325
Epoch [1/10], Iter [1572/3125], train_loss:0.070670
Epoch [1/10], Iter [1573/3125], train_loss:0.081902
Epoch [1/10], Iter [1574/3125], train_loss:0.049094
Epoch [1/10], Iter [1575/3125], train_loss:0.056214
Epoch [1/10], Iter [1576/3125], train_loss:0.069279
Epoch [1/10], Iter [1577/3125], train_loss:0.056715
Epoch [1/10], Iter [1578/3125], train_loss:0.099390
Epoch [1/10], Iter [1579/3125], train_loss:0.051443
Epoch [1/10], Iter [1580/3125], train_loss:0.066337
Epoch [1/10], Iter [1581/3125], train_loss:0.032681
Epoch [1/10], Iter [1582/3125], train_loss:0.036135
Epoch [1/10], Iter [1583/3125], train_loss:0.133781
Epoch [1/10], Iter [1584/3125], train_loss:0.039585
Epoch [1/10], Iter [1585/3125], train_loss:0.040581
Epoch [1/10], Iter [1586/3125], train_loss:0.045098
Epoch [1/10], Iter [1587/3125], train_loss:0.079372
Epoch [1/10], Iter [1588/3125], train_loss:0.083663
Epoch [1/10], Iter [1589/3125], train_loss:0.057084
Epoch [1/10], Iter [1590/3125], train_loss:0.070563
Epoch [1/10], Iter [1591/3125], train_loss:0.065010
Epoch [1/10], Iter [1592/3125], train_loss:0.047786
Epoch [1/10], Iter [1593/3125], train_loss:0.060590
Epoch [1/10], Iter [1594/3125], train_loss:0.081765
Epoch [1/10], Iter [1595/3125], train_loss:0.056855
Epoch [1/10], Iter [1596/3125], train_loss:0.039855
Epoch [1/10], Iter [1597/3125], train_loss:0.046420
Epoch [1/10], Iter [1598/3125], train_loss:0.043999
Epoch [1/10], Iter [1599/3125], train_loss:0.046221
Epoch [1/10], Iter [1600/3125], train_loss:0.064322
Epoch [1/10], Iter [1601/3125], train_loss:0.026215
Epoch [1/10], Iter [1602/3125], train_loss:0.035398
Epoch [1/10], Iter [1603/3125], train_loss:0.082975
Epoch [1/10], Iter [1604/3125], train_loss:0.069643
Epoch [1/10], Iter [1605/3125], train_loss:0.074299
Epoch [1/10], Iter [1606/3125], train_loss:0.036288
Epoch [1/10], Iter [1607/3125], train_loss:0.089655
Epoch [1/10], Iter [1608/3125], train_loss:0.052850
Epoch [1/10], Iter [1609/3125], train_loss:0.103227
Epoch [1/10], Iter [1610/3125], train_loss:0.021318
Epoch [1/10], Iter [1611/3125], train_loss:0.053062
Epoch [1/10], Iter [1612/3125], train_loss:0.064742
Epoch [1/10], Iter [1613/3125], train_loss:0.041883
Epoch [1/10], Iter [1614/3125], train_loss:0.046411
Epoch [1/10], Iter [1615/3125], train_loss:0.058942
Epoch [1/10], Iter [1616/3125], train_loss:0.044977
Epoch [1/10], Iter [1617/3125], train_loss:0.041410
Epoch [1/10], Iter [1618/3125], train_loss:0.084004
Epoch [1/10], Iter [1619/3125], train_loss:0.064973
Epoch [1/10], Iter [1620/3125], train_loss:0.083455
Epoch [1/10], Iter [1621/3125], train_loss:0.061671
Epoch [1/10], Iter [1622/3125], train_loss:0.040480
Epoch [1/10], Iter [1623/3125], train_loss:0.058023
Epoch [1/10], Iter [1624/3125], train_loss:0.059297
Epoch [1/10], Iter [1625/3125], train_loss:0.056020
Epoch [1/10], Iter [1626/3125], train_loss:0.070588
Epoch [1/10], Iter [1627/3125], train_loss:0.057357
Epoch [1/10], Iter [1628/3125], train_loss:0.056434
Epoch [1/10], Iter [1629/3125], train_loss:0.063109
Epoch [1/10], Iter [1630/3125], train_loss:0.088339
Epoch [1/10], Iter [1631/3125], train_loss:0.098464
Epoch [1/10], Iter [1632/3125], train_loss:0.085437
Epoch [1/10], Iter [1633/3125], train_loss:0.056909
Epoch [1/10], Iter [1634/3125], train_loss:0.044746
Epoch [1/10], Iter [1635/3125], train_loss:0.058112
Epoch [1/10], Iter [1636/3125], train_loss:0.051674
Epoch [1/10], Iter [1637/3125], train_loss:0.073020
Epoch [1/10], Iter [1638/3125], train_loss:0.054744
Epoch [1/10], Iter [1639/3125], train_loss:0.020978
Epoch [1/10], Iter [1640/3125], train_loss:0.040359
Epoch [1/10], Iter [1641/3125], train_loss:0.078304
Epoch [1/10], Iter [1642/3125], train_loss:0.042950
Epoch [1/10], Iter [1643/3125], train_loss:0.035843
Epoch [1/10], Iter [1644/3125], train_loss:0.075233
Epoch [1/10], Iter [1645/3125], train_loss:0.057683
Epoch [1/10], Iter [1646/3125], train_loss:0.058583
Epoch [1/10], Iter [1647/3125], train_loss:0.054886
Epoch [1/10], Iter [1648/3125], train_loss:0.074777
Epoch [1/10], Iter [1649/3125], train_loss:0.035126
Epoch [1/10], Iter [1650/3125], train_loss:0.030282
Epoch [1/10], Iter [1651/3125], train_loss:0.065689
Epoch [1/10], Iter [1652/3125], train_loss:0.038346
Epoch [1/10], Iter [1653/3125], train_loss:0.077780
Epoch [1/10], Iter [1654/3125], train_loss:0.057102
Epoch [1/10], Iter [1655/3125], train_loss:0.054383
Epoch [1/10], Iter [1656/3125], train_loss:0.033800
Epoch [1/10], Iter [1657/3125], train_loss:0.047648
Epoch [1/10], Iter [1658/3125], train_loss:0.040589
Epoch [1/10], Iter [1659/3125], train_loss:0.057799
Epoch [1/10], Iter [1660/3125], train_loss:0.060077
Epoch [1/10], Iter [1661/3125], train_loss:0.045393
Epoch [1/10], Iter [1662/3125], train_loss:0.051922
Epoch [1/10], Iter [1663/3125], train_loss:0.122704
Epoch [1/10], Iter [1664/3125], train_loss:0.048353
Epoch [1/10], Iter [1665/3125], train_loss:0.021179
Epoch [1/10], Iter [1666/3125], train_loss:0.076526
Epoch [1/10], Iter [1667/3125], train_loss:0.079436
Epoch [1/10], Iter [1668/3125], train_loss:0.039214
Epoch [1/10], Iter [1669/3125], train_loss:0.042830
Epoch [1/10], Iter [1670/3125], train_loss:0.042728
Epoch [1/10], Iter [1671/3125], train_loss:0.048967
Epoch [1/10], Iter [1672/3125], train_loss:0.054698
Epoch [1/10], Iter [1673/3125], train_loss:0.041978
Epoch [1/10], Iter [1674/3125], train_loss:0.073049
Epoch [1/10], Iter [1675/3125], train_loss:0.037080
Epoch [1/10], Iter [1676/3125], train_loss:0.027289
Epoch [1/10], Iter [1677/3125], train_loss:0.060551
Epoch [1/10], Iter [1678/3125], train_loss:0.045196
Epoch [1/10], Iter [1679/3125], train_loss:0.080010
Epoch [1/10], Iter [1680/3125], train_loss:0.053764
Epoch [1/10], Iter [1681/3125], train_loss:0.073596
Epoch [1/10], Iter [1682/3125], train_loss:0.070110
Epoch [1/10], Iter [1683/3125], train_loss:0.047264
Epoch [1/10], Iter [1684/3125], train_loss:0.061473
Epoch [1/10], Iter [1685/3125], train_loss:0.041371
Epoch [1/10], Iter [1686/3125], train_loss:0.049107
Epoch [1/10], Iter [1687/3125], train_loss:0.051743
Epoch [1/10], Iter [1688/3125], train_loss:0.109640
Epoch [1/10], Iter [1689/3125], train_loss:0.048228
Epoch [1/10], Iter [1690/3125], train_loss:0.050521
Epoch [1/10], Iter [1691/3125], train_loss:0.079257
Epoch [1/10], Iter [1692/3125], train_loss:0.042919
Epoch [1/10], Iter [1693/3125], train_loss:0.058962
Epoch [1/10], Iter [1694/3125], train_loss:0.072977
Epoch [1/10], Iter [1695/3125], train_loss:0.029940
Epoch [1/10], Iter [1696/3125], train_loss:0.072861
Epoch [1/10], Iter [1697/3125], train_loss:0.075670
Epoch [1/10], Iter [1698/3125], train_loss:0.065588
Epoch [1/10], Iter [1699/3125], train_loss:0.067763
Epoch [1/10], Iter [1700/3125], train_loss:0.037320
Epoch [1/10], Iter [1701/3125], train_loss:0.084554
Epoch [1/10], Iter [1702/3125], train_loss:0.046403
Epoch [1/10], Iter [1703/3125], train_loss:0.040859
Epoch [1/10], Iter [1704/3125], train_loss:0.058458
Epoch [1/10], Iter [1705/3125], train_loss:0.066891
Epoch [1/10], Iter [1706/3125], train_loss:0.100955
Epoch [1/10], Iter [1707/3125], train_loss:0.062376
Epoch [1/10], Iter [1708/3125], train_loss:0.068730
Epoch [1/10], Iter [1709/3125], train_loss:0.038045
Epoch [1/10], Iter [1710/3125], train_loss:0.060304
Epoch [1/10], Iter [1711/3125], train_loss:0.046575
Epoch [1/10], Iter [1712/3125], train_loss:0.048462
Epoch [1/10], Iter [1713/3125], train_loss:0.072498
Epoch [1/10], Iter [1714/3125], train_loss:0.052895
Epoch [1/10], Iter [1715/3125], train_loss:0.065395
Epoch [1/10], Iter [1716/3125], train_loss:0.076119
Epoch [1/10], Iter [1717/3125], train_loss:0.084909
Epoch [1/10], Iter [1718/3125], train_loss:0.058882
Epoch [1/10], Iter [1719/3125], train_loss:0.064582
Epoch [1/10], Iter [1720/3125], train_loss:0.056367
Epoch [1/10], Iter [1721/3125], train_loss:0.059624
Epoch [1/10], Iter [1722/3125], train_loss:0.058548
Epoch [1/10], Iter [1723/3125], train_loss:0.071492
Epoch [1/10], Iter [1724/3125], train_loss:0.087462
Epoch [1/10], Iter [1725/3125], train_loss:0.038312
Epoch [1/10], Iter [1726/3125], train_loss:0.039811
Epoch [1/10], Iter [1727/3125], train_loss:0.047398
Epoch [1/10], Iter [1728/3125], train_loss:0.054377
Epoch [1/10], Iter [1729/3125], train_loss:0.061826
Epoch [1/10], Iter [1730/3125], train_loss:0.051879
Epoch [1/10], Iter [1731/3125], train_loss:0.105766
Epoch [1/10], Iter [1732/3125], train_loss:0.058592
Epoch [1/10], Iter [1733/3125], train_loss:0.058135
Epoch [1/10], Iter [1734/3125], train_loss:0.077106
Epoch [1/10], Iter [1735/3125], train_loss:0.053300
Epoch [1/10], Iter [1736/3125], train_loss:0.099648
Epoch [1/10], Iter [1737/3125], train_loss:0.038420
Epoch [1/10], Iter [1738/3125], train_loss:0.074359
Epoch [1/10], Iter [1739/3125], train_loss:0.075496
Epoch [1/10], Iter [1740/3125], train_loss:0.026707
Epoch [1/10], Iter [1741/3125], train_loss:0.051810
Epoch [1/10], Iter [1742/3125], train_loss:0.061063
Epoch [1/10], Iter [1743/3125], train_loss:0.070292
Epoch [1/10], Iter [1744/3125], train_loss:0.042350
Epoch [1/10], Iter [1745/3125], train_loss:0.059614
Epoch [1/10], Iter [1746/3125], train_loss:0.025684
Epoch [1/10], Iter [1747/3125], train_loss:0.044094
Epoch [1/10], Iter [1748/3125], train_loss:0.039633
Epoch [1/10], Iter [1749/3125], train_loss:0.061609
Epoch [1/10], Iter [1750/3125], train_loss:0.059462
Epoch [1/10], Iter [1751/3125], train_loss:0.085215
Epoch [1/10], Iter [1752/3125], train_loss:0.061459
Epoch [1/10], Iter [1753/3125], train_loss:0.051309
Epoch [1/10], Iter [1754/3125], train_loss:0.055947
Epoch [1/10], Iter [1755/3125], train_loss:0.082786
Epoch [1/10], Iter [1756/3125], train_loss:0.097624
Epoch [1/10], Iter [1757/3125], train_loss:0.061017
Epoch [1/10], Iter [1758/3125], train_loss:0.070072
Epoch [1/10], Iter [1759/3125], train_loss:0.075882
Epoch [1/10], Iter [1760/3125], train_loss:0.039222
Epoch [1/10], Iter [1761/3125], train_loss:0.071271
Epoch [1/10], Iter [1762/3125], train_loss:0.043728
Epoch [1/10], Iter [1763/3125], train_loss:0.060507
Epoch [1/10], Iter [1764/3125], train_loss:0.072506
Epoch [1/10], Iter [1765/3125], train_loss:0.056758
Epoch [1/10], Iter [1766/3125], train_loss:0.043773
Epoch [1/10], Iter [1767/3125], train_loss:0.053143
Epoch [1/10], Iter [1768/3125], train_loss:0.092098
Epoch [1/10], Iter [1769/3125], train_loss:0.027869
Epoch [1/10], Iter [1770/3125], train_loss:0.057473
Epoch [1/10], Iter [1771/3125], train_loss:0.060365
Epoch [1/10], Iter [1772/3125], train_loss:0.040789
Epoch [1/10], Iter [1773/3125], train_loss:0.064049
Epoch [1/10], Iter [1774/3125], train_loss:0.063056
Epoch [1/10], Iter [1775/3125], train_loss:0.051557
Epoch [1/10], Iter [1776/3125], train_loss:0.054645
Epoch [1/10], Iter [1777/3125], train_loss:0.039127
Epoch [1/10], Iter [1778/3125], train_loss:0.024407
Epoch [1/10], Iter [1779/3125], train_loss:0.052543
Epoch [1/10], Iter [1780/3125], train_loss:0.046873
Epoch [1/10], Iter [1781/3125], train_loss:0.041262
Epoch [1/10], Iter [1782/3125], train_loss:0.080122
Epoch [1/10], Iter [1783/3125], train_loss:0.050520
Epoch [1/10], Iter [1784/3125], train_loss:0.055967
Epoch [1/10], Iter [1785/3125], train_loss:0.035253
Epoch [1/10], Iter [1786/3125], train_loss:0.079063
Epoch [1/10], Iter [1787/3125], train_loss:0.074867
Epoch [1/10], Iter [1788/3125], train_loss:0.055334
Epoch [1/10], Iter [1789/3125], train_loss:0.057995
Epoch [1/10], Iter [1790/3125], train_loss:0.040717
Epoch [1/10], Iter [1791/3125], train_loss:0.077024
Epoch [1/10], Iter [1792/3125], train_loss:0.050221
Epoch [1/10], Iter [1793/3125], train_loss:0.094391
Epoch [1/10], Iter [1794/3125], train_loss:0.074695
Epoch [1/10], Iter [1795/3125], train_loss:0.058015
Epoch [1/10], Iter [1796/3125], train_loss:0.047358
Epoch [1/10], Iter [1797/3125], train_loss:0.065972
Epoch [1/10], Iter [1798/3125], train_loss:0.045176
Epoch [1/10], Iter [1799/3125], train_loss:0.038734
Epoch [1/10], Iter [1800/3125], train_loss:0.066014
Epoch [1/10], Iter [1801/3125], train_loss:0.046584
Epoch [1/10], Iter [1802/3125], train_loss:0.057352
Epoch [1/10], Iter [1803/3125], train_loss:0.036245
Epoch [1/10], Iter [1804/3125], train_loss:0.040863
Epoch [1/10], Iter [1805/3125], train_loss:0.120763
Epoch [1/10], Iter [1806/3125], train_loss:0.031612
Epoch [1/10], Iter [1807/3125], train_loss:0.073508
Epoch [1/10], Iter [1808/3125], train_loss:0.059417
Epoch [1/10], Iter [1809/3125], train_loss:0.072521
Epoch [1/10], Iter [1810/3125], train_loss:0.063052
Epoch [1/10], Iter [1811/3125], train_loss:0.059529
Epoch [1/10], Iter [1812/3125], train_loss:0.046363
Epoch [1/10], Iter [1813/3125], train_loss:0.073090
Epoch [1/10], Iter [1814/3125], train_loss:0.034225
Epoch [1/10], Iter [1815/3125], train_loss:0.085764
Epoch [1/10], Iter [1816/3125], train_loss:0.046848
Epoch [1/10], Iter [1817/3125], train_loss:0.059717
Epoch [1/10], Iter [1818/3125], train_loss:0.047675
Epoch [1/10], Iter [1819/3125], train_loss:0.084691
Epoch [1/10], Iter [1820/3125], train_loss:0.079962
Epoch [1/10], Iter [1821/3125], train_loss:0.089780
Epoch [1/10], Iter [1822/3125], train_loss:0.060596
Epoch [1/10], Iter [1823/3125], train_loss:0.049416
Epoch [1/10], Iter [1824/3125], train_loss:0.091829
Epoch [1/10], Iter [1825/3125], train_loss:0.086237
Epoch [1/10], Iter [1826/3125], train_loss:0.051125
Epoch [1/10], Iter [1827/3125], train_loss:0.097379
Epoch [1/10], Iter [1828/3125], train_loss:0.102906
Epoch [1/10], Iter [1829/3125], train_loss:0.080723
Epoch [1/10], Iter [1830/3125], train_loss:0.040206
Epoch [1/10], Iter [1831/3125], train_loss:0.059156
Epoch [1/10], Iter [1832/3125], train_loss:0.043076
Epoch [1/10], Iter [1833/3125], train_loss:0.029663
Epoch [1/10], Iter [1834/3125], train_loss:0.051820
Epoch [1/10], Iter [1835/3125], train_loss:0.068084
Epoch [1/10], Iter [1836/3125], train_loss:0.036504
Epoch [1/10], Iter [1837/3125], train_loss:0.048193
Epoch [1/10], Iter [1838/3125], train_loss:0.053339
Epoch [1/10], Iter [1839/3125], train_loss:0.051840
Epoch [1/10], Iter [1840/3125], train_loss:0.019614
Epoch [1/10], Iter [1841/3125], train_loss:0.055469
Epoch [1/10], Iter [1842/3125], train_loss:0.069309
Epoch [1/10], Iter [1843/3125], train_loss:0.077044
Epoch [1/10], Iter [1844/3125], train_loss:0.091119
Epoch [1/10], Iter [1845/3125], train_loss:0.056013
Epoch [1/10], Iter [1846/3125], train_loss:0.052507
Epoch [1/10], Iter [1847/3125], train_loss:0.079659
Epoch [1/10], Iter [1848/3125], train_loss:0.053403
Epoch [1/10], Iter [1849/3125], train_loss:0.077848
Epoch [1/10], Iter [1850/3125], train_loss:0.051112
Epoch [1/10], Iter [1851/3125], train_loss:0.046792
Epoch [1/10], Iter [1852/3125], train_loss:0.041306
Epoch [1/10], Iter [1853/3125], train_loss:0.043293
Epoch [1/10], Iter [1854/3125], train_loss:0.051519
Epoch [1/10], Iter [1855/3125], train_loss:0.055836
Epoch [1/10], Iter [1856/3125], train_loss:0.047736
Epoch [1/10], Iter [1857/3125], train_loss:0.069006
Epoch [1/10], Iter [1858/3125], train_loss:0.046833
Epoch [1/10], Iter [1859/3125], train_loss:0.112520
Epoch [1/10], Iter [1860/3125], train_loss:0.049536
Epoch [1/10], Iter [1861/3125], train_loss:0.054126
Epoch [1/10], Iter [1862/3125], train_loss:0.079082
Epoch [1/10], Iter [1863/3125], train_loss:0.046699
Epoch [1/10], Iter [1864/3125], train_loss:0.042452
Epoch [1/10], Iter [1865/3125], train_loss:0.050977
Epoch [1/10], Iter [1866/3125], train_loss:0.037490
Epoch [1/10], Iter [1867/3125], train_loss:0.044270
Epoch [1/10], Iter [1868/3125], train_loss:0.022775
Epoch [1/10], Iter [1869/3125], train_loss:0.048254
Epoch [1/10], Iter [1870/3125], train_loss:0.047147
Epoch [1/10], Iter [1871/3125], train_loss:0.064558
Epoch [1/10], Iter [1872/3125], train_loss:0.033295
Epoch [1/10], Iter [1873/3125], train_loss:0.037831
Epoch [1/10], Iter [1874/3125], train_loss:0.035450
Epoch [1/10], Iter [1875/3125], train_loss:0.120475
Epoch [1/10], Iter [1876/3125], train_loss:0.065689
Epoch [1/10], Iter [1877/3125], train_loss:0.051821
Epoch [1/10], Iter [1878/3125], train_loss:0.030954
Epoch [1/10], Iter [1879/3125], train_loss:0.055886
Epoch [1/10], Iter [1880/3125], train_loss:0.046567
Epoch [1/10], Iter [1881/3125], train_loss:0.054960
Epoch [1/10], Iter [1882/3125], train_loss:0.060007
Epoch [1/10], Iter [1883/3125], train_loss:0.042093
Epoch [1/10], Iter [1884/3125], train_loss:0.042883
Epoch [1/10], Iter [1885/3125], train_loss:0.072663
Epoch [1/10], Iter [1886/3125], train_loss:0.047739
Epoch [1/10], Iter [1887/3125], train_loss:0.072337
Epoch [1/10], Iter [1888/3125], train_loss:0.032112
Epoch [1/10], Iter [1889/3125], train_loss:0.063742
Epoch [1/10], Iter [1890/3125], train_loss:0.126797
Epoch [1/10], Iter [1891/3125], train_loss:0.060045
Epoch [1/10], Iter [1892/3125], train_loss:0.050613
Epoch [1/10], Iter [1893/3125], train_loss:0.018665
Epoch [1/10], Iter [1894/3125], train_loss:0.118631
Epoch [1/10], Iter [1895/3125], train_loss:0.072257
Epoch [1/10], Iter [1896/3125], train_loss:0.048342
Epoch [1/10], Iter [1897/3125], train_loss:0.053053
Epoch [1/10], Iter [1898/3125], train_loss:0.046766
Epoch [1/10], Iter [1899/3125], train_loss:0.041298
Epoch [1/10], Iter [1900/3125], train_loss:0.039161
Epoch [1/10], Iter [1901/3125], train_loss:0.052756
Epoch [1/10], Iter [1902/3125], train_loss:0.088474
Epoch [1/10], Iter [1903/3125], train_loss:0.054476
Epoch [1/10], Iter [1904/3125], train_loss:0.074824
Epoch [1/10], Iter [1905/3125], train_loss:0.038476
Epoch [1/10], Iter [1906/3125], train_loss:0.034390
Epoch [1/10], Iter [1907/3125], train_loss:0.031541
Epoch [1/10], Iter [1908/3125], train_loss:0.042509
Epoch [1/10], Iter [1909/3125], train_loss:0.048603
Epoch [1/10], Iter [1910/3125], train_loss:0.033619
Epoch [1/10], Iter [1911/3125], train_loss:0.088345
Epoch [1/10], Iter [1912/3125], train_loss:0.073088
Epoch [1/10], Iter [1913/3125], train_loss:0.053431
Epoch [1/10], Iter [1914/3125], train_loss:0.074593
Epoch [1/10], Iter [1915/3125], train_loss:0.067950
Epoch [1/10], Iter [1916/3125], train_loss:0.036191
Epoch [1/10], Iter [1917/3125], train_loss:0.057052
Epoch [1/10], Iter [1918/3125], train_loss:0.062682
Epoch [1/10], Iter [1919/3125], train_loss:0.073875
Epoch [1/10], Iter [1920/3125], train_loss:0.059812
Epoch [1/10], Iter [1921/3125], train_loss:0.049579
Epoch [1/10], Iter [1922/3125], train_loss:0.111791
Epoch [1/10], Iter [1923/3125], train_loss:0.076176
Epoch [1/10], Iter [1924/3125], train_loss:0.049307
Epoch [1/10], Iter [1925/3125], train_loss:0.037029
Epoch [1/10], Iter [1926/3125], train_loss:0.078327
Epoch [1/10], Iter [1927/3125], train_loss:0.073983
Epoch [1/10], Iter [1928/3125], train_loss:0.071034
Epoch [1/10], Iter [1929/3125], train_loss:0.072575
Epoch [1/10], Iter [1930/3125], train_loss:0.035677
Epoch [1/10], Iter [1931/3125], train_loss:0.078652
Epoch [1/10], Iter [1932/3125], train_loss:0.050624
Epoch [1/10], Iter [1933/3125], train_loss:0.061268
Epoch [1/10], Iter [1934/3125], train_loss:0.030012
Epoch [1/10], Iter [1935/3125], train_loss:0.064447
Epoch [1/10], Iter [1936/3125], train_loss:0.067326
Epoch [1/10], Iter [1937/3125], train_loss:0.047509
Epoch [1/10], Iter [1938/3125], train_loss:0.080461
Epoch [1/10], Iter [1939/3125], train_loss:0.065088
Epoch [1/10], Iter [1940/3125], train_loss:0.045047
Epoch [1/10], Iter [1941/3125], train_loss:0.048151
Epoch [1/10], Iter [1942/3125], train_loss:0.041551
Epoch [1/10], Iter [1943/3125], train_loss:0.062923
Epoch [1/10], Iter [1944/3125], train_loss:0.047921
Epoch [1/10], Iter [1945/3125], train_loss:0.055047
Epoch [1/10], Iter [1946/3125], train_loss:0.047319
Epoch [1/10], Iter [1947/3125], train_loss:0.079555
Epoch [1/10], Iter [1948/3125], train_loss:0.060398
Epoch [1/10], Iter [1949/3125], train_loss:0.024709
Epoch [1/10], Iter [1950/3125], train_loss:0.057181
Epoch [1/10], Iter [1951/3125], train_loss:0.073039
Epoch [1/10], Iter [1952/3125], train_loss:0.080788
Epoch [1/10], Iter [1953/3125], train_loss:0.027360
Epoch [1/10], Iter [1954/3125], train_loss:0.099107
Epoch [1/10], Iter [1955/3125], train_loss:0.039013
Epoch [1/10], Iter [1956/3125], train_loss:0.085083
Epoch [1/10], Iter [1957/3125], train_loss:0.061486
Epoch [1/10], Iter [1958/3125], train_loss:0.054446
Epoch [1/10], Iter [1959/3125], train_loss:0.069039
Epoch [1/10], Iter [1960/3125], train_loss:0.040418
Epoch [1/10], Iter [1961/3125], train_loss:0.073553
Epoch [1/10], Iter [1962/3125], train_loss:0.045772
Epoch [1/10], Iter [1963/3125], train_loss:0.060261
Epoch [1/10], Iter [1964/3125], train_loss:0.065421
Epoch [1/10], Iter [1965/3125], train_loss:0.076194
Epoch [1/10], Iter [1966/3125], train_loss:0.064436
Epoch [1/10], Iter [1967/3125], train_loss:0.076793
Epoch [1/10], Iter [1968/3125], train_loss:0.055979
Epoch [1/10], Iter [1969/3125], train_loss:0.029151
Epoch [1/10], Iter [1970/3125], train_loss:0.038949
Epoch [1/10], Iter [1971/3125], train_loss:0.041652
Epoch [1/10], Iter [1972/3125], train_loss:0.057385
Epoch [1/10], Iter [1973/3125], train_loss:0.063295
Epoch [1/10], Iter [1974/3125], train_loss:0.065931
Epoch [1/10], Iter [1975/3125], train_loss:0.063027
Epoch [1/10], Iter [1976/3125], train_loss:0.069438
Epoch [1/10], Iter [1977/3125], train_loss:0.043597
Epoch [1/10], Iter [1978/3125], train_loss:0.077617
Epoch [1/10], Iter [1979/3125], train_loss:0.075510
Epoch [1/10], Iter [1980/3125], train_loss:0.064318
Epoch [1/10], Iter [1981/3125], train_loss:0.057600
Epoch [1/10], Iter [1982/3125], train_loss:0.051950
Epoch [1/10], Iter [1983/3125], train_loss:0.060522
Epoch [1/10], Iter [1984/3125], train_loss:0.043160
Epoch [1/10], Iter [1985/3125], train_loss:0.046968
Epoch [1/10], Iter [1986/3125], train_loss:0.030345
Epoch [1/10], Iter [1987/3125], train_loss:0.067975
Epoch [1/10], Iter [1988/3125], train_loss:0.070917
Epoch [1/10], Iter [1989/3125], train_loss:0.050825
Epoch [1/10], Iter [1990/3125], train_loss:0.056659
Epoch [1/10], Iter [1991/3125], train_loss:0.075110
Epoch [1/10], Iter [1992/3125], train_loss:0.018620
Epoch [1/10], Iter [1993/3125], train_loss:0.086012
Epoch [1/10], Iter [1994/3125], train_loss:0.061522
Epoch [1/10], Iter [1995/3125], train_loss:0.115937
Epoch [1/10], Iter [1996/3125], train_loss:0.045985
Epoch [1/10], Iter [1997/3125], train_loss:0.053937
Epoch [1/10], Iter [1998/3125], train_loss:0.070547
Epoch [1/10], Iter [1999/3125], train_loss:0.042071
Epoch [1/10], Iter [2000/3125], train_loss:0.043023
Epoch [1/10], Iter [2001/3125], train_loss:0.081274
Epoch [1/10], Iter [2002/3125], train_loss:0.066850
Epoch [1/10], Iter [2003/3125], train_loss:0.033427
Epoch [1/10], Iter [2004/3125], train_loss:0.061561
Epoch [1/10], Iter [2005/3125], train_loss:0.062892
Epoch [1/10], Iter [2006/3125], train_loss:0.029832
Epoch [1/10], Iter [2007/3125], train_loss:0.084254
Epoch [1/10], Iter [2008/3125], train_loss:0.086006
Epoch [1/10], Iter [2009/3125], train_loss:0.075942
Epoch [1/10], Iter [2010/3125], train_loss:0.086731
Epoch [1/10], Iter [2011/3125], train_loss:0.061293
Epoch [1/10], Iter [2012/3125], train_loss:0.031159
Epoch [1/10], Iter [2013/3125], train_loss:0.094308
Epoch [1/10], Iter [2014/3125], train_loss:0.058767
Epoch [1/10], Iter [2015/3125], train_loss:0.042780
Epoch [1/10], Iter [2016/3125], train_loss:0.053814
Epoch [1/10], Iter [2017/3125], train_loss:0.044383
Epoch [1/10], Iter [2018/3125], train_loss:0.054721
Epoch [1/10], Iter [2019/3125], train_loss:0.037710
Epoch [1/10], Iter [2020/3125], train_loss:0.050791
Epoch [1/10], Iter [2021/3125], train_loss:0.088299
Epoch [1/10], Iter [2022/3125], train_loss:0.023384
Epoch [1/10], Iter [2023/3125], train_loss:0.059585
Epoch [1/10], Iter [2024/3125], train_loss:0.047600
Epoch [1/10], Iter [2025/3125], train_loss:0.050966
Epoch [1/10], Iter [2026/3125], train_loss:0.069498
Epoch [1/10], Iter [2027/3125], train_loss:0.059679
Epoch [1/10], Iter [2028/3125], train_loss:0.054175
Epoch [1/10], Iter [2029/3125], train_loss:0.048971
Epoch [1/10], Iter [2030/3125], train_loss:0.055469
Epoch [1/10], Iter [2031/3125], train_loss:0.042843
Epoch [1/10], Iter [2032/3125], train_loss:0.054261
Epoch [1/10], Iter [2033/3125], train_loss:0.034696
Epoch [1/10], Iter [2034/3125], train_loss:0.050647
Epoch [1/10], Iter [2035/3125], train_loss:0.075666
Epoch [1/10], Iter [2036/3125], train_loss:0.082343
Epoch [1/10], Iter [2037/3125], train_loss:0.050409
Epoch [1/10], Iter [2038/3125], train_loss:0.050441
Epoch [1/10], Iter [2039/3125], train_loss:0.068800
Epoch [1/10], Iter [2040/3125], train_loss:0.064183
Epoch [1/10], Iter [2041/3125], train_loss:0.033020
Epoch [1/10], Iter [2042/3125], train_loss:0.068810
Epoch [1/10], Iter [2043/3125], train_loss:0.036257
Epoch [1/10], Iter [2044/3125], train_loss:0.060899
Epoch [1/10], Iter [2045/3125], train_loss:0.061538
Epoch [1/10], Iter [2046/3125], train_loss:0.044145
Epoch [1/10], Iter [2047/3125], train_loss:0.039485
Epoch [1/10], Iter [2048/3125], train_loss:0.042501
Epoch [1/10], Iter [2049/3125], train_loss:0.063631
Epoch [1/10], Iter [2050/3125], train_loss:0.046520
Epoch [1/10], Iter [2051/3125], train_loss:0.055999
Epoch [1/10], Iter [2052/3125], train_loss:0.063847
Epoch [1/10], Iter [2053/3125], train_loss:0.069343
Epoch [1/10], Iter [2054/3125], train_loss:0.052924
Epoch [1/10], Iter [2055/3125], train_loss:0.036919
Epoch [1/10], Iter [2056/3125], train_loss:0.054971
Epoch [1/10], Iter [2057/3125], train_loss:0.048387
Epoch [1/10], Iter [2058/3125], train_loss:0.084165
Epoch [1/10], Iter [2059/3125], train_loss:0.044616
Epoch [1/10], Iter [2060/3125], train_loss:0.033628
Epoch [1/10], Iter [2061/3125], train_loss:0.027558
Epoch [1/10], Iter [2062/3125], train_loss:0.055136
Epoch [1/10], Iter [2063/3125], train_loss:0.062519
Epoch [1/10], Iter [2064/3125], train_loss:0.050408
Epoch [1/10], Iter [2065/3125], train_loss:0.033982
Epoch [1/10], Iter [2066/3125], train_loss:0.087878
Epoch [1/10], Iter [2067/3125], train_loss:0.044555
Epoch [1/10], Iter [2068/3125], train_loss:0.036030
Epoch [1/10], Iter [2069/3125], train_loss:0.047172
Epoch [1/10], Iter [2070/3125], train_loss:0.057118
Epoch [1/10], Iter [2071/3125], train_loss:0.050927
Epoch [1/10], Iter [2072/3125], train_loss:0.055021
Epoch [1/10], Iter [2073/3125], train_loss:0.042873
Epoch [1/10], Iter [2074/3125], train_loss:0.069662
Epoch [1/10], Iter [2075/3125], train_loss:0.086718
Epoch [1/10], Iter [2076/3125], train_loss:0.060907
Epoch [1/10], Iter [2077/3125], train_loss:0.055302
Epoch [1/10], Iter [2078/3125], train_loss:0.063130
Epoch [1/10], Iter [2079/3125], train_loss:0.041546
Epoch [1/10], Iter [2080/3125], train_loss:0.079889
Epoch [1/10], Iter [2081/3125], train_loss:0.059205
Epoch [1/10], Iter [2082/3125], train_loss:0.077855
Epoch [1/10], Iter [2083/3125], train_loss:0.040796
Epoch [1/10], Iter [2084/3125], train_loss:0.063951
Epoch [1/10], Iter [2085/3125], train_loss:0.060815
Epoch [1/10], Iter [2086/3125], train_loss:0.105773
Epoch [1/10], Iter [2087/3125], train_loss:0.055865
Epoch [1/10], Iter [2088/3125], train_loss:0.058389
Epoch [1/10], Iter [2089/3125], train_loss:0.085886
Epoch [1/10], Iter [2090/3125], train_loss:0.037964
Epoch [1/10], Iter [2091/3125], train_loss:0.037571
Epoch [1/10], Iter [2092/3125], train_loss:0.051286
Epoch [1/10], Iter [2093/3125], train_loss:0.072742
Epoch [1/10], Iter [2094/3125], train_loss:0.027918
Epoch [1/10], Iter [2095/3125], train_loss:0.064145
Epoch [1/10], Iter [2096/3125], train_loss:0.062825
Epoch [1/10], Iter [2097/3125], train_loss:0.047760
Epoch [1/10], Iter [2098/3125], train_loss:0.051347
Epoch [1/10], Iter [2099/3125], train_loss:0.066230
Epoch [1/10], Iter [2100/3125], train_loss:0.062902
Epoch [1/10], Iter [2101/3125], train_loss:0.047526
Epoch [1/10], Iter [2102/3125], train_loss:0.039127
Epoch [1/10], Iter [2103/3125], train_loss:0.046777
Epoch [1/10], Iter [2104/3125], train_loss:0.059681
Epoch [1/10], Iter [2105/3125], train_loss:0.061811
Epoch [1/10], Iter [2106/3125], train_loss:0.039108
Epoch [1/10], Iter [2107/3125], train_loss:0.075459
Epoch [1/10], Iter [2108/3125], train_loss:0.063627
Epoch [1/10], Iter [2109/3125], train_loss:0.035721
Epoch [1/10], Iter [2110/3125], train_loss:0.060149
Epoch [1/10], Iter [2111/3125], train_loss:0.067085
Epoch [1/10], Iter [2112/3125], train_loss:0.059505
Epoch [1/10], Iter [2113/3125], train_loss:0.056017
Epoch [1/10], Iter [2114/3125], train_loss:0.020455
Epoch [1/10], Iter [2115/3125], train_loss:0.081689
Epoch [1/10], Iter [2116/3125], train_loss:0.039513
Epoch [1/10], Iter [2117/3125], train_loss:0.048386
Epoch [1/10], Iter [2118/3125], train_loss:0.059267
Epoch [1/10], Iter [2119/3125], train_loss:0.082934
Epoch [1/10], Iter [2120/3125], train_loss:0.060041
Epoch [1/10], Iter [2121/3125], train_loss:0.061388
Epoch [1/10], Iter [2122/3125], train_loss:0.042897
Epoch [1/10], Iter [2123/3125], train_loss:0.045056
Epoch [1/10], Iter [2124/3125], train_loss:0.060849
Epoch [1/10], Iter [2125/3125], train_loss:0.049667
Epoch [1/10], Iter [2126/3125], train_loss:0.048343
Epoch [1/10], Iter [2127/3125], train_loss:0.068228
Epoch [1/10], Iter [2128/3125], train_loss:0.037251
Epoch [1/10], Iter [2129/3125], train_loss:0.027494
Epoch [1/10], Iter [2130/3125], train_loss:0.064851
Epoch [1/10], Iter [2131/3125], train_loss:0.044079
Epoch [1/10], Iter [2132/3125], train_loss:0.058055
Epoch [1/10], Iter [2133/3125], train_loss:0.028688
Epoch [1/10], Iter [2134/3125], train_loss:0.063009
Epoch [1/10], Iter [2135/3125], train_loss:0.049375
Epoch [1/10], Iter [2136/3125], train_loss:0.070779
Epoch [1/10], Iter [2137/3125], train_loss:0.061121
Epoch [1/10], Iter [2138/3125], train_loss:0.045141
Epoch [1/10], Iter [2139/3125], train_loss:0.032898
Epoch [1/10], Iter [2140/3125], train_loss:0.044351
Epoch [1/10], Iter [2141/3125], train_loss:0.056783
Epoch [1/10], Iter [2142/3125], train_loss:0.056133
Epoch [1/10], Iter [2143/3125], train_loss:0.088715
Epoch [1/10], Iter [2144/3125], train_loss:0.068217
Epoch [1/10], Iter [2145/3125], train_loss:0.043055
Epoch [1/10], Iter [2146/3125], train_loss:0.032986
Epoch [1/10], Iter [2147/3125], train_loss:0.041009
Epoch [1/10], Iter [2148/3125], train_loss:0.044360
Epoch [1/10], Iter [2149/3125], train_loss:0.065169
Epoch [1/10], Iter [2150/3125], train_loss:0.075291
Epoch [1/10], Iter [2151/3125], train_loss:0.050981
Epoch [1/10], Iter [2152/3125], train_loss:0.062930
Epoch [1/10], Iter [2153/3125], train_loss:0.058825
Epoch [1/10], Iter [2154/3125], train_loss:0.076227
Epoch [1/10], Iter [2155/3125], train_loss:0.083203
Epoch [1/10], Iter [2156/3125], train_loss:0.063778
Epoch [1/10], Iter [2157/3125], train_loss:0.045961
Epoch [1/10], Iter [2158/3125], train_loss:0.070411
Epoch [1/10], Iter [2159/3125], train_loss:0.064471
Epoch [1/10], Iter [2160/3125], train_loss:0.056950
Epoch [1/10], Iter [2161/3125], train_loss:0.074447
Epoch [1/10], Iter [2162/3125], train_loss:0.052749
Epoch [1/10], Iter [2163/3125], train_loss:0.057865
Epoch [1/10], Iter [2164/3125], train_loss:0.037370
Epoch [1/10], Iter [2165/3125], train_loss:0.103615
Epoch [1/10], Iter [2166/3125], train_loss:0.076190
Epoch [1/10], Iter [2167/3125], train_loss:0.044481
Epoch [1/10], Iter [2168/3125], train_loss:0.050516
Epoch [1/10], Iter [2169/3125], train_loss:0.036114
Epoch [1/10], Iter [2170/3125], train_loss:0.037495
Epoch [1/10], Iter [2171/3125], train_loss:0.058162
Epoch [1/10], Iter [2172/3125], train_loss:0.072126
Epoch [1/10], Iter [2173/3125], train_loss:0.058480
Epoch [1/10], Iter [2174/3125], train_loss:0.057047
Epoch [1/10], Iter [2175/3125], train_loss:0.058543
Epoch [1/10], Iter [2176/3125], train_loss:0.044135
Epoch [1/10], Iter [2177/3125], train_loss:0.021453
Epoch [1/10], Iter [2178/3125], train_loss:0.091287
Epoch [1/10], Iter [2179/3125], train_loss:0.030686
Epoch [1/10], Iter [2180/3125], train_loss:0.043142
Epoch [1/10], Iter [2181/3125], train_loss:0.061297
Epoch [1/10], Iter [2182/3125], train_loss:0.052431
Epoch [1/10], Iter [2183/3125], train_loss:0.064683
Epoch [1/10], Iter [2184/3125], train_loss:0.052090
Epoch [1/10], Iter [2185/3125], train_loss:0.059552
Epoch [1/10], Iter [2186/3125], train_loss:0.043549
Epoch [1/10], Iter [2187/3125], train_loss:0.039106
Epoch [1/10], Iter [2188/3125], train_loss:0.033696
Epoch [1/10], Iter [2189/3125], train_loss:0.059473
Epoch [1/10], Iter [2190/3125], train_loss:0.042966
Epoch [1/10], Iter [2191/3125], train_loss:0.038413
Epoch [1/10], Iter [2192/3125], train_loss:0.048166
Epoch [1/10], Iter [2193/3125], train_loss:0.062529
Epoch [1/10], Iter [2194/3125], train_loss:0.063281
Epoch [1/10], Iter [2195/3125], train_loss:0.068794
Epoch [1/10], Iter [2196/3125], train_loss:0.060039
Epoch [1/10], Iter [2197/3125], train_loss:0.059375
Epoch [1/10], Iter [2198/3125], train_loss:0.052642
Epoch [1/10], Iter [2199/3125], train_loss:0.046952
Epoch [1/10], Iter [2200/3125], train_loss:0.071861
Epoch [1/10], Iter [2201/3125], train_loss:0.044257
Epoch [1/10], Iter [2202/3125], train_loss:0.057232
Epoch [1/10], Iter [2203/3125], train_loss:0.039750
Epoch [1/10], Iter [2204/3125], train_loss:0.074284
Epoch [1/10], Iter [2205/3125], train_loss:0.029797
Epoch [1/10], Iter [2206/3125], train_loss:0.058231
Epoch [1/10], Iter [2207/3125], train_loss:0.066111
Epoch [1/10], Iter [2208/3125], train_loss:0.067477
Epoch [1/10], Iter [2209/3125], train_loss:0.065425
Epoch [1/10], Iter [2210/3125], train_loss:0.039687
Epoch [1/10], Iter [2211/3125], train_loss:0.054980
Epoch [1/10], Iter [2212/3125], train_loss:0.052664
Epoch [1/10], Iter [2213/3125], train_loss:0.065844
Epoch [1/10], Iter [2214/3125], train_loss:0.094000
Epoch [1/10], Iter [2215/3125], train_loss:0.053468
Epoch [1/10], Iter [2216/3125], train_loss:0.061695
Epoch [1/10], Iter [2217/3125], train_loss:0.067787
Epoch [1/10], Iter [2218/3125], train_loss:0.035557
Epoch [1/10], Iter [2219/3125], train_loss:0.054791
Epoch [1/10], Iter [2220/3125], train_loss:0.074102
Epoch [1/10], Iter [2221/3125], train_loss:0.053827
Epoch [1/10], Iter [2222/3125], train_loss:0.064904
Epoch [1/10], Iter [2223/3125], train_loss:0.048594
Epoch [1/10], Iter [2224/3125], train_loss:0.038459
Epoch [1/10], Iter [2225/3125], train_loss:0.033388
Epoch [1/10], Iter [2226/3125], train_loss:0.053181
Epoch [1/10], Iter [2227/3125], train_loss:0.070912
Epoch [1/10], Iter [2228/3125], train_loss:0.087150
Epoch [1/10], Iter [2229/3125], train_loss:0.043372
Epoch [1/10], Iter [2230/3125], train_loss:0.053783
Epoch [1/10], Iter [2231/3125], train_loss:0.040672
Epoch [1/10], Iter [2232/3125], train_loss:0.045534
Epoch [1/10], Iter [2233/3125], train_loss:0.040906
Epoch [1/10], Iter [2234/3125], train_loss:0.046060
Epoch [1/10], Iter [2235/3125], train_loss:0.073936
Epoch [1/10], Iter [2236/3125], train_loss:0.048040
Epoch [1/10], Iter [2237/3125], train_loss:0.044033
Epoch [1/10], Iter [2238/3125], train_loss:0.058578
Epoch [1/10], Iter [2239/3125], train_loss:0.046442
Epoch [1/10], Iter [2240/3125], train_loss:0.070717
Epoch [1/10], Iter [2241/3125], train_loss:0.057559
Epoch [1/10], Iter [2242/3125], train_loss:0.071514
Epoch [1/10], Iter [2243/3125], train_loss:0.072684
Epoch [1/10], Iter [2244/3125], train_loss:0.071098
Epoch [1/10], Iter [2245/3125], train_loss:0.029106
Epoch [1/10], Iter [2246/3125], train_loss:0.047889
Epoch [1/10], Iter [2247/3125], train_loss:0.074630
Epoch [1/10], Iter [2248/3125], train_loss:0.039345
Epoch [1/10], Iter [2249/3125], train_loss:0.076240
Epoch [1/10], Iter [2250/3125], train_loss:0.046938
Epoch [1/10], Iter [2251/3125], train_loss:0.051236
Epoch [1/10], Iter [2252/3125], train_loss:0.060951
Epoch [1/10], Iter [2253/3125], train_loss:0.072658
Epoch [1/10], Iter [2254/3125], train_loss:0.072621
Epoch [1/10], Iter [2255/3125], train_loss:0.071780
Epoch [1/10], Iter [2256/3125], train_loss:0.047900
Epoch [1/10], Iter [2257/3125], train_loss:0.083139
Epoch [1/10], Iter [2258/3125], train_loss:0.042750
Epoch [1/10], Iter [2259/3125], train_loss:0.030537
Epoch [1/10], Iter [2260/3125], train_loss:0.071231
Epoch [1/10], Iter [2261/3125], train_loss:0.058627
Epoch [1/10], Iter [2262/3125], train_loss:0.061551
Epoch [1/10], Iter [2263/3125], train_loss:0.057065
Epoch [1/10], Iter [2264/3125], train_loss:0.063427
Epoch [1/10], Iter [2265/3125], train_loss:0.052468
Epoch [1/10], Iter [2266/3125], train_loss:0.052080
Epoch [1/10], Iter [2267/3125], train_loss:0.033376
Epoch [1/10], Iter [2268/3125], train_loss:0.041073
Epoch [1/10], Iter [2269/3125], train_loss:0.065047
Epoch [1/10], Iter [2270/3125], train_loss:0.062026
Epoch [1/10], Iter [2271/3125], train_loss:0.109442
Epoch [1/10], Iter [2272/3125], train_loss:0.056198
Epoch [1/10], Iter [2273/3125], train_loss:0.063348
Epoch [1/10], Iter [2274/3125], train_loss:0.039659
Epoch [1/10], Iter [2275/3125], train_loss:0.062523
Epoch [1/10], Iter [2276/3125], train_loss:0.057241
Epoch [1/10], Iter [2277/3125], train_loss:0.026030
Epoch [1/10], Iter [2278/3125], train_loss:0.060936
Epoch [1/10], Iter [2279/3125], train_loss:0.037769
Epoch [1/10], Iter [2280/3125], train_loss:0.047071
Epoch [1/10], Iter [2281/3125], train_loss:0.067723
Epoch [1/10], Iter [2282/3125], train_loss:0.071875
Epoch [1/10], Iter [2283/3125], train_loss:0.049202
Epoch [1/10], Iter [2284/3125], train_loss:0.060309
Epoch [1/10], Iter [2285/3125], train_loss:0.068315
Epoch [1/10], Iter [2286/3125], train_loss:0.072877
Epoch [1/10], Iter [2287/3125], train_loss:0.063042
Epoch [1/10], Iter [2288/3125], train_loss:0.078719
Epoch [1/10], Iter [2289/3125], train_loss:0.026097
Epoch [1/10], Iter [2290/3125], train_loss:0.060497
Epoch [1/10], Iter [2291/3125], train_loss:0.078648
Epoch [1/10], Iter [2292/3125], train_loss:0.068681
Epoch [1/10], Iter [2293/3125], train_loss:0.044549
Epoch [1/10], Iter [2294/3125], train_loss:0.079612
Epoch [1/10], Iter [2295/3125], train_loss:0.036360
Epoch [1/10], Iter [2296/3125], train_loss:0.029000
Epoch [1/10], Iter [2297/3125], train_loss:0.055833
Epoch [1/10], Iter [2298/3125], train_loss:0.078257
Epoch [1/10], Iter [2299/3125], train_loss:0.064521
Epoch [1/10], Iter [2300/3125], train_loss:0.053077
Epoch [1/10], Iter [2301/3125], train_loss:0.061464
Epoch [1/10], Iter [2302/3125], train_loss:0.054382
Epoch [1/10], Iter [2303/3125], train_loss:0.029077
Epoch [1/10], Iter [2304/3125], train_loss:0.047081
Epoch [1/10], Iter [2305/3125], train_loss:0.034250
Epoch [1/10], Iter [2306/3125], train_loss:0.067229
Epoch [1/10], Iter [2307/3125], train_loss:0.038814
Epoch [1/10], Iter [2308/3125], train_loss:0.059177
Epoch [1/10], Iter [2309/3125], train_loss:0.029574
Epoch [1/10], Iter [2310/3125], train_loss:0.034070
Epoch [1/10], Iter [2311/3125], train_loss:0.077129
Epoch [1/10], Iter [2312/3125], train_loss:0.036397
Epoch [1/10], Iter [2313/3125], train_loss:0.065701
Epoch [1/10], Iter [2314/3125], train_loss:0.044045
Epoch [1/10], Iter [2315/3125], train_loss:0.078438
Epoch [1/10], Iter [2316/3125], train_loss:0.099388
Epoch [1/10], Iter [2317/3125], train_loss:0.053328
Epoch [1/10], Iter [2318/3125], train_loss:0.033426
Epoch [1/10], Iter [2319/3125], train_loss:0.045820
Epoch [1/10], Iter [2320/3125], train_loss:0.071173
Epoch [1/10], Iter [2321/3125], train_loss:0.058071
Epoch [1/10], Iter [2322/3125], train_loss:0.032791
Epoch [1/10], Iter [2323/3125], train_loss:0.049563
Epoch [1/10], Iter [2324/3125], train_loss:0.037852
Epoch [1/10], Iter [2325/3125], train_loss:0.071495
Epoch [1/10], Iter [2326/3125], train_loss:0.051821
Epoch [1/10], Iter [2327/3125], train_loss:0.049604
Epoch [1/10], Iter [2328/3125], train_loss:0.084093
Epoch [1/10], Iter [2329/3125], train_loss:0.050646
Epoch [1/10], Iter [2330/3125], train_loss:0.035999
Epoch [1/10], Iter [2331/3125], train_loss:0.079603
Epoch [1/10], Iter [2332/3125], train_loss:0.036003
Epoch [1/10], Iter [2333/3125], train_loss:0.029306
Epoch [1/10], Iter [2334/3125], train_loss:0.080034
Epoch [1/10], Iter [2335/3125], train_loss:0.056424
Epoch [1/10], Iter [2336/3125], train_loss:0.067404
Epoch [1/10], Iter [2337/3125], train_loss:0.048945
Epoch [1/10], Iter [2338/3125], train_loss:0.034922
Epoch [1/10], Iter [2339/3125], train_loss:0.060189
Epoch [1/10], Iter [2340/3125], train_loss:0.041691
Epoch [1/10], Iter [2341/3125], train_loss:0.076982
Epoch [1/10], Iter [2342/3125], train_loss:0.075437
Epoch [1/10], Iter [2343/3125], train_loss:0.056825
Epoch [1/10], Iter [2344/3125], train_loss:0.038702
Epoch [1/10], Iter [2345/3125], train_loss:0.048160
Epoch [1/10], Iter [2346/3125], train_loss:0.054957
Epoch [1/10], Iter [2347/3125], train_loss:0.073520
Epoch [1/10], Iter [2348/3125], train_loss:0.025029
Epoch [1/10], Iter [2349/3125], train_loss:0.078251
Epoch [1/10], Iter [2350/3125], train_loss:0.058632
Epoch [1/10], Iter [2351/3125], train_loss:0.027224
Epoch [1/10], Iter [2352/3125], train_loss:0.078937
Epoch [1/10], Iter [2353/3125], train_loss:0.047743
Epoch [1/10], Iter [2354/3125], train_loss:0.051082
Epoch [1/10], Iter [2355/3125], train_loss:0.079061
Epoch [1/10], Iter [2356/3125], train_loss:0.073499
Epoch [1/10], Iter [2357/3125], train_loss:0.043175
Epoch [1/10], Iter [2358/3125], train_loss:0.056764
Epoch [1/10], Iter [2359/3125], train_loss:0.019714
Epoch [1/10], Iter [2360/3125], train_loss:0.063975
Epoch [1/10], Iter [2361/3125], train_loss:0.051211
Epoch [1/10], Iter [2362/3125], train_loss:0.057849
Epoch [1/10], Iter [2363/3125], train_loss:0.069020
Epoch [1/10], Iter [2364/3125], train_loss:0.062727
Epoch [1/10], Iter [2365/3125], train_loss:0.038595
Epoch [1/10], Iter [2366/3125], train_loss:0.029429
Epoch [1/10], Iter [2367/3125], train_loss:0.039399
Epoch [1/10], Iter [2368/3125], train_loss:0.065248
Epoch [1/10], Iter [2369/3125], train_loss:0.031663
Epoch [1/10], Iter [2370/3125], train_loss:0.027714
Epoch [1/10], Iter [2371/3125], train_loss:0.041660
Epoch [1/10], Iter [2372/3125], train_loss:0.023911
Epoch [1/10], Iter [2373/3125], train_loss:0.043590
Epoch [1/10], Iter [2374/3125], train_loss:0.027625
Epoch [1/10], Iter [2375/3125], train_loss:0.027970
Epoch [1/10], Iter [2376/3125], train_loss:0.086231
Epoch [1/10], Iter [2377/3125], train_loss:0.030232
Epoch [1/10], Iter [2378/3125], train_loss:0.048442
Epoch [1/10], Iter [2379/3125], train_loss:0.037288
Epoch [1/10], Iter [2380/3125], train_loss:0.036998
Epoch [1/10], Iter [2381/3125], train_loss:0.062230
Epoch [1/10], Iter [2382/3125], train_loss:0.077990
Epoch [1/10], Iter [2383/3125], train_loss:0.037560
Epoch [1/10], Iter [2384/3125], train_loss:0.060333
Epoch [1/10], Iter [2385/3125], train_loss:0.067466
Epoch [1/10], Iter [2386/3125], train_loss:0.044783
Epoch [1/10], Iter [2387/3125], train_loss:0.061185
Epoch [1/10], Iter [2388/3125], train_loss:0.020483
Epoch [1/10], Iter [2389/3125], train_loss:0.040517
Epoch [1/10], Iter [2390/3125], train_loss:0.080889
Epoch [1/10], Iter [2391/3125], train_loss:0.078674
Epoch [1/10], Iter [2392/3125], train_loss:0.038500
Epoch [1/10], Iter [2393/3125], train_loss:0.043009
Epoch [1/10], Iter [2394/3125], train_loss:0.045287
Epoch [1/10], Iter [2395/3125], train_loss:0.052948
Epoch [1/10], Iter [2396/3125], train_loss:0.096492
Epoch [1/10], Iter [2397/3125], train_loss:0.084607
Epoch [1/10], Iter [2398/3125], train_loss:0.018984
Epoch [1/10], Iter [2399/3125], train_loss:0.058866
Epoch [1/10], Iter [2400/3125], train_loss:0.054521
Epoch [1/10], Iter [2401/3125], train_loss:0.035970
Epoch [1/10], Iter [2402/3125], train_loss:0.083726
Epoch [1/10], Iter [2403/3125], train_loss:0.040679
Epoch [1/10], Iter [2404/3125], train_loss:0.065046
Epoch [1/10], Iter [2405/3125], train_loss:0.094652
Epoch [1/10], Iter [2406/3125], train_loss:0.059551
Epoch [1/10], Iter [2407/3125], train_loss:0.065810
Epoch [1/10], Iter [2408/3125], train_loss:0.050208
Epoch [1/10], Iter [2409/3125], train_loss:0.066216
Epoch [1/10], Iter [2410/3125], train_loss:0.058400
Epoch [1/10], Iter [2411/3125], train_loss:0.053513
Epoch [1/10], Iter [2412/3125], train_loss:0.060500
Epoch [1/10], Iter [2413/3125], train_loss:0.044563
Epoch [1/10], Iter [2414/3125], train_loss:0.029764
Epoch [1/10], Iter [2415/3125], train_loss:0.047340
Epoch [1/10], Iter [2416/3125], train_loss:0.035138
Epoch [1/10], Iter [2417/3125], train_loss:0.071377
Epoch [1/10], Iter [2418/3125], train_loss:0.024064
Epoch [1/10], Iter [2419/3125], train_loss:0.042528
Epoch [1/10], Iter [2420/3125], train_loss:0.043153
Epoch [1/10], Iter [2421/3125], train_loss:0.030465
Epoch [1/10], Iter [2422/3125], train_loss:0.072440
Epoch [1/10], Iter [2423/3125], train_loss:0.055920
Epoch [1/10], Iter [2424/3125], train_loss:0.035570
Epoch [1/10], Iter [2425/3125], train_loss:0.056007
Epoch [1/10], Iter [2426/3125], train_loss:0.041977
Epoch [1/10], Iter [2427/3125], train_loss:0.063373
Epoch [1/10], Iter [2428/3125], train_loss:0.052605
Epoch [1/10], Iter [2429/3125], train_loss:0.036802
Epoch [1/10], Iter [2430/3125], train_loss:0.034278
Epoch [1/10], Iter [2431/3125], train_loss:0.052479
Epoch [1/10], Iter [2432/3125], train_loss:0.039629
Epoch [1/10], Iter [2433/3125], train_loss:0.060461
Epoch [1/10], Iter [2434/3125], train_loss:0.022422
Epoch [1/10], Iter [2435/3125], train_loss:0.058592
Epoch [1/10], Iter [2436/3125], train_loss:0.085719
Epoch [1/10], Iter [2437/3125], train_loss:0.055790
Epoch [1/10], Iter [2438/3125], train_loss:0.033942
Epoch [1/10], Iter [2439/3125], train_loss:0.074614
Epoch [1/10], Iter [2440/3125], train_loss:0.042400
Epoch [1/10], Iter [2441/3125], train_loss:0.066518
Epoch [1/10], Iter [2442/3125], train_loss:0.084506
Epoch [1/10], Iter [2443/3125], train_loss:0.045445
Epoch [1/10], Iter [2444/3125], train_loss:0.058341
Epoch [1/10], Iter [2445/3125], train_loss:0.050448
Epoch [1/10], Iter [2446/3125], train_loss:0.053517
Epoch [1/10], Iter [2447/3125], train_loss:0.061119
Epoch [1/10], Iter [2448/3125], train_loss:0.067219
Epoch [1/10], Iter [2449/3125], train_loss:0.038764
Epoch [1/10], Iter [2450/3125], train_loss:0.050990
Epoch [1/10], Iter [2451/3125], train_loss:0.068929
Epoch [1/10], Iter [2452/3125], train_loss:0.112174
Epoch [1/10], Iter [2453/3125], train_loss:0.045488
Epoch [1/10], Iter [2454/3125], train_loss:0.034194
Epoch [1/10], Iter [2455/3125], train_loss:0.088972
Epoch [1/10], Iter [2456/3125], train_loss:0.044014
Epoch [1/10], Iter [2457/3125], train_loss:0.051432
Epoch [1/10], Iter [2458/3125], train_loss:0.038895
Epoch [1/10], Iter [2459/3125], train_loss:0.091389
Epoch [1/10], Iter [2460/3125], train_loss:0.067894
Epoch [1/10], Iter [2461/3125], train_loss:0.077940
Epoch [1/10], Iter [2462/3125], train_loss:0.035168
Epoch [1/10], Iter [2463/3125], train_loss:0.057799
Epoch [1/10], Iter [2464/3125], train_loss:0.039412
Epoch [1/10], Iter [2465/3125], train_loss:0.055779
Epoch [1/10], Iter [2466/3125], train_loss:0.039693
Epoch [1/10], Iter [2467/3125], train_loss:0.044370
Epoch [1/10], Iter [2468/3125], train_loss:0.072034
Epoch [1/10], Iter [2469/3125], train_loss:0.039117
Epoch [1/10], Iter [2470/3125], train_loss:0.041900
Epoch [1/10], Iter [2471/3125], train_loss:0.078160
Epoch [1/10], Iter [2472/3125], train_loss:0.043799
Epoch [1/10], Iter [2473/3125], train_loss:0.034027
Epoch [1/10], Iter [2474/3125], train_loss:0.033906
Epoch [1/10], Iter [2475/3125], train_loss:0.040556
Epoch [1/10], Iter [2476/3125], train_loss:0.076365
Epoch [1/10], Iter [2477/3125], train_loss:0.044474
Epoch [1/10], Iter [2478/3125], train_loss:0.050639
Epoch [1/10], Iter [2479/3125], train_loss:0.094295
Epoch [1/10], Iter [2480/3125], train_loss:0.049790
Epoch [1/10], Iter [2481/3125], train_loss:0.058790
Epoch [1/10], Iter [2482/3125], train_loss:0.063505
Epoch [1/10], Iter [2483/3125], train_loss:0.049205
Epoch [1/10], Iter [2484/3125], train_loss:0.056420
Epoch [1/10], Iter [2485/3125], train_loss:0.034539
Epoch [1/10], Iter [2486/3125], train_loss:0.060778
Epoch [1/10], Iter [2487/3125], train_loss:0.061710
Epoch [1/10], Iter [2488/3125], train_loss:0.059184
Epoch [1/10], Iter [2489/3125], train_loss:0.051106
Epoch [1/10], Iter [2490/3125], train_loss:0.055393
Epoch [1/10], Iter [2491/3125], train_loss:0.069071
Epoch [1/10], Iter [2492/3125], train_loss:0.038927
Epoch [1/10], Iter [2493/3125], train_loss:0.055511
Epoch [1/10], Iter [2494/3125], train_loss:0.030150
Epoch [1/10], Iter [2495/3125], train_loss:0.046406
Epoch [1/10], Iter [2496/3125], train_loss:0.050650
Epoch [1/10], Iter [2497/3125], train_loss:0.067050
Epoch [1/10], Iter [2498/3125], train_loss:0.065522
Epoch [1/10], Iter [2499/3125], train_loss:0.039835
Epoch [1/10], Iter [2500/3125], train_loss:0.037947
Epoch [1/10], Iter [2501/3125], train_loss:0.087482
Epoch [1/10], Iter [2502/3125], train_loss:0.049749
Epoch [1/10], Iter [2503/3125], train_loss:0.075907
Epoch [1/10], Iter [2504/3125], train_loss:0.048454
Epoch [1/10], Iter [2505/3125], train_loss:0.056744
Epoch [1/10], Iter [2506/3125], train_loss:0.063433
Epoch [1/10], Iter [2507/3125], train_loss:0.093217
Epoch [1/10], Iter [2508/3125], train_loss:0.060091
Epoch [1/10], Iter [2509/3125], train_loss:0.038879
Epoch [1/10], Iter [2510/3125], train_loss:0.073510
Epoch [1/10], Iter [2511/3125], train_loss:0.078042
Epoch [1/10], Iter [2512/3125], train_loss:0.018318
Epoch [1/10], Iter [2513/3125], train_loss:0.071369
Epoch [1/10], Iter [2514/3125], train_loss:0.055521
Epoch [1/10], Iter [2515/3125], train_loss:0.074205
Epoch [1/10], Iter [2516/3125], train_loss:0.034892
Epoch [1/10], Iter [2517/3125], train_loss:0.059679
Epoch [1/10], Iter [2518/3125], train_loss:0.044943
Epoch [1/10], Iter [2519/3125], train_loss:0.039163
Epoch [1/10], Iter [2520/3125], train_loss:0.033841
Epoch [1/10], Iter [2521/3125], train_loss:0.095452
Epoch [1/10], Iter [2522/3125], train_loss:0.052355
Epoch [1/10], Iter [2523/3125], train_loss:0.097691
Epoch [1/10], Iter [2524/3125], train_loss:0.043344
Epoch [1/10], Iter [2525/3125], train_loss:0.082170
Epoch [1/10], Iter [2526/3125], train_loss:0.037574
Epoch [1/10], Iter [2527/3125], train_loss:0.046212
Epoch [1/10], Iter [2528/3125], train_loss:0.028267
Epoch [1/10], Iter [2529/3125], train_loss:0.048699
Epoch [1/10], Iter [2530/3125], train_loss:0.089290
Epoch [1/10], Iter [2531/3125], train_loss:0.080898
Epoch [1/10], Iter [2532/3125], train_loss:0.040260
Epoch [1/10], Iter [2533/3125], train_loss:0.079006
Epoch [1/10], Iter [2534/3125], train_loss:0.044073
Epoch [1/10], Iter [2535/3125], train_loss:0.056003
Epoch [1/10], Iter [2536/3125], train_loss:0.049989
Epoch [1/10], Iter [2537/3125], train_loss:0.045744
Epoch [1/10], Iter [2538/3125], train_loss:0.049811
Epoch [1/10], Iter [2539/3125], train_loss:0.059298
Epoch [1/10], Iter [2540/3125], train_loss:0.041965
Epoch [1/10], Iter [2541/3125], train_loss:0.044184
Epoch [1/10], Iter [2542/3125], train_loss:0.070333
Epoch [1/10], Iter [2543/3125], train_loss:0.061322
Epoch [1/10], Iter [2544/3125], train_loss:0.033247
Epoch [1/10], Iter [2545/3125], train_loss:0.037805
Epoch [1/10], Iter [2546/3125], train_loss:0.031448
Epoch [1/10], Iter [2547/3125], train_loss:0.034567
Epoch [1/10], Iter [2548/3125], train_loss:0.053322
Epoch [1/10], Iter [2549/3125], train_loss:0.081269
Epoch [1/10], Iter [2550/3125], train_loss:0.078102
Epoch [1/10], Iter [2551/3125], train_loss:0.022630
Epoch [1/10], Iter [2552/3125], train_loss:0.032897
Epoch [1/10], Iter [2553/3125], train_loss:0.050063
Epoch [1/10], Iter [2554/3125], train_loss:0.053164
Epoch [1/10], Iter [2555/3125], train_loss:0.033120
Epoch [1/10], Iter [2556/3125], train_loss:0.046334
Epoch [1/10], Iter [2557/3125], train_loss:0.068456
Epoch [1/10], Iter [2558/3125], train_loss:0.070154
Epoch [1/10], Iter [2559/3125], train_loss:0.036025
Epoch [1/10], Iter [2560/3125], train_loss:0.070635
Epoch [1/10], Iter [2561/3125], train_loss:0.052198
Epoch [1/10], Iter [2562/3125], train_loss:0.043804
Epoch [1/10], Iter [2563/3125], train_loss:0.067197
Epoch [1/10], Iter [2564/3125], train_loss:0.080402
Epoch [1/10], Iter [2565/3125], train_loss:0.071421
Epoch [1/10], Iter [2566/3125], train_loss:0.044109
Epoch [1/10], Iter [2567/3125], train_loss:0.063801
Epoch [1/10], Iter [2568/3125], train_loss:0.075022
Epoch [1/10], Iter [2569/3125], train_loss:0.030197
Epoch [1/10], Iter [2570/3125], train_loss:0.060289
Epoch [1/10], Iter [2571/3125], train_loss:0.041631
Epoch [1/10], Iter [2572/3125], train_loss:0.047699
Epoch [1/10], Iter [2573/3125], train_loss:0.028659
Epoch [1/10], Iter [2574/3125], train_loss:0.046188
Epoch [1/10], Iter [2575/3125], train_loss:0.031889
Epoch [1/10], Iter [2576/3125], train_loss:0.066076
Epoch [1/10], Iter [2577/3125], train_loss:0.062998
Epoch [1/10], Iter [2578/3125], train_loss:0.034345
Epoch [1/10], Iter [2579/3125], train_loss:0.045776
Epoch [1/10], Iter [2580/3125], train_loss:0.063058
Epoch [1/10], Iter [2581/3125], train_loss:0.049935
Epoch [1/10], Iter [2582/3125], train_loss:0.084482
Epoch [1/10], Iter [2583/3125], train_loss:0.057923
Epoch [1/10], Iter [2584/3125], train_loss:0.045246
Epoch [1/10], Iter [2585/3125], train_loss:0.058265
Epoch [1/10], Iter [2586/3125], train_loss:0.035428
Epoch [1/10], Iter [2587/3125], train_loss:0.042721
Epoch [1/10], Iter [2588/3125], train_loss:0.067164
Epoch [1/10], Iter [2589/3125], train_loss:0.045646
Epoch [1/10], Iter [2590/3125], train_loss:0.038400
Epoch [1/10], Iter [2591/3125], train_loss:0.038546
Epoch [1/10], Iter [2592/3125], train_loss:0.072927
Epoch [1/10], Iter [2593/3125], train_loss:0.030221
Epoch [1/10], Iter [2594/3125], train_loss:0.056022
Epoch [1/10], Iter [2595/3125], train_loss:0.056454
Epoch [1/10], Iter [2596/3125], train_loss:0.044413
Epoch [1/10], Iter [2597/3125], train_loss:0.031464
Epoch [1/10], Iter [2598/3125], train_loss:0.051813
Epoch [1/10], Iter [2599/3125], train_loss:0.077083
Epoch [1/10], Iter [2600/3125], train_loss:0.040987
Epoch [1/10], Iter [2601/3125], train_loss:0.037267
Epoch [1/10], Iter [2602/3125], train_loss:0.033299
Epoch [1/10], Iter [2603/3125], train_loss:0.049933
Epoch [1/10], Iter [2604/3125], train_loss:0.050345
Epoch [1/10], Iter [2605/3125], train_loss:0.068158
Epoch [1/10], Iter [2606/3125], train_loss:0.063846
Epoch [1/10], Iter [2607/3125], train_loss:0.057081
Epoch [1/10], Iter [2608/3125], train_loss:0.050321
Epoch [1/10], Iter [2609/3125], train_loss:0.084901
Epoch [1/10], Iter [2610/3125], train_loss:0.061853
Epoch [1/10], Iter [2611/3125], train_loss:0.059709
Epoch [1/10], Iter [2612/3125], train_loss:0.057150
Epoch [1/10], Iter [2613/3125], train_loss:0.034964
Epoch [1/10], Iter [2614/3125], train_loss:0.044947
Epoch [1/10], Iter [2615/3125], train_loss:0.089898
Epoch [1/10], Iter [2616/3125], train_loss:0.052279
Epoch [1/10], Iter [2617/3125], train_loss:0.065590
Epoch [1/10], Iter [2618/3125], train_loss:0.079470
Epoch [1/10], Iter [2619/3125], train_loss:0.064696
Epoch [1/10], Iter [2620/3125], train_loss:0.031827
Epoch [1/10], Iter [2621/3125], train_loss:0.057286
Epoch [1/10], Iter [2622/3125], train_loss:0.059908
Epoch [1/10], Iter [2623/3125], train_loss:0.050808
Epoch [1/10], Iter [2624/3125], train_loss:0.076302
Epoch [1/10], Iter [2625/3125], train_loss:0.054479
Epoch [1/10], Iter [2626/3125], train_loss:0.050685
Epoch [1/10], Iter [2627/3125], train_loss:0.057106
Epoch [1/10], Iter [2628/3125], train_loss:0.050811
Epoch [1/10], Iter [2629/3125], train_loss:0.025450
Epoch [1/10], Iter [2630/3125], train_loss:0.035107
Epoch [1/10], Iter [2631/3125], train_loss:0.037918
Epoch [1/10], Iter [2632/3125], train_loss:0.049256
Epoch [1/10], Iter [2633/3125], train_loss:0.062963
Epoch [1/10], Iter [2634/3125], train_loss:0.043879
Epoch [1/10], Iter [2635/3125], train_loss:0.043937
Epoch [1/10], Iter [2636/3125], train_loss:0.043007
Epoch [1/10], Iter [2637/3125], train_loss:0.033700
Epoch [1/10], Iter [2638/3125], train_loss:0.024870
Epoch [1/10], Iter [2639/3125], train_loss:0.039514
Epoch [1/10], Iter [2640/3125], train_loss:0.067759
Epoch [1/10], Iter [2641/3125], train_loss:0.062978
Epoch [1/10], Iter [2642/3125], train_loss:0.073482
Epoch [1/10], Iter [2643/3125], train_loss:0.051648
Epoch [1/10], Iter [2644/3125], train_loss:0.065120
Epoch [1/10], Iter [2645/3125], train_loss:0.023624
Epoch [1/10], Iter [2646/3125], train_loss:0.019855
Epoch [1/10], Iter [2647/3125], train_loss:0.106905
Epoch [1/10], Iter [2648/3125], train_loss:0.058358
Epoch [1/10], Iter [2649/3125], train_loss:0.072519
Epoch [1/10], Iter [2650/3125], train_loss:0.070563
Epoch [1/10], Iter [2651/3125], train_loss:0.073849
Epoch [1/10], Iter [2652/3125], train_loss:0.051423
Epoch [1/10], Iter [2653/3125], train_loss:0.041773
Epoch [1/10], Iter [2654/3125], train_loss:0.042694
Epoch [1/10], Iter [2655/3125], train_loss:0.041109
Epoch [1/10], Iter [2656/3125], train_loss:0.046723
Epoch [1/10], Iter [2657/3125], train_loss:0.032426
Epoch [1/10], Iter [2658/3125], train_loss:0.031085
Epoch [1/10], Iter [2659/3125], train_loss:0.071443
Epoch [1/10], Iter [2660/3125], train_loss:0.034657
Epoch [1/10], Iter [2661/3125], train_loss:0.064858
Epoch [1/10], Iter [2662/3125], train_loss:0.011753
Epoch [1/10], Iter [2663/3125], train_loss:0.056094
Epoch [1/10], Iter [2664/3125], train_loss:0.039091
Epoch [1/10], Iter [2665/3125], train_loss:0.067260
Epoch [1/10], Iter [2666/3125], train_loss:0.054605
Epoch [1/10], Iter [2667/3125], train_loss:0.073443
Epoch [1/10], Iter [2668/3125], train_loss:0.047724
Epoch [1/10], Iter [2669/3125], train_loss:0.061778
Epoch [1/10], Iter [2670/3125], train_loss:0.052013
Epoch [1/10], Iter [2671/3125], train_loss:0.040040
Epoch [1/10], Iter [2672/3125], train_loss:0.058101
Epoch [1/10], Iter [2673/3125], train_loss:0.058269
Epoch [1/10], Iter [2674/3125], train_loss:0.056329
Epoch [1/10], Iter [2675/3125], train_loss:0.074943
Epoch [1/10], Iter [2676/3125], train_loss:0.060055
Epoch [1/10], Iter [2677/3125], train_loss:0.066210
Epoch [1/10], Iter [2678/3125], train_loss:0.077830
Epoch [1/10], Iter [2679/3125], train_loss:0.069789
Epoch [1/10], Iter [2680/3125], train_loss:0.022511
Epoch [1/10], Iter [2681/3125], train_loss:0.074430
Epoch [1/10], Iter [2682/3125], train_loss:0.064221
Epoch [1/10], Iter [2683/3125], train_loss:0.033731
Epoch [1/10], Iter [2684/3125], train_loss:0.057155
Epoch [1/10], Iter [2685/3125], train_loss:0.071050
Epoch [1/10], Iter [2686/3125], train_loss:0.031468
Epoch [1/10], Iter [2687/3125], train_loss:0.061247
Epoch [1/10], Iter [2688/3125], train_loss:0.033162
Epoch [1/10], Iter [2689/3125], train_loss:0.053674
Epoch [1/10], Iter [2690/3125], train_loss:0.052903
Epoch [1/10], Iter [2691/3125], train_loss:0.053036
Epoch [1/10], Iter [2692/3125], train_loss:0.031536
Epoch [1/10], Iter [2693/3125], train_loss:0.047191
Epoch [1/10], Iter [2694/3125], train_loss:0.053092
Epoch [1/10], Iter [2695/3125], train_loss:0.046388
Epoch [1/10], Iter [2696/3125], train_loss:0.081545
Epoch [1/10], Iter [2697/3125], train_loss:0.031258
Epoch [1/10], Iter [2698/3125], train_loss:0.065705
Epoch [1/10], Iter [2699/3125], train_loss:0.085829
Epoch [1/10], Iter [2700/3125], train_loss:0.036830
Epoch [1/10], Iter [2701/3125], train_loss:0.039658
Epoch [1/10], Iter [2702/3125], train_loss:0.034230
Epoch [1/10], Iter [2703/3125], train_loss:0.046603
Epoch [1/10], Iter [2704/3125], train_loss:0.062321
Epoch [1/10], Iter [2705/3125], train_loss:0.074843
Epoch [1/10], Iter [2706/3125], train_loss:0.064365
Epoch [1/10], Iter [2707/3125], train_loss:0.041580
Epoch [1/10], Iter [2708/3125], train_loss:0.042753
Epoch [1/10], Iter [2709/3125], train_loss:0.054325
Epoch [1/10], Iter [2710/3125], train_loss:0.029269
Epoch [1/10], Iter [2711/3125], train_loss:0.056201
Epoch [1/10], Iter [2712/3125], train_loss:0.032027
Epoch [1/10], Iter [2713/3125], train_loss:0.041384
Epoch [1/10], Iter [2714/3125], train_loss:0.042245
Epoch [1/10], Iter [2715/3125], train_loss:0.049180
Epoch [1/10], Iter [2716/3125], train_loss:0.071382
Epoch [1/10], Iter [2717/3125], train_loss:0.053056
Epoch [1/10], Iter [2718/3125], train_loss:0.076437
Epoch [1/10], Iter [2719/3125], train_loss:0.036449
Epoch [1/10], Iter [2720/3125], train_loss:0.037378
Epoch [1/10], Iter [2721/3125], train_loss:0.056445
Epoch [1/10], Iter [2722/3125], train_loss:0.070102
Epoch [1/10], Iter [2723/3125], train_loss:0.032661
Epoch [1/10], Iter [2724/3125], train_loss:0.045753
Epoch [1/10], Iter [2725/3125], train_loss:0.051136
Epoch [1/10], Iter [2726/3125], train_loss:0.048787
Epoch [1/10], Iter [2727/3125], train_loss:0.078822
Epoch [1/10], Iter [2728/3125], train_loss:0.053859
Epoch [1/10], Iter [2729/3125], train_loss:0.061877
Epoch [1/10], Iter [2730/3125], train_loss:0.068190
Epoch [1/10], Iter [2731/3125], train_loss:0.059085
Epoch [1/10], Iter [2732/3125], train_loss:0.041527
Epoch [1/10], Iter [2733/3125], train_loss:0.037386
Epoch [1/10], Iter [2734/3125], train_loss:0.045102
Epoch [1/10], Iter [2735/3125], train_loss:0.072924
Epoch [1/10], Iter [2736/3125], train_loss:0.024766
Epoch [1/10], Iter [2737/3125], train_loss:0.036317
Epoch [1/10], Iter [2738/3125], train_loss:0.060391
Epoch [1/10], Iter [2739/3125], train_loss:0.026071
Epoch [1/10], Iter [2740/3125], train_loss:0.045086
Epoch [1/10], Iter [2741/3125], train_loss:0.060746
Epoch [1/10], Iter [2742/3125], train_loss:0.037758
Epoch [1/10], Iter [2743/3125], train_loss:0.042991
Epoch [1/10], Iter [2744/3125], train_loss:0.057417
Epoch [1/10], Iter [2745/3125], train_loss:0.029067
Epoch [1/10], Iter [2746/3125], train_loss:0.095886
Epoch [1/10], Iter [2747/3125], train_loss:0.033592
Epoch [1/10], Iter [2748/3125], train_loss:0.043915
Epoch [1/10], Iter [2749/3125], train_loss:0.085850
Epoch [1/10], Iter [2750/3125], train_loss:0.066093
Epoch [1/10], Iter [2751/3125], train_loss:0.062001
Epoch [1/10], Iter [2752/3125], train_loss:0.069263
Epoch [1/10], Iter [2753/3125], train_loss:0.041522
Epoch [1/10], Iter [2754/3125], train_loss:0.056623
Epoch [1/10], Iter [2755/3125], train_loss:0.076867
Epoch [1/10], Iter [2756/3125], train_loss:0.063004
Epoch [1/10], Iter [2757/3125], train_loss:0.055485
Epoch [1/10], Iter [2758/3125], train_loss:0.066020
Epoch [1/10], Iter [2759/3125], train_loss:0.033939
Epoch [1/10], Iter [2760/3125], train_loss:0.032806
Epoch [1/10], Iter [2761/3125], train_loss:0.054655
Epoch [1/10], Iter [2762/3125], train_loss:0.050211
Epoch [1/10], Iter [2763/3125], train_loss:0.025504
Epoch [1/10], Iter [2764/3125], train_loss:0.052584
Epoch [1/10], Iter [2765/3125], train_loss:0.029184
Epoch [1/10], Iter [2766/3125], train_loss:0.020083
Epoch [1/10], Iter [2767/3125], train_loss:0.027875
Epoch [1/10], Iter [2768/3125], train_loss:0.024596
Epoch [1/10], Iter [2769/3125], train_loss:0.055002
Epoch [1/10], Iter [2770/3125], train_loss:0.055419
Epoch [1/10], Iter [2771/3125], train_loss:0.024973
Epoch [1/10], Iter [2772/3125], train_loss:0.086723
Epoch [1/10], Iter [2773/3125], train_loss:0.048133
Epoch [1/10], Iter [2774/3125], train_loss:0.046027
Epoch [1/10], Iter [2775/3125], train_loss:0.047695
Epoch [1/10], Iter [2776/3125], train_loss:0.037621
Epoch [1/10], Iter [2777/3125], train_loss:0.049847
Epoch [1/10], Iter [2778/3125], train_loss:0.050305
Epoch [1/10], Iter [2779/3125], train_loss:0.028408
Epoch [1/10], Iter [2780/3125], train_loss:0.057841
Epoch [1/10], Iter [2781/3125], train_loss:0.037195
Epoch [1/10], Iter [2782/3125], train_loss:0.046566
Epoch [1/10], Iter [2783/3125], train_loss:0.059322
Epoch [1/10], Iter [2784/3125], train_loss:0.089970
Epoch [1/10], Iter [2785/3125], train_loss:0.035622
Epoch [1/10], Iter [2786/3125], train_loss:0.036376
Epoch [1/10], Iter [2787/3125], train_loss:0.049406
Epoch [1/10], Iter [2788/3125], train_loss:0.027285
Epoch [1/10], Iter [2789/3125], train_loss:0.024182
Epoch [1/10], Iter [2790/3125], train_loss:0.058590
Epoch [1/10], Iter [2791/3125], train_loss:0.031623
Epoch [1/10], Iter [2792/3125], train_loss:0.064973
Epoch [1/10], Iter [2793/3125], train_loss:0.083880
Epoch [1/10], Iter [2794/3125], train_loss:0.063413
Epoch [1/10], Iter [2795/3125], train_loss:0.027198
Epoch [1/10], Iter [2796/3125], train_loss:0.065740
Epoch [1/10], Iter [2797/3125], train_loss:0.045814
Epoch [1/10], Iter [2798/3125], train_loss:0.058582
Epoch [1/10], Iter [2799/3125], train_loss:0.037425
Epoch [1/10], Iter [2800/3125], train_loss:0.040245
Epoch [1/10], Iter [2801/3125], train_loss:0.069127
Epoch [1/10], Iter [2802/3125], train_loss:0.038190
Epoch [1/10], Iter [2803/3125], train_loss:0.076748
Epoch [1/10], Iter [2804/3125], train_loss:0.063528
Epoch [1/10], Iter [2805/3125], train_loss:0.050070
Epoch [1/10], Iter [2806/3125], train_loss:0.043468
Epoch [1/10], Iter [2807/3125], train_loss:0.037768
Epoch [1/10], Iter [2808/3125], train_loss:0.069925
Epoch [1/10], Iter [2809/3125], train_loss:0.027971
Epoch [1/10], Iter [2810/3125], train_loss:0.045305
Epoch [1/10], Iter [2811/3125], train_loss:0.072035
Epoch [1/10], Iter [2812/3125], train_loss:0.027901
Epoch [1/10], Iter [2813/3125], train_loss:0.055258
Epoch [1/10], Iter [2814/3125], train_loss:0.033380
Epoch [1/10], Iter [2815/3125], train_loss:0.035067
Epoch [1/10], Iter [2816/3125], train_loss:0.062196
Epoch [1/10], Iter [2817/3125], train_loss:0.031055
Epoch [1/10], Iter [2818/3125], train_loss:0.027535
Epoch [1/10], Iter [2819/3125], train_loss:0.074925
Epoch [1/10], Iter [2820/3125], train_loss:0.014863
Epoch [1/10], Iter [2821/3125], train_loss:0.040033
Epoch [1/10], Iter [2822/3125], train_loss:0.073055
Epoch [1/10], Iter [2823/3125], train_loss:0.044778
Epoch [1/10], Iter [2824/3125], train_loss:0.041350
Epoch [1/10], Iter [2825/3125], train_loss:0.045701
Epoch [1/10], Iter [2826/3125], train_loss:0.069052
Epoch [1/10], Iter [2827/3125], train_loss:0.070689
Epoch [1/10], Iter [2828/3125], train_loss:0.073792
Epoch [1/10], Iter [2829/3125], train_loss:0.027273
Epoch [1/10], Iter [2830/3125], train_loss:0.070355
Epoch [1/10], Iter [2831/3125], train_loss:0.050928
Epoch [1/10], Iter [2832/3125], train_loss:0.063157
Epoch [1/10], Iter [2833/3125], train_loss:0.052722
Epoch [1/10], Iter [2834/3125], train_loss:0.066621
Epoch [1/10], Iter [2835/3125], train_loss:0.049870
Epoch [1/10], Iter [2836/3125], train_loss:0.045198
Epoch [1/10], Iter [2837/3125], train_loss:0.047708
Epoch [1/10], Iter [2838/3125], train_loss:0.031084
Epoch [1/10], Iter [2839/3125], train_loss:0.054982
Epoch [1/10], Iter [2840/3125], train_loss:0.062080
Epoch [1/10], Iter [2841/3125], train_loss:0.052313
Epoch [1/10], Iter [2842/3125], train_loss:0.027638
Epoch [1/10], Iter [2843/3125], train_loss:0.069474
Epoch [1/10], Iter [2844/3125], train_loss:0.051465
Epoch [1/10], Iter [2845/3125], train_loss:0.047240
Epoch [1/10], Iter [2846/3125], train_loss:0.043358
Epoch [1/10], Iter [2847/3125], train_loss:0.046753
Epoch [1/10], Iter [2848/3125], train_loss:0.059748
Epoch [1/10], Iter [2849/3125], train_loss:0.032166
Epoch [1/10], Iter [2850/3125], train_loss:0.051633
Epoch [1/10], Iter [2851/3125], train_loss:0.032861
Epoch [1/10], Iter [2852/3125], train_loss:0.046734
Epoch [1/10], Iter [2853/3125], train_loss:0.031587
Epoch [1/10], Iter [2854/3125], train_loss:0.028285
Epoch [1/10], Iter [2855/3125], train_loss:0.063359
Epoch [1/10], Iter [2856/3125], train_loss:0.063512
Epoch [1/10], Iter [2857/3125], train_loss:0.048190
Epoch [1/10], Iter [2858/3125], train_loss:0.070683
Epoch [1/10], Iter [2859/3125], train_loss:0.016137
Epoch [1/10], Iter [2860/3125], train_loss:0.045513
Epoch [1/10], Iter [2861/3125], train_loss:0.033696
Epoch [1/10], Iter [2862/3125], train_loss:0.056089
Epoch [1/10], Iter [2863/3125], train_loss:0.040835
Epoch [1/10], Iter [2864/3125], train_loss:0.059301
Epoch [1/10], Iter [2865/3125], train_loss:0.065590
Epoch [1/10], Iter [2866/3125], train_loss:0.054262
Epoch [1/10], Iter [2867/3125], train_loss:0.032128
Epoch [1/10], Iter [2868/3125], train_loss:0.070486
Epoch [1/10], Iter [2869/3125], train_loss:0.050579
Epoch [1/10], Iter [2870/3125], train_loss:0.048929
Epoch [1/10], Iter [2871/3125], train_loss:0.059329
Epoch [1/10], Iter [2872/3125], train_loss:0.059987
Epoch [1/10], Iter [2873/3125], train_loss:0.038087
Epoch [1/10], Iter [2874/3125], train_loss:0.042215
Epoch [1/10], Iter [2875/3125], train_loss:0.037359
Epoch [1/10], Iter [2876/3125], train_loss:0.064945
Epoch [1/10], Iter [2877/3125], train_loss:0.032644
Epoch [1/10], Iter [2878/3125], train_loss:0.035471
Epoch [1/10], Iter [2879/3125], train_loss:0.054034
Epoch [1/10], Iter [2880/3125], train_loss:0.055840
Epoch [1/10], Iter [2881/3125], train_loss:0.040988
Epoch [1/10], Iter [2882/3125], train_loss:0.076851
Epoch [1/10], Iter [2883/3125], train_loss:0.084683
Epoch [1/10], Iter [2884/3125], train_loss:0.052963
Epoch [1/10], Iter [2885/3125], train_loss:0.033718
Epoch [1/10], Iter [2886/3125], train_loss:0.047949
Epoch [1/10], Iter [2887/3125], train_loss:0.066821
Epoch [1/10], Iter [2888/3125], train_loss:0.062198
Epoch [1/10], Iter [2889/3125], train_loss:0.064902
Epoch [1/10], Iter [2890/3125], train_loss:0.057373
Epoch [1/10], Iter [2891/3125], train_loss:0.048909
Epoch [1/10], Iter [2892/3125], train_loss:0.047169
Epoch [1/10], Iter [2893/3125], train_loss:0.037598
Epoch [1/10], Iter [2894/3125], train_loss:0.044367
Epoch [1/10], Iter [2895/3125], train_loss:0.059186
Epoch [1/10], Iter [2896/3125], train_loss:0.027673
Epoch [1/10], Iter [2897/3125], train_loss:0.046781
Epoch [1/10], Iter [2898/3125], train_loss:0.044963
Epoch [1/10], Iter [2899/3125], train_loss:0.053782
Epoch [1/10], Iter [2900/3125], train_loss:0.037537
Epoch [1/10], Iter [2901/3125], train_loss:0.043916
Epoch [1/10], Iter [2902/3125], train_loss:0.056527
Epoch [1/10], Iter [2903/3125], train_loss:0.025347
Epoch [1/10], Iter [2904/3125], train_loss:0.038642
Epoch [1/10], Iter [2905/3125], train_loss:0.066414
Epoch [1/10], Iter [2906/3125], train_loss:0.041623
Epoch [1/10], Iter [2907/3125], train_loss:0.050016
Epoch [1/10], Iter [2908/3125], train_loss:0.043550
Epoch [1/10], Iter [2909/3125], train_loss:0.039868
Epoch [1/10], Iter [2910/3125], train_loss:0.026067
Epoch [1/10], Iter [2911/3125], train_loss:0.045635
Epoch [1/10], Iter [2912/3125], train_loss:0.070421
Epoch [1/10], Iter [2913/3125], train_loss:0.063436
Epoch [1/10], Iter [2914/3125], train_loss:0.049509
Epoch [1/10], Iter [2915/3125], train_loss:0.071456
Epoch [1/10], Iter [2916/3125], train_loss:0.029413
Epoch [1/10], Iter [2917/3125], train_loss:0.042938
Epoch [1/10], Iter [2918/3125], train_loss:0.060789
Epoch [1/10], Iter [2919/3125], train_loss:0.035195
Epoch [1/10], Iter [2920/3125], train_loss:0.049221
Epoch [1/10], Iter [2921/3125], train_loss:0.032330
Epoch [1/10], Iter [2922/3125], train_loss:0.037042
Epoch [1/10], Iter [2923/3125], train_loss:0.065629
Epoch [1/10], Iter [2924/3125], train_loss:0.022151
Epoch [1/10], Iter [2925/3125], train_loss:0.056095
Epoch [1/10], Iter [2926/3125], train_loss:0.034682
Epoch [1/10], Iter [2927/3125], train_loss:0.081066
Epoch [1/10], Iter [2928/3125], train_loss:0.038369
Epoch [1/10], Iter [2929/3125], train_loss:0.025391
Epoch [1/10], Iter [2930/3125], train_loss:0.043224
Epoch [1/10], Iter [2931/3125], train_loss:0.073949
Epoch [1/10], Iter [2932/3125], train_loss:0.062411
Epoch [1/10], Iter [2933/3125], train_loss:0.048195
Epoch [1/10], Iter [2934/3125], train_loss:0.041265
Epoch [1/10], Iter [2935/3125], train_loss:0.051641
Epoch [1/10], Iter [2936/3125], train_loss:0.051737
Epoch [1/10], Iter [2937/3125], train_loss:0.085035
Epoch [1/10], Iter [2938/3125], train_loss:0.041058
Epoch [1/10], Iter [2939/3125], train_loss:0.052639
Epoch [1/10], Iter [2940/3125], train_loss:0.067252
Epoch [1/10], Iter [2941/3125], train_loss:0.067398
Epoch [1/10], Iter [2942/3125], train_loss:0.035560
Epoch [1/10], Iter [2943/3125], train_loss:0.026009
Epoch [1/10], Iter [2944/3125], train_loss:0.028872
Epoch [1/10], Iter [2945/3125], train_loss:0.100868
Epoch [1/10], Iter [2946/3125], train_loss:0.073545
Epoch [1/10], Iter [2947/3125], train_loss:0.064018
Epoch [1/10], Iter [2948/3125], train_loss:0.038802
Epoch [1/10], Iter [2949/3125], train_loss:0.035678
Epoch [1/10], Iter [2950/3125], train_loss:0.057404
Epoch [1/10], Iter [2951/3125], train_loss:0.038700
Epoch [1/10], Iter [2952/3125], train_loss:0.066487
Epoch [1/10], Iter [2953/3125], train_loss:0.036224
Epoch [1/10], Iter [2954/3125], train_loss:0.049169
Epoch [1/10], Iter [2955/3125], train_loss:0.060712
Epoch [1/10], Iter [2956/3125], train_loss:0.054164
Epoch [1/10], Iter [2957/3125], train_loss:0.045852
Epoch [1/10], Iter [2958/3125], train_loss:0.046974
Epoch [1/10], Iter [2959/3125], train_loss:0.046566
Epoch [1/10], Iter [2960/3125], train_loss:0.029474
Epoch [1/10], Iter [2961/3125], train_loss:0.048267
Epoch [1/10], Iter [2962/3125], train_loss:0.093090
Epoch [1/10], Iter [2963/3125], train_loss:0.059621
Epoch [1/10], Iter [2964/3125], train_loss:0.053808
Epoch [1/10], Iter [2965/3125], train_loss:0.019410
Epoch [1/10], Iter [2966/3125], train_loss:0.080236
Epoch [1/10], Iter [2967/3125], train_loss:0.048073
Epoch [1/10], Iter [2968/3125], train_loss:0.045536
Epoch [1/10], Iter [2969/3125], train_loss:0.037549
Epoch [1/10], Iter [2970/3125], train_loss:0.077696
Epoch [1/10], Iter [2971/3125], train_loss:0.044552
Epoch [1/10], Iter [2972/3125], train_loss:0.028185
Epoch [1/10], Iter [2973/3125], train_loss:0.027866
Epoch [1/10], Iter [2974/3125], train_loss:0.047479
Epoch [1/10], Iter [2975/3125], train_loss:0.047819
Epoch [1/10], Iter [2976/3125], train_loss:0.040483
Epoch [1/10], Iter [2977/3125], train_loss:0.070177
Epoch [1/10], Iter [2978/3125], train_loss:0.021798
Epoch [1/10], Iter [2979/3125], train_loss:0.041524
Epoch [1/10], Iter [2980/3125], train_loss:0.038104
Epoch [1/10], Iter [2981/3125], train_loss:0.050260
Epoch [1/10], Iter [2982/3125], train_loss:0.047825
Epoch [1/10], Iter [2983/3125], train_loss:0.059096
Epoch [1/10], Iter [2984/3125], train_loss:0.036488
Epoch [1/10], Iter [2985/3125], train_loss:0.048905
Epoch [1/10], Iter [2986/3125], train_loss:0.092370
Epoch [1/10], Iter [2987/3125], train_loss:0.065375
Epoch [1/10], Iter [2988/3125], train_loss:0.050387
Epoch [1/10], Iter [2989/3125], train_loss:0.040478
Epoch [1/10], Iter [2990/3125], train_loss:0.070799
Epoch [1/10], Iter [2991/3125], train_loss:0.074366
Epoch [1/10], Iter [2992/3125], train_loss:0.035977
Epoch [1/10], Iter [2993/3125], train_loss:0.050263
Epoch [1/10], Iter [2994/3125], train_loss:0.038603
Epoch [1/10], Iter [2995/3125], train_loss:0.091508
Epoch [1/10], Iter [2996/3125], train_loss:0.041844
Epoch [1/10], Iter [2997/3125], train_loss:0.037022
Epoch [1/10], Iter [2998/3125], train_loss:0.035034
Epoch [1/10], Iter [2999/3125], train_loss:0.035311
Epoch [1/10], Iter [3000/3125], train_loss:0.027116
Epoch [1/10], Iter [3001/3125], train_loss:0.029279
Epoch [1/10], Iter [3002/3125], train_loss:0.033700
Epoch [1/10], Iter [3003/3125], train_loss:0.058413
Epoch [1/10], Iter [3004/3125], train_loss:0.023097
Epoch [1/10], Iter [3005/3125], train_loss:0.045443
Epoch [1/10], Iter [3006/3125], train_loss:0.029848
Epoch [1/10], Iter [3007/3125], train_loss:0.052713
Epoch [1/10], Iter [3008/3125], train_loss:0.035926
Epoch [1/10], Iter [3009/3125], train_loss:0.058838
Epoch [1/10], Iter [3010/3125], train_loss:0.056548
Epoch [1/10], Iter [3011/3125], train_loss:0.039738
Epoch [1/10], Iter [3012/3125], train_loss:0.053625
Epoch [1/10], Iter [3013/3125], train_loss:0.032034
Epoch [1/10], Iter [3014/3125], train_loss:0.099142
Epoch [1/10], Iter [3015/3125], train_loss:0.041366
Epoch [1/10], Iter [3016/3125], train_loss:0.041256
Epoch [1/10], Iter [3017/3125], train_loss:0.037890
Epoch [1/10], Iter [3018/3125], train_loss:0.051505
Epoch [1/10], Iter [3019/3125], train_loss:0.032262
Epoch [1/10], Iter [3020/3125], train_loss:0.108767
Epoch [1/10], Iter [3021/3125], train_loss:0.039950
Epoch [1/10], Iter [3022/3125], train_loss:0.074630
Epoch [1/10], Iter [3023/3125], train_loss:0.074800
Epoch [1/10], Iter [3024/3125], train_loss:0.068196
Epoch [1/10], Iter [3025/3125], train_loss:0.039287
Epoch [1/10], Iter [3026/3125], train_loss:0.052125
Epoch [1/10], Iter [3027/3125], train_loss:0.025400
Epoch [1/10], Iter [3028/3125], train_loss:0.066438
Epoch [1/10], Iter [3029/3125], train_loss:0.038479
Epoch [1/10], Iter [3030/3125], train_loss:0.057109
Epoch [1/10], Iter [3031/3125], train_loss:0.034795
Epoch [1/10], Iter [3032/3125], train_loss:0.027901
Epoch [1/10], Iter [3033/3125], train_loss:0.050128
Epoch [1/10], Iter [3034/3125], train_loss:0.032854
Epoch [1/10], Iter [3035/3125], train_loss:0.053708
Epoch [1/10], Iter [3036/3125], train_loss:0.088014
Epoch [1/10], Iter [3037/3125], train_loss:0.075370
Epoch [1/10], Iter [3038/3125], train_loss:0.075677
Epoch [1/10], Iter [3039/3125], train_loss:0.063172
Epoch [1/10], Iter [3040/3125], train_loss:0.076501
Epoch [1/10], Iter [3041/3125], train_loss:0.058156
Epoch [1/10], Iter [3042/3125], train_loss:0.061623
Epoch [1/10], Iter [3043/3125], train_loss:0.066724
Epoch [1/10], Iter [3044/3125], train_loss:0.053383
Epoch [1/10], Iter [3045/3125], train_loss:0.050633
Epoch [1/10], Iter [3046/3125], train_loss:0.058951
Epoch [1/10], Iter [3047/3125], train_loss:0.042557
Epoch [1/10], Iter [3048/3125], train_loss:0.030441
Epoch [1/10], Iter [3049/3125], train_loss:0.024813
Epoch [1/10], Iter [3050/3125], train_loss:0.033426
Epoch [1/10], Iter [3051/3125], train_loss:0.055847
Epoch [1/10], Iter [3052/3125], train_loss:0.044011
Epoch [1/10], Iter [3053/3125], train_loss:0.027693
Epoch [1/10], Iter [3054/3125], train_loss:0.051109
Epoch [1/10], Iter [3055/3125], train_loss:0.040254
Epoch [1/10], Iter [3056/3125], train_loss:0.022783
Epoch [1/10], Iter [3057/3125], train_loss:0.052132
Epoch [1/10], Iter [3058/3125], train_loss:0.056355
Epoch [1/10], Iter [3059/3125], train_loss:0.058088
Epoch [1/10], Iter [3060/3125], train_loss:0.031884
Epoch [1/10], Iter [3061/3125], train_loss:0.049938
Epoch [1/10], Iter [3062/3125], train_loss:0.039419
Epoch [1/10], Iter [3063/3125], train_loss:0.083298
Epoch [1/10], Iter [3064/3125], train_loss:0.052872
Epoch [1/10], Iter [3065/3125], train_loss:0.035879
Epoch [1/10], Iter [3066/3125], train_loss:0.040194
Epoch [1/10], Iter [3067/3125], train_loss:0.053528
Epoch [1/10], Iter [3068/3125], train_loss:0.036000
Epoch [1/10], Iter [3069/3125], train_loss:0.039297
Epoch [1/10], Iter [3070/3125], train_loss:0.058124
Epoch [1/10], Iter [3071/3125], train_loss:0.032619
Epoch [1/10], Iter [3072/3125], train_loss:0.056250
Epoch [1/10], Iter [3073/3125], train_loss:0.053652
Epoch [1/10], Iter [3074/3125], train_loss:0.033999
Epoch [1/10], Iter [3075/3125], train_loss:0.041154
Epoch [1/10], Iter [3076/3125], train_loss:0.064491
Epoch [1/10], Iter [3077/3125], train_loss:0.051499
Epoch [1/10], Iter [3078/3125], train_loss:0.072850
Epoch [1/10], Iter [3079/3125], train_loss:0.074374
Epoch [1/10], Iter [3080/3125], train_loss:0.037571
Epoch [1/10], Iter [3081/3125], train_loss:0.043772
Epoch [1/10], Iter [3082/3125], train_loss:0.042835
Epoch [1/10], Iter [3083/3125], train_loss:0.049374
Epoch [1/10], Iter [3084/3125], train_loss:0.069075
Epoch [1/10], Iter [3085/3125], train_loss:0.028113
Epoch [1/10], Iter [3086/3125], train_loss:0.037884
Epoch [1/10], Iter [3087/3125], train_loss:0.050082
Epoch [1/10], Iter [3088/3125], train_loss:0.063452
Epoch [1/10], Iter [3089/3125], train_loss:0.053441
Epoch [1/10], Iter [3090/3125], train_loss:0.041038
Epoch [1/10], Iter [3091/3125], train_loss:0.059465
Epoch [1/10], Iter [3092/3125], train_loss:0.027648
Epoch [1/10], Iter [3093/3125], train_loss:0.034605
Epoch [1/10], Iter [3094/3125], train_loss:0.019859
Epoch [1/10], Iter [3095/3125], train_loss:0.031989
Epoch [1/10], Iter [3096/3125], train_loss:0.051489
Epoch [1/10], Iter [3097/3125], train_loss:0.056322
Epoch [1/10], Iter [3098/3125], train_loss:0.046863
Epoch [1/10], Iter [3099/3125], train_loss:0.047653
Epoch [1/10], Iter [3100/3125], train_loss:0.050260
Epoch [1/10], Iter [3101/3125], train_loss:0.080984
Epoch [1/10], Iter [3102/3125], train_loss:0.039387
Epoch [1/10], Iter [3103/3125], train_loss:0.029410
Epoch [1/10], Iter [3104/3125], train_loss:0.038941
Epoch [1/10], Iter [3105/3125], train_loss:0.043713
Epoch [1/10], Iter [3106/3125], train_loss:0.037539
Epoch [1/10], Iter [3107/3125], train_loss:0.025358
Epoch [1/10], Iter [3108/3125], train_loss:0.071836
Epoch [1/10], Iter [3109/3125], train_loss:0.056706
Epoch [1/10], Iter [3110/3125], train_loss:0.033099
Epoch [1/10], Iter [3111/3125], train_loss:0.037032
Epoch [1/10], Iter [3112/3125], train_loss:0.038965
Epoch [1/10], Iter [3113/3125], train_loss:0.041378
Epoch [1/10], Iter [3114/3125], train_loss:0.049832
Epoch [1/10], Iter [3115/3125], train_loss:0.044040
Epoch [1/10], Iter [3116/3125], train_loss:0.029385
Epoch [1/10], Iter [3117/3125], train_loss:0.059979
Epoch [1/10], Iter [3118/3125], train_loss:0.067147
Epoch [1/10], Iter [3119/3125], train_loss:0.057981
Epoch [1/10], Iter [3120/3125], train_loss:0.028045
Epoch [1/10], Iter [3121/3125], train_loss:0.042211
Epoch [1/10], Iter [3122/3125], train_loss:0.056431
Epoch [1/10], Iter [3123/3125], train_loss:0.044317
Epoch [1/10], Iter [3124/3125], train_loss:0.054007
Epoch [1/10], Iter [3125/3125], train_loss:0.042914---------------------------------------------------------------------------NameError Traceback (most recent call last)~\AppData\Local\Temp/ipykernel_14844/2960384600.py in <module>40 test_total_correct = 041 test_total_num = 0
---> 42 for iter,(images,labels) in enumerate(test_loader):43 images = images.to(device)44 labels = labels.to(device)NameError: name 'test_loader' is not defined
2、动态调整学习率
2.1 torch.optim.lr_scheduler
学习率选择的问题:
- 1、学习率设置过小,会极大降低收敛速度,增加训练时间
- 2、学习率设置太大,可能导致参数在最优解两侧来回振荡
以上问题都是学习率设置不满足模型训练的需求,解决方案:
- PyTorch中提供了scheduler
官方API提供的torch.optim.lr_scheduler动态学习率:
-
lr_scheduler.LambdaLR
-
lr_scheduler.MultiplicativeLR
-
lr_scheduler.StepLR
-
lr_scheduler.MultiStepLR
-
lr_scheduler.ExponentialLR
-
lr_scheduler.CosineAnnealingLR
-
lr_scheduler.ReduceLROnPlateau
-
lr_scheduler.CyclicLR
-
lr_scheduler.OneCycleLR
-
lr_scheduler.CosineAnnealingWarmRestarts
2.2、torch.optim.lr_scheduler.LambdaLR
torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda, last_epoch=- 1, verbose=False)
# LambdaLR 实现
lr_lambda = f(epoch)
new_lr = lr_lambda * init_lr
思想:初始学习率乘以系数,由于每一次乘系数都是乘初始学习率,因此系数往往是epoch的函数。
#伪代码:Assuming optimizer has two groups.lambda1 = lambda epoch: 1 / (epoch+1)scheduler = LambdaLR(optimizer, lr_lambda=lambda1)for epoch in range(100):train(...)validate(...)scheduler.step()
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-f4P8ROuA-1692613806234)(attachment:image-2.png)]
MultiplicativeLR
torch.optim.lr_scheduler.MultiplicativeLR(optimizer, lr_lambda, last_epoch=- 1, verbose=False)
与LambdaLR不同,该方法用前一次的学习率乘以lr_lambda,因此通常lr_lambda函数不需要与epoch有关。
new_lr = lr_lambda * old_lr
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-g2URgkPf-1692613806234)(attachment:image.png)]
2.2、自定义scheduler
官方给的动态学习率调整的API如果均不能满足我们的诉求,应该怎么办?
我们可以通过自定义函数adjust_learning_rate来改变param_group中lr的值
- 1、官方的API均不能满足诉求
- 2、我们根据adjust_learning_rate实现学习率调整方法
# 训练中调用学习率方法
optimizer = torch.optim.SGD(model.parameters(),lr = args.lr,momentum = 0.9)
for epoch in range(10):train(...)validate(...)adjust_learning_rate(optimizer,epoch)
#函数:分段,每隔几(10)段个epoch,第一个epoch为序号0不计,使学习率变乘以0.1的epoch次方数
def adjust_learning_rate(optim, epoch, size=10, gamma=0.1):if (epoch + 1) % size == 0:pow = (epoch + 1) // sizelr = learning_rate * np.power(gamma, pow)for param_group in optim.param_groups:param_group['lr'] = lr
代码实例
- lr_scheduler.LambdaLR
- adjust_learning_rate
#训练&验证
writer = SummaryWriter("../train_skills")
# 定义损失函数和优化器
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
# 损失函数
criterion = nn.CrossEntropyLoss()
# 优化器
optimizer = torch.optim.Adam(Resnet50.parameters(), lr=lr)# 自定义 scheduler
scheduler_my = LambdaLR(optimizer, lr_lambda=lambda epoch: 1/(epoch+1),verbose = True)
print("初始化的学习率:", optimizer.defaults['lr'])epoch = max_epochs
Resnet50 = Resnet50.to(device)
total_step = len(train_loader)
train_all_loss = []
test_all_loss = []for i in range(epoch):Resnet50.train()train_total_loss = 0train_total_num = 0train_total_correct = 0for iter, (images,labels) in enumerate(train_loader):images = images.to(device)labels = labels.to(device)outputs = Resnet50(images)loss = criterion(outputs,labels)train_total_correct += (outputs.argmax(1) == labels).sum().item()#backwordoptimizer.zero_grad()loss.backward()optimizer.step()train_total_num += labels.shape[0]train_total_loss += loss.item()print("Epoch [{}/{}], Iter [{}/{}], train_loss:{:4f}".format(i+1,epoch,iter+1,total_step,loss.item()/labels.shape[0]))writer.add_scalar("lr", optim.param_groups[0]['lr'], i)print("第%d个epoch的学习率:%f" % (epoch, optimizer.param_groups[0]['lr']))scheduler_my.step() #scheduler#自定义调整lr
# adjust_learning_rate(optimizer, i)Resnet50.eval()test_total_loss = 0test_total_correct = 0test_total_num = 0for iter,(images,labels) in enumerate(test_loader):images = images.to(device)labels = labels.to(device)outputs = Resnet50(images)loss = criterion(outputs,labels)test_total_correct += (outputs.argmax(1) == labels).sum().item()test_total_loss += loss.item()test_total_num += labels.shape[0]print("Epoch [{}/{}], train_loss:{:.4f}, train_acc:{:.4f}%, test_loss:{:.4f}, test_acc:{:.4f}%".format(i+1, epoch, train_total_loss / train_total_num, train_total_correct / train_total_num * 100, test_total_loss / test_total_num, test_total_correct / test_total_num * 100))train_all_loss.append(np.round(train_total_loss / train_total_num,4))test_all_loss.append(np.round(test_total_loss / test_total_num,4))
writer.close()
Adjusting learning rate of group 0 to 1.0000e-04.
初始化的学习率: 0.0001
Epoch [1/2], Iter [1/3125], train_loss:0.777986
Epoch [1/2], Iter [2/3125], train_loss:0.662992
Epoch [1/2], Iter [3/3125], train_loss:0.767887
Epoch [1/2], Iter [4/3125], train_loss:0.748286
Epoch [1/2], Iter [5/3125], train_loss:0.686887
Epoch [1/2], Iter [6/3125], train_loss:0.675070
Epoch [1/2], Iter [7/3125], train_loss:0.655532
Epoch [1/2], Iter [8/3125], train_loss:0.713970
Epoch [1/2], Iter [9/3125], train_loss:0.675706
Epoch [1/2], Iter [10/3125], train_loss:0.665308
Epoch [1/2], Iter [11/3125], train_loss:0.670263
Epoch [1/2], Iter [12/3125], train_loss:0.597091
Epoch [1/2], Iter [13/3125], train_loss:0.541138
Epoch [1/2], Iter [14/3125], train_loss:0.471112
Epoch [1/2], Iter [15/3125], train_loss:0.570017
Epoch [1/2], Iter [16/3125], train_loss:0.569556
Epoch [1/2], Iter [17/3125], train_loss:0.552114
Epoch [1/2], Iter [18/3125], train_loss:0.569929
Epoch [1/2], Iter [19/3125], train_loss:0.524716
Epoch [1/2], Iter [20/3125], train_loss:0.522762
Epoch [1/2], Iter [21/3125], train_loss:0.499370
Epoch [1/2], Iter [22/3125], train_loss:0.459812
Epoch [1/2], Iter [23/3125], train_loss:0.407852
Epoch [1/2], Iter [24/3125], train_loss:0.472173
Epoch [1/2], Iter [25/3125], train_loss:0.370801
Epoch [1/2], Iter [26/3125], train_loss:0.459706
Epoch [1/2], Iter [27/3125], train_loss:0.403983
Epoch [1/2], Iter [28/3125], train_loss:0.372209
Epoch [1/2], Iter [29/3125], train_loss:0.357835
Epoch [1/2], Iter [30/3125], train_loss:0.501332
Epoch [1/2], Iter [31/3125], train_loss:0.354409
Epoch [1/2], Iter [32/3125], train_loss:0.352994
Epoch [1/2], Iter [33/3125], train_loss:0.359231
Epoch [1/2], Iter [34/3125], train_loss:0.378708
Epoch [1/2], Iter [35/3125], train_loss:0.445062
Epoch [1/2], Iter [36/3125], train_loss:0.345325
Epoch [1/2], Iter [37/3125], train_loss:0.290598
Epoch [1/2], Iter [38/3125], train_loss:0.355161
Epoch [1/2], Iter [39/3125], train_loss:0.295590
Epoch [1/2], Iter [40/3125], train_loss:0.269099
Epoch [1/2], Iter [41/3125], train_loss:0.339802
Epoch [1/2], Iter [42/3125], train_loss:0.251694
Epoch [1/2], Iter [43/3125], train_loss:0.328401
Epoch [1/2], Iter [44/3125], train_loss:0.257955
Epoch [1/2], Iter [45/3125], train_loss:0.325558
Epoch [1/2], Iter [46/3125], train_loss:0.342137
Epoch [1/2], Iter [47/3125], train_loss:0.259149
Epoch [1/2], Iter [48/3125], train_loss:0.249372
Epoch [1/2], Iter [49/3125], train_loss:0.257600
Epoch [1/2], Iter [50/3125], train_loss:0.289483
Epoch [1/2], Iter [51/3125], train_loss:0.301230
Epoch [1/2], Iter [52/3125], train_loss:0.217237
Epoch [1/2], Iter [53/3125], train_loss:0.279841
Epoch [1/2], Iter [54/3125], train_loss:0.261875
Epoch [1/2], Iter [55/3125], train_loss:0.216530
Epoch [1/2], Iter [56/3125], train_loss:0.279174
Epoch [1/2], Iter [57/3125], train_loss:0.188948
Epoch [1/2], Iter [58/3125], train_loss:0.207412
Epoch [1/2], Iter [59/3125], train_loss:0.239609
Epoch [1/2], Iter [60/3125], train_loss:0.195655
Epoch [1/2], Iter [61/3125], train_loss:0.196358
Epoch [1/2], Iter [62/3125], train_loss:0.264320
Epoch [1/2], Iter [63/3125], train_loss:0.193350
Epoch [1/2], Iter [64/3125], train_loss:0.165940
Epoch [1/2], Iter [65/3125], train_loss:0.267849
Epoch [1/2], Iter [66/3125], train_loss:0.221301
Epoch [1/2], Iter [67/3125], train_loss:0.269790
Epoch [1/2], Iter [68/3125], train_loss:0.227033
Epoch [1/2], Iter [69/3125], train_loss:0.156358
Epoch [1/2], Iter [70/3125], train_loss:0.210391
Epoch [1/2], Iter [71/3125], train_loss:0.251990
Epoch [1/2], Iter [72/3125], train_loss:0.177134
Epoch [1/2], Iter [73/3125], train_loss:0.155195
Epoch [1/2], Iter [74/3125], train_loss:0.251515
Epoch [1/2], Iter [75/3125], train_loss:0.159152
Epoch [1/2], Iter [76/3125], train_loss:0.166255
Epoch [1/2], Iter [77/3125], train_loss:0.115882
Epoch [1/2], Iter [78/3125], train_loss:0.175745
Epoch [1/2], Iter [79/3125], train_loss:0.138844
Epoch [1/2], Iter [80/3125], train_loss:0.176611
Epoch [1/2], Iter [81/3125], train_loss:0.161312
Epoch [1/2], Iter [82/3125], train_loss:0.148712
Epoch [1/2], Iter [83/3125], train_loss:0.207151
Epoch [1/2], Iter [84/3125], train_loss:0.111603
Epoch [1/2], Iter [85/3125], train_loss:0.107699
Epoch [1/2], Iter [86/3125], train_loss:0.162084
Epoch [1/2], Iter [87/3125], train_loss:0.199193
Epoch [1/2], Iter [88/3125], train_loss:0.138881
Epoch [1/2], Iter [89/3125], train_loss:0.161221
Epoch [1/2], Iter [90/3125], train_loss:0.149200
Epoch [1/2], Iter [91/3125], train_loss:0.151864
Epoch [1/2], Iter [92/3125], train_loss:0.201360
Epoch [1/2], Iter [93/3125], train_loss:0.169258
Epoch [1/2], Iter [94/3125], train_loss:0.149062
Epoch [1/2], Iter [95/3125], train_loss:0.149584
Epoch [1/2], Iter [96/3125], train_loss:0.145563
Epoch [1/2], Iter [97/3125], train_loss:0.126489
Epoch [1/2], Iter [98/3125], train_loss:0.139146
Epoch [1/2], Iter [99/3125], train_loss:0.138828
Epoch [1/2], Iter [100/3125], train_loss:0.133510
Epoch [1/2], Iter [101/3125], train_loss:0.137596
Epoch [1/2], Iter [102/3125], train_loss:0.130815
Epoch [1/2], Iter [103/3125], train_loss:0.156223
Epoch [1/2], Iter [104/3125], train_loss:0.101501
Epoch [1/2], Iter [105/3125], train_loss:0.119640
Epoch [1/2], Iter [106/3125], train_loss:0.145987
Epoch [1/2], Iter [107/3125], train_loss:0.182159
Epoch [1/2], Iter [108/3125], train_loss:0.134178
Epoch [1/2], Iter [109/3125], train_loss:0.125466
Epoch [1/2], Iter [110/3125], train_loss:0.136854
Epoch [1/2], Iter [111/3125], train_loss:0.114577
Epoch [1/2], Iter [112/3125], train_loss:0.176352
Epoch [1/2], Iter [113/3125], train_loss:0.114336
Epoch [1/2], Iter [114/3125], train_loss:0.132073
Epoch [1/2], Iter [115/3125], train_loss:0.132009
Epoch [1/2], Iter [116/3125], train_loss:0.138485
Epoch [1/2], Iter [117/3125], train_loss:0.131889
Epoch [1/2], Iter [118/3125], train_loss:0.127713
Epoch [1/2], Iter [119/3125], train_loss:0.136108
Epoch [1/2], Iter [120/3125], train_loss:0.099374
Epoch [1/2], Iter [121/3125], train_loss:0.177180
Epoch [1/2], Iter [122/3125], train_loss:0.133789
Epoch [1/2], Iter [123/3125], train_loss:0.108010
Epoch [1/2], Iter [124/3125], train_loss:0.124499
Epoch [1/2], Iter [125/3125], train_loss:0.145130
Epoch [1/2], Iter [126/3125], train_loss:0.139046
Epoch [1/2], Iter [127/3125], train_loss:0.162694
Epoch [1/2], Iter [128/3125], train_loss:0.106318
Epoch [1/2], Iter [129/3125], train_loss:0.136911
Epoch [1/2], Iter [130/3125], train_loss:0.161438
Epoch [1/2], Iter [131/3125], train_loss:0.116436
Epoch [1/2], Iter [132/3125], train_loss:0.145941
Epoch [1/2], Iter [133/3125], train_loss:0.114138
Epoch [1/2], Iter [134/3125], train_loss:0.167708
Epoch [1/2], Iter [135/3125], train_loss:0.137426
Epoch [1/2], Iter [136/3125], train_loss:0.181821
Epoch [1/2], Iter [137/3125], train_loss:0.126747
Epoch [1/2], Iter [138/3125], train_loss:0.161444
Epoch [1/2], Iter [139/3125], train_loss:0.137294
Epoch [1/2], Iter [140/3125], train_loss:0.140909
Epoch [1/2], Iter [141/3125], train_loss:0.127225
Epoch [1/2], Iter [142/3125], train_loss:0.086217
Epoch [1/2], Iter [143/3125], train_loss:0.125356
Epoch [1/2], Iter [144/3125], train_loss:0.152855
Epoch [1/2], Iter [145/3125], train_loss:0.182545
Epoch [1/2], Iter [146/3125], train_loss:0.076299
Epoch [1/2], Iter [147/3125], train_loss:0.154243
Epoch [1/2], Iter [148/3125], train_loss:0.101580
Epoch [1/2], Iter [149/3125], train_loss:0.136949
Epoch [1/2], Iter [150/3125], train_loss:0.137361
Epoch [1/2], Iter [151/3125], train_loss:0.119204
Epoch [1/2], Iter [152/3125], train_loss:0.126940
Epoch [1/2], Iter [153/3125], train_loss:0.127168
Epoch [1/2], Iter [154/3125], train_loss:0.132602
Epoch [1/2], Iter [155/3125], train_loss:0.112731
Epoch [1/2], Iter [156/3125], train_loss:0.128222
Epoch [1/2], Iter [157/3125], train_loss:0.112968
Epoch [1/2], Iter [158/3125], train_loss:0.106631
Epoch [1/2], Iter [159/3125], train_loss:0.131883
Epoch [1/2], Iter [160/3125], train_loss:0.105249
Epoch [1/2], Iter [161/3125], train_loss:0.148656
Epoch [1/2], Iter [162/3125], train_loss:0.115082
Epoch [1/2], Iter [163/3125], train_loss:0.099327
Epoch [1/2], Iter [164/3125], train_loss:0.131512
Epoch [1/2], Iter [165/3125], train_loss:0.121838
Epoch [1/2], Iter [166/3125], train_loss:0.122599
Epoch [1/2], Iter [167/3125], train_loss:0.108223
Epoch [1/2], Iter [168/3125], train_loss:0.157398
Epoch [1/2], Iter [169/3125], train_loss:0.112632
Epoch [1/2], Iter [170/3125], train_loss:0.092063
Epoch [1/2], Iter [171/3125], train_loss:0.092099
Epoch [1/2], Iter [172/3125], train_loss:0.143247
Epoch [1/2], Iter [173/3125], train_loss:0.107952
Epoch [1/2], Iter [174/3125], train_loss:0.150982
Epoch [1/2], Iter [175/3125], train_loss:0.154513
Epoch [1/2], Iter [176/3125], train_loss:0.122460
Epoch [1/2], Iter [177/3125], train_loss:0.130054
Epoch [1/2], Iter [178/3125], train_loss:0.075364
Epoch [1/2], Iter [179/3125], train_loss:0.092844
Epoch [1/2], Iter [180/3125], train_loss:0.131176
Epoch [1/2], Iter [181/3125], train_loss:0.089559
Epoch [1/2], Iter [182/3125], train_loss:0.137490
Epoch [1/2], Iter [183/3125], train_loss:0.148960
Epoch [1/2], Iter [184/3125], train_loss:0.088713
Epoch [1/2], Iter [185/3125], train_loss:0.098040
Epoch [1/2], Iter [186/3125], train_loss:0.159430
Epoch [1/2], Iter [187/3125], train_loss:0.091044
Epoch [1/2], Iter [188/3125], train_loss:0.108532
Epoch [1/2], Iter [189/3125], train_loss:0.089453
Epoch [1/2], Iter [190/3125], train_loss:0.112841
Epoch [1/2], Iter [191/3125], train_loss:0.150818
Epoch [1/2], Iter [192/3125], train_loss:0.112883
Epoch [1/2], Iter [193/3125], train_loss:0.124884
Epoch [1/2], Iter [194/3125], train_loss:0.107502
Epoch [1/2], Iter [195/3125], train_loss:0.099678
Epoch [1/2], Iter [196/3125], train_loss:0.183032
Epoch [1/2], Iter [197/3125], train_loss:0.111150
Epoch [1/2], Iter [198/3125], train_loss:0.136155
Epoch [1/2], Iter [199/3125], train_loss:0.113451
Epoch [1/2], Iter [200/3125], train_loss:0.144825
Epoch [1/2], Iter [201/3125], train_loss:0.133655
Epoch [1/2], Iter [202/3125], train_loss:0.111885
Epoch [1/2], Iter [203/3125], train_loss:0.111356
Epoch [1/2], Iter [204/3125], train_loss:0.107932
Epoch [1/2], Iter [205/3125], train_loss:0.143930
Epoch [1/2], Iter [206/3125], train_loss:0.097970
Epoch [1/2], Iter [207/3125], train_loss:0.088761
Epoch [1/2], Iter [208/3125], train_loss:0.131987
Epoch [1/2], Iter [209/3125], train_loss:0.135780
Epoch [1/2], Iter [210/3125], train_loss:0.096630
Epoch [1/2], Iter [211/3125], train_loss:0.128221
Epoch [1/2], Iter [212/3125], train_loss:0.155038
Epoch [1/2], Iter [213/3125], train_loss:0.099105
Epoch [1/2], Iter [214/3125], train_loss:0.111038
Epoch [1/2], Iter [215/3125], train_loss:0.142604
Epoch [1/2], Iter [216/3125], train_loss:0.145580
Epoch [1/2], Iter [217/3125], train_loss:0.111073
Epoch [1/2], Iter [218/3125], train_loss:0.128455
Epoch [1/2], Iter [219/3125], train_loss:0.096221
Epoch [1/2], Iter [220/3125], train_loss:0.086480
Epoch [1/2], Iter [221/3125], train_loss:0.115596
Epoch [1/2], Iter [222/3125], train_loss:0.093819
Epoch [1/2], Iter [223/3125], train_loss:0.068540
Epoch [1/2], Iter [224/3125], train_loss:0.105397
Epoch [1/2], Iter [225/3125], train_loss:0.081237
Epoch [1/2], Iter [226/3125], train_loss:0.127183
Epoch [1/2], Iter [227/3125], train_loss:0.133673
Epoch [1/2], Iter [228/3125], train_loss:0.102121
Epoch [1/2], Iter [229/3125], train_loss:0.124757
Epoch [1/2], Iter [230/3125], train_loss:0.124150
Epoch [1/2], Iter [231/3125], train_loss:0.109962
Epoch [1/2], Iter [232/3125], train_loss:0.121613
Epoch [1/2], Iter [233/3125], train_loss:0.122472
Epoch [1/2], Iter [234/3125], train_loss:0.093679
Epoch [1/2], Iter [235/3125], train_loss:0.104721
Epoch [1/2], Iter [236/3125], train_loss:0.102781
Epoch [1/2], Iter [237/3125], train_loss:0.093572
Epoch [1/2], Iter [238/3125], train_loss:0.094514
Epoch [1/2], Iter [239/3125], train_loss:0.099495
Epoch [1/2], Iter [240/3125], train_loss:0.106375
Epoch [1/2], Iter [241/3125], train_loss:0.111261
Epoch [1/2], Iter [242/3125], train_loss:0.089024
Epoch [1/2], Iter [243/3125], train_loss:0.107102
Epoch [1/2], Iter [244/3125], train_loss:0.098898
Epoch [1/2], Iter [245/3125], train_loss:0.105752
Epoch [1/2], Iter [246/3125], train_loss:0.098761
Epoch [1/2], Iter [247/3125], train_loss:0.110852
Epoch [1/2], Iter [248/3125], train_loss:0.110072
Epoch [1/2], Iter [249/3125], train_loss:0.106461
Epoch [1/2], Iter [250/3125], train_loss:0.123407
Epoch [1/2], Iter [251/3125], train_loss:0.092958
Epoch [1/2], Iter [252/3125], train_loss:0.111045
Epoch [1/2], Iter [253/3125], train_loss:0.129692
Epoch [1/2], Iter [254/3125], train_loss:0.096450
Epoch [1/2], Iter [255/3125], train_loss:0.084925
Epoch [1/2], Iter [256/3125], train_loss:0.141627
Epoch [1/2], Iter [257/3125], train_loss:0.088181
Epoch [1/2], Iter [258/3125], train_loss:0.110038
Epoch [1/2], Iter [259/3125], train_loss:0.132803
Epoch [1/2], Iter [260/3125], train_loss:0.098667
Epoch [1/2], Iter [261/3125], train_loss:0.085513
Epoch [1/2], Iter [262/3125], train_loss:0.121055
Epoch [1/2], Iter [263/3125], train_loss:0.099879
Epoch [1/2], Iter [264/3125], train_loss:0.149433
Epoch [1/2], Iter [265/3125], train_loss:0.116061
Epoch [1/2], Iter [266/3125], train_loss:0.090697
Epoch [1/2], Iter [267/3125], train_loss:0.087413
Epoch [1/2], Iter [268/3125], train_loss:0.146219
Epoch [1/2], Iter [269/3125], train_loss:0.097796
Epoch [1/2], Iter [270/3125], train_loss:0.088155
Epoch [1/2], Iter [271/3125], train_loss:0.107575
Epoch [1/2], Iter [272/3125], train_loss:0.101357
Epoch [1/2], Iter [273/3125], train_loss:0.090542
Epoch [1/2], Iter [274/3125], train_loss:0.092936
Epoch [1/2], Iter [275/3125], train_loss:0.107296
Epoch [1/2], Iter [276/3125], train_loss:0.078067
Epoch [1/2], Iter [277/3125], train_loss:0.099335
Epoch [1/2], Iter [278/3125], train_loss:0.118054
Epoch [1/2], Iter [279/3125], train_loss:0.098823
Epoch [1/2], Iter [280/3125], train_loss:0.100404
Epoch [1/2], Iter [281/3125], train_loss:0.116890
Epoch [1/2], Iter [282/3125], train_loss:0.083836
Epoch [1/2], Iter [283/3125], train_loss:0.134695
Epoch [1/2], Iter [284/3125], train_loss:0.092292
Epoch [1/2], Iter [285/3125], train_loss:0.089188
Epoch [1/2], Iter [286/3125], train_loss:0.103081
Epoch [1/2], Iter [287/3125], train_loss:0.127043
Epoch [1/2], Iter [288/3125], train_loss:0.116650
Epoch [1/2], Iter [289/3125], train_loss:0.121881
Epoch [1/2], Iter [290/3125], train_loss:0.186911
Epoch [1/2], Iter [291/3125], train_loss:0.126078
Epoch [1/2], Iter [292/3125], train_loss:0.091569
Epoch [1/2], Iter [293/3125], train_loss:0.079495
Epoch [1/2], Iter [294/3125], train_loss:0.099240
Epoch [1/2], Iter [295/3125], train_loss:0.118772
Epoch [1/2], Iter [296/3125], train_loss:0.093694
Epoch [1/2], Iter [297/3125], train_loss:0.108655
Epoch [1/2], Iter [298/3125], train_loss:0.095032
Epoch [1/2], Iter [299/3125], train_loss:0.111288
Epoch [1/2], Iter [300/3125], train_loss:0.098187
Epoch [1/2], Iter [301/3125], train_loss:0.097793
Epoch [1/2], Iter [302/3125], train_loss:0.096069
Epoch [1/2], Iter [303/3125], train_loss:0.098303
Epoch [1/2], Iter [304/3125], train_loss:0.053307
Epoch [1/2], Iter [305/3125], train_loss:0.089034
Epoch [1/2], Iter [306/3125], train_loss:0.079592
Epoch [1/2], Iter [307/3125], train_loss:0.127933
Epoch [1/2], Iter [308/3125], train_loss:0.098109
Epoch [1/2], Iter [309/3125], train_loss:0.064728
Epoch [1/2], Iter [310/3125], train_loss:0.173963
Epoch [1/2], Iter [311/3125], train_loss:0.076444
Epoch [1/2], Iter [312/3125], train_loss:0.104166
Epoch [1/2], Iter [313/3125], train_loss:0.098701
Epoch [1/2], Iter [314/3125], train_loss:0.080666
Epoch [1/2], Iter [315/3125], train_loss:0.114130
Epoch [1/2], Iter [316/3125], train_loss:0.077030
Epoch [1/2], Iter [317/3125], train_loss:0.118316
Epoch [1/2], Iter [318/3125], train_loss:0.057820
Epoch [1/2], Iter [319/3125], train_loss:0.126976
Epoch [1/2], Iter [320/3125], train_loss:0.071933
Epoch [1/2], Iter [321/3125], train_loss:0.090767
Epoch [1/2], Iter [322/3125], train_loss:0.090457
Epoch [1/2], Iter [323/3125], train_loss:0.105079
Epoch [1/2], Iter [324/3125], train_loss:0.101791
Epoch [1/2], Iter [325/3125], train_loss:0.106632
Epoch [1/2], Iter [326/3125], train_loss:0.087738
Epoch [1/2], Iter [327/3125], train_loss:0.082531
Epoch [1/2], Iter [328/3125], train_loss:0.123027
Epoch [1/2], Iter [329/3125], train_loss:0.089840
Epoch [1/2], Iter [330/3125], train_loss:0.123866
Epoch [1/2], Iter [331/3125], train_loss:0.139623
Epoch [1/2], Iter [332/3125], train_loss:0.097267
Epoch [1/2], Iter [333/3125], train_loss:0.087837
Epoch [1/2], Iter [334/3125], train_loss:0.079422
Epoch [1/2], Iter [335/3125], train_loss:0.085209
Epoch [1/2], Iter [336/3125], train_loss:0.147867
Epoch [1/2], Iter [337/3125], train_loss:0.149562
Epoch [1/2], Iter [338/3125], train_loss:0.107306
Epoch [1/2], Iter [339/3125], train_loss:0.114367
Epoch [1/2], Iter [340/3125], train_loss:0.075745
Epoch [1/2], Iter [341/3125], train_loss:0.081646
Epoch [1/2], Iter [342/3125], train_loss:0.114543
Epoch [1/2], Iter [343/3125], train_loss:0.107771
Epoch [1/2], Iter [344/3125], train_loss:0.091723
Epoch [1/2], Iter [345/3125], train_loss:0.085628
Epoch [1/2], Iter [346/3125], train_loss:0.069710
Epoch [1/2], Iter [347/3125], train_loss:0.080913
Epoch [1/2], Iter [348/3125], train_loss:0.078024
Epoch [1/2], Iter [349/3125], train_loss:0.132719
Epoch [1/2], Iter [350/3125], train_loss:0.119744
Epoch [1/2], Iter [351/3125], train_loss:0.116647
Epoch [1/2], Iter [352/3125], train_loss:0.109735
Epoch [1/2], Iter [353/3125], train_loss:0.081496
Epoch [1/2], Iter [354/3125], train_loss:0.073368
Epoch [1/2], Iter [355/3125], train_loss:0.111581
Epoch [1/2], Iter [356/3125], train_loss:0.075484
Epoch [1/2], Iter [357/3125], train_loss:0.072975
Epoch [1/2], Iter [358/3125], train_loss:0.062364
Epoch [1/2], Iter [359/3125], train_loss:0.076667
Epoch [1/2], Iter [360/3125], train_loss:0.080340
Epoch [1/2], Iter [361/3125], train_loss:0.063418
Epoch [1/2], Iter [362/3125], train_loss:0.061630
Epoch [1/2], Iter [363/3125], train_loss:0.062767
Epoch [1/2], Iter [364/3125], train_loss:0.084588
Epoch [1/2], Iter [365/3125], train_loss:0.105539
Epoch [1/2], Iter [366/3125], train_loss:0.071236
Epoch [1/2], Iter [367/3125], train_loss:0.087279
Epoch [1/2], Iter [368/3125], train_loss:0.076322
Epoch [1/2], Iter [369/3125], train_loss:0.116615
Epoch [1/2], Iter [370/3125], train_loss:0.100660
Epoch [1/2], Iter [371/3125], train_loss:0.099755
Epoch [1/2], Iter [372/3125], train_loss:0.114215
Epoch [1/2], Iter [373/3125], train_loss:0.112513
Epoch [1/2], Iter [374/3125], train_loss:0.101781
Epoch [1/2], Iter [375/3125], train_loss:0.067294
Epoch [1/2], Iter [376/3125], train_loss:0.098053
Epoch [1/2], Iter [377/3125], train_loss:0.107353
Epoch [1/2], Iter [378/3125], train_loss:0.081777
Epoch [1/2], Iter [379/3125], train_loss:0.080122
Epoch [1/2], Iter [380/3125], train_loss:0.107728
Epoch [1/2], Iter [381/3125], train_loss:0.095094
Epoch [1/2], Iter [382/3125], train_loss:0.083242
Epoch [1/2], Iter [383/3125], train_loss:0.102041
Epoch [1/2], Iter [384/3125], train_loss:0.072550
Epoch [1/2], Iter [385/3125], train_loss:0.088450
Epoch [1/2], Iter [386/3125], train_loss:0.092246
Epoch [1/2], Iter [387/3125], train_loss:0.105446
Epoch [1/2], Iter [388/3125], train_loss:0.127865
Epoch [1/2], Iter [389/3125], train_loss:0.072769
Epoch [1/2], Iter [390/3125], train_loss:0.073997
Epoch [1/2], Iter [391/3125], train_loss:0.066677
Epoch [1/2], Iter [392/3125], train_loss:0.102232
Epoch [1/2], Iter [393/3125], train_loss:0.117690
Epoch [1/2], Iter [394/3125], train_loss:0.084889
Epoch [1/2], Iter [395/3125], train_loss:0.103554
Epoch [1/2], Iter [396/3125], train_loss:0.073418
Epoch [1/2], Iter [397/3125], train_loss:0.096942
Epoch [1/2], Iter [398/3125], train_loss:0.089206
Epoch [1/2], Iter [399/3125], train_loss:0.126500
Epoch [1/2], Iter [400/3125], train_loss:0.119990
Epoch [1/2], Iter [401/3125], train_loss:0.065327
Epoch [1/2], Iter [402/3125], train_loss:0.127086
Epoch [1/2], Iter [403/3125], train_loss:0.089086
Epoch [1/2], Iter [404/3125], train_loss:0.088689
Epoch [1/2], Iter [405/3125], train_loss:0.118437
Epoch [1/2], Iter [406/3125], train_loss:0.111353
Epoch [1/2], Iter [407/3125], train_loss:0.128636
Epoch [1/2], Iter [408/3125], train_loss:0.104118
Epoch [1/2], Iter [409/3125], train_loss:0.090673
Epoch [1/2], Iter [410/3125], train_loss:0.125681
Epoch [1/2], Iter [411/3125], train_loss:0.115205
Epoch [1/2], Iter [412/3125], train_loss:0.077153
Epoch [1/2], Iter [413/3125], train_loss:0.094824
Epoch [1/2], Iter [414/3125], train_loss:0.098783
Epoch [1/2], Iter [415/3125], train_loss:0.087345
Epoch [1/2], Iter [416/3125], train_loss:0.097017
Epoch [1/2], Iter [417/3125], train_loss:0.096015
Epoch [1/2], Iter [418/3125], train_loss:0.075332
Epoch [1/2], Iter [419/3125], train_loss:0.084599
Epoch [1/2], Iter [420/3125], train_loss:0.111044
Epoch [1/2], Iter [421/3125], train_loss:0.093526
Epoch [1/2], Iter [422/3125], train_loss:0.063629
Epoch [1/2], Iter [423/3125], train_loss:0.067428
Epoch [1/2], Iter [424/3125], train_loss:0.079753
Epoch [1/2], Iter [425/3125], train_loss:0.135439
Epoch [1/2], Iter [426/3125], train_loss:0.112857
Epoch [1/2], Iter [427/3125], train_loss:0.074499
Epoch [1/2], Iter [428/3125], train_loss:0.052821
Epoch [1/2], Iter [429/3125], train_loss:0.075851
Epoch [1/2], Iter [430/3125], train_loss:0.104684
Epoch [1/2], Iter [431/3125], train_loss:0.102066
Epoch [1/2], Iter [432/3125], train_loss:0.083621
Epoch [1/2], Iter [433/3125], train_loss:0.064658
Epoch [1/2], Iter [434/3125], train_loss:0.111376
Epoch [1/2], Iter [435/3125], train_loss:0.055758
Epoch [1/2], Iter [436/3125], train_loss:0.128865
Epoch [1/2], Iter [437/3125], train_loss:0.100289
Epoch [1/2], Iter [438/3125], train_loss:0.084247
Epoch [1/2], Iter [439/3125], train_loss:0.073448
Epoch [1/2], Iter [440/3125], train_loss:0.080761
Epoch [1/2], Iter [441/3125], train_loss:0.119340
Epoch [1/2], Iter [442/3125], train_loss:0.173922
Epoch [1/2], Iter [443/3125], train_loss:0.067979
Epoch [1/2], Iter [444/3125], train_loss:0.080348
Epoch [1/2], Iter [445/3125], train_loss:0.132988
Epoch [1/2], Iter [446/3125], train_loss:0.069152
Epoch [1/2], Iter [447/3125], train_loss:0.084873
Epoch [1/2], Iter [448/3125], train_loss:0.088424
Epoch [1/2], Iter [449/3125], train_loss:0.094467
Epoch [1/2], Iter [450/3125], train_loss:0.111121
Epoch [1/2], Iter [451/3125], train_loss:0.067928
Epoch [1/2], Iter [452/3125], train_loss:0.065471
Epoch [1/2], Iter [453/3125], train_loss:0.075276
Epoch [1/2], Iter [454/3125], train_loss:0.076016
Epoch [1/2], Iter [455/3125], train_loss:0.088840
Epoch [1/2], Iter [456/3125], train_loss:0.061118
Epoch [1/2], Iter [457/3125], train_loss:0.079531
Epoch [1/2], Iter [458/3125], train_loss:0.122364
Epoch [1/2], Iter [459/3125], train_loss:0.100249
Epoch [1/2], Iter [460/3125], train_loss:0.073599
Epoch [1/2], Iter [461/3125], train_loss:0.084068
Epoch [1/2], Iter [462/3125], train_loss:0.056314
Epoch [1/2], Iter [463/3125], train_loss:0.079495
Epoch [1/2], Iter [464/3125], train_loss:0.076411
Epoch [1/2], Iter [465/3125], train_loss:0.130830
Epoch [1/2], Iter [466/3125], train_loss:0.086917
Epoch [1/2], Iter [467/3125], train_loss:0.093509
Epoch [1/2], Iter [468/3125], train_loss:0.084006
Epoch [1/2], Iter [469/3125], train_loss:0.070421
Epoch [1/2], Iter [470/3125], train_loss:0.107369
Epoch [1/2], Iter [471/3125], train_loss:0.065467
Epoch [1/2], Iter [472/3125], train_loss:0.069032
Epoch [1/2], Iter [473/3125], train_loss:0.073237
Epoch [1/2], Iter [474/3125], train_loss:0.151757
Epoch [1/2], Iter [475/3125], train_loss:0.097692
Epoch [1/2], Iter [476/3125], train_loss:0.100925
Epoch [1/2], Iter [477/3125], train_loss:0.091285
Epoch [1/2], Iter [478/3125], train_loss:0.103061
Epoch [1/2], Iter [479/3125], train_loss:0.064359
Epoch [1/2], Iter [480/3125], train_loss:0.082491
Epoch [1/2], Iter [481/3125], train_loss:0.057366
Epoch [1/2], Iter [482/3125], train_loss:0.092543
Epoch [1/2], Iter [483/3125], train_loss:0.067777
Epoch [1/2], Iter [484/3125], train_loss:0.067935
Epoch [1/2], Iter [485/3125], train_loss:0.105495
Epoch [1/2], Iter [486/3125], train_loss:0.136604
Epoch [1/2], Iter [487/3125], train_loss:0.092469
Epoch [1/2], Iter [488/3125], train_loss:0.082614
Epoch [1/2], Iter [489/3125], train_loss:0.122642
Epoch [1/2], Iter [490/3125], train_loss:0.064453
Epoch [1/2], Iter [491/3125], train_loss:0.127374
Epoch [1/2], Iter [492/3125], train_loss:0.090427
Epoch [1/2], Iter [493/3125], train_loss:0.076251
Epoch [1/2], Iter [494/3125], train_loss:0.061046
Epoch [1/2], Iter [495/3125], train_loss:0.103997
Epoch [1/2], Iter [496/3125], train_loss:0.109734
Epoch [1/2], Iter [497/3125], train_loss:0.070913
Epoch [1/2], Iter [498/3125], train_loss:0.069599
Epoch [1/2], Iter [499/3125], train_loss:0.078603
Epoch [1/2], Iter [500/3125], train_loss:0.133940
Epoch [1/2], Iter [501/3125], train_loss:0.072970
Epoch [1/2], Iter [502/3125], train_loss:0.075337
Epoch [1/2], Iter [503/3125], train_loss:0.094221
Epoch [1/2], Iter [504/3125], train_loss:0.091344
Epoch [1/2], Iter [505/3125], train_loss:0.085541
Epoch [1/2], Iter [506/3125], train_loss:0.089418
Epoch [1/2], Iter [507/3125], train_loss:0.066250
Epoch [1/2], Iter [508/3125], train_loss:0.112804
Epoch [1/2], Iter [509/3125], train_loss:0.084062
Epoch [1/2], Iter [510/3125], train_loss:0.087550
Epoch [1/2], Iter [511/3125], train_loss:0.073422
Epoch [1/2], Iter [512/3125], train_loss:0.089989
Epoch [1/2], Iter [513/3125], train_loss:0.056597
Epoch [1/2], Iter [514/3125], train_loss:0.084649
Epoch [1/2], Iter [515/3125], train_loss:0.095353
Epoch [1/2], Iter [516/3125], train_loss:0.057524
Epoch [1/2], Iter [517/3125], train_loss:0.086105
Epoch [1/2], Iter [518/3125], train_loss:0.100302
Epoch [1/2], Iter [519/3125], train_loss:0.085303
Epoch [1/2], Iter [520/3125], train_loss:0.097001
Epoch [1/2], Iter [521/3125], train_loss:0.078477
Epoch [1/2], Iter [522/3125], train_loss:0.118421
Epoch [1/2], Iter [523/3125], train_loss:0.094699
Epoch [1/2], Iter [524/3125], train_loss:0.081237
Epoch [1/2], Iter [525/3125], train_loss:0.082480
Epoch [1/2], Iter [526/3125], train_loss:0.082260
Epoch [1/2], Iter [527/3125], train_loss:0.088543
Epoch [1/2], Iter [528/3125], train_loss:0.072576
Epoch [1/2], Iter [529/3125], train_loss:0.095206
Epoch [1/2], Iter [530/3125], train_loss:0.076497
Epoch [1/2], Iter [531/3125], train_loss:0.051827
Epoch [1/2], Iter [532/3125], train_loss:0.051135
Epoch [1/2], Iter [533/3125], train_loss:0.088031
Epoch [1/2], Iter [534/3125], train_loss:0.111677
Epoch [1/2], Iter [535/3125], train_loss:0.070332
Epoch [1/2], Iter [536/3125], train_loss:0.084658
Epoch [1/2], Iter [537/3125], train_loss:0.099877
Epoch [1/2], Iter [538/3125], train_loss:0.083049
Epoch [1/2], Iter [539/3125], train_loss:0.080456
Epoch [1/2], Iter [540/3125], train_loss:0.060653
Epoch [1/2], Iter [541/3125], train_loss:0.126004
Epoch [1/2], Iter [542/3125], train_loss:0.089957
Epoch [1/2], Iter [543/3125], train_loss:0.097005
Epoch [1/2], Iter [544/3125], train_loss:0.098928
Epoch [1/2], Iter [545/3125], train_loss:0.050157
Epoch [1/2], Iter [546/3125], train_loss:0.068912
Epoch [1/2], Iter [547/3125], train_loss:0.105661
Epoch [1/2], Iter [548/3125], train_loss:0.063028
Epoch [1/2], Iter [549/3125], train_loss:0.101849
Epoch [1/2], Iter [550/3125], train_loss:0.087718
Epoch [1/2], Iter [551/3125], train_loss:0.085455
Epoch [1/2], Iter [552/3125], train_loss:0.101876
Epoch [1/2], Iter [553/3125], train_loss:0.069947
Epoch [1/2], Iter [554/3125], train_loss:0.082198
Epoch [1/2], Iter [555/3125], train_loss:0.078910
Epoch [1/2], Iter [556/3125], train_loss:0.071619
Epoch [1/2], Iter [557/3125], train_loss:0.091170
Epoch [1/2], Iter [558/3125], train_loss:0.073899
Epoch [1/2], Iter [559/3125], train_loss:0.097393
Epoch [1/2], Iter [560/3125], train_loss:0.059482
Epoch [1/2], Iter [561/3125], train_loss:0.086727
Epoch [1/2], Iter [562/3125], train_loss:0.067922
Epoch [1/2], Iter [563/3125], train_loss:0.049343
Epoch [1/2], Iter [564/3125], train_loss:0.079434
Epoch [1/2], Iter [565/3125], train_loss:0.082183
Epoch [1/2], Iter [566/3125], train_loss:0.093476
Epoch [1/2], Iter [567/3125], train_loss:0.078752
Epoch [1/2], Iter [568/3125], train_loss:0.091465
Epoch [1/2], Iter [569/3125], train_loss:0.089662
Epoch [1/2], Iter [570/3125], train_loss:0.080252
Epoch [1/2], Iter [571/3125], train_loss:0.068077
Epoch [1/2], Iter [572/3125], train_loss:0.061509
Epoch [1/2], Iter [573/3125], train_loss:0.085185
Epoch [1/2], Iter [574/3125], train_loss:0.079471
Epoch [1/2], Iter [575/3125], train_loss:0.053422
Epoch [1/2], Iter [576/3125], train_loss:0.077580
Epoch [1/2], Iter [577/3125], train_loss:0.097711
Epoch [1/2], Iter [578/3125], train_loss:0.088529
Epoch [1/2], Iter [579/3125], train_loss:0.078072
Epoch [1/2], Iter [580/3125], train_loss:0.066475
Epoch [1/2], Iter [581/3125], train_loss:0.100759
Epoch [1/2], Iter [582/3125], train_loss:0.059701
Epoch [1/2], Iter [583/3125], train_loss:0.109780
Epoch [1/2], Iter [584/3125], train_loss:0.091762
Epoch [1/2], Iter [585/3125], train_loss:0.092769
Epoch [1/2], Iter [586/3125], train_loss:0.087646
Epoch [1/2], Iter [587/3125], train_loss:0.077475
Epoch [1/2], Iter [588/3125], train_loss:0.082140
Epoch [1/2], Iter [589/3125], train_loss:0.064143
Epoch [1/2], Iter [590/3125], train_loss:0.118475
Epoch [1/2], Iter [591/3125], train_loss:0.061369
Epoch [1/2], Iter [592/3125], train_loss:0.103518
Epoch [1/2], Iter [593/3125], train_loss:0.109588
Epoch [1/2], Iter [594/3125], train_loss:0.075540
Epoch [1/2], Iter [595/3125], train_loss:0.066279
Epoch [1/2], Iter [596/3125], train_loss:0.084220
Epoch [1/2], Iter [597/3125], train_loss:0.093858
Epoch [1/2], Iter [598/3125], train_loss:0.064187
Epoch [1/2], Iter [599/3125], train_loss:0.066326
Epoch [1/2], Iter [600/3125], train_loss:0.081327
Epoch [1/2], Iter [601/3125], train_loss:0.083892
Epoch [1/2], Iter [602/3125], train_loss:0.072193
Epoch [1/2], Iter [603/3125], train_loss:0.070572
Epoch [1/2], Iter [604/3125], train_loss:0.099174
Epoch [1/2], Iter [605/3125], train_loss:0.073340
Epoch [1/2], Iter [606/3125], train_loss:0.075066
Epoch [1/2], Iter [607/3125], train_loss:0.089540
Epoch [1/2], Iter [608/3125], train_loss:0.087063
Epoch [1/2], Iter [609/3125], train_loss:0.067917
Epoch [1/2], Iter [610/3125], train_loss:0.078777
Epoch [1/2], Iter [611/3125], train_loss:0.073020
Epoch [1/2], Iter [612/3125], train_loss:0.053916
Epoch [1/2], Iter [613/3125], train_loss:0.099749
Epoch [1/2], Iter [614/3125], train_loss:0.076472
Epoch [1/2], Iter [615/3125], train_loss:0.092774
Epoch [1/2], Iter [616/3125], train_loss:0.072519
Epoch [1/2], Iter [617/3125], train_loss:0.115796
Epoch [1/2], Iter [618/3125], train_loss:0.111423
Epoch [1/2], Iter [619/3125], train_loss:0.035930
Epoch [1/2], Iter [620/3125], train_loss:0.053881
Epoch [1/2], Iter [621/3125], train_loss:0.121114
Epoch [1/2], Iter [622/3125], train_loss:0.121951
Epoch [1/2], Iter [623/3125], train_loss:0.073308
Epoch [1/2], Iter [624/3125], train_loss:0.048398
Epoch [1/2], Iter [625/3125], train_loss:0.107412
Epoch [1/2], Iter [626/3125], train_loss:0.068145
Epoch [1/2], Iter [627/3125], train_loss:0.077340
Epoch [1/2], Iter [628/3125], train_loss:0.085913
Epoch [1/2], Iter [629/3125], train_loss:0.085568
Epoch [1/2], Iter [630/3125], train_loss:0.075331
Epoch [1/2], Iter [631/3125], train_loss:0.063729
Epoch [1/2], Iter [632/3125], train_loss:0.096395
Epoch [1/2], Iter [633/3125], train_loss:0.091692
Epoch [1/2], Iter [634/3125], train_loss:0.087556
Epoch [1/2], Iter [635/3125], train_loss:0.128987
Epoch [1/2], Iter [636/3125], train_loss:0.078282
Epoch [1/2], Iter [637/3125], train_loss:0.072686
Epoch [1/2], Iter [638/3125], train_loss:0.101055
Epoch [1/2], Iter [639/3125], train_loss:0.088135
Epoch [1/2], Iter [640/3125], train_loss:0.076548
Epoch [1/2], Iter [641/3125], train_loss:0.074535
Epoch [1/2], Iter [642/3125], train_loss:0.133764
Epoch [1/2], Iter [643/3125], train_loss:0.081785
Epoch [1/2], Iter [644/3125], train_loss:0.081873
Epoch [1/2], Iter [645/3125], train_loss:0.052027
Epoch [1/2], Iter [646/3125], train_loss:0.065710
Epoch [1/2], Iter [647/3125], train_loss:0.066639
Epoch [1/2], Iter [648/3125], train_loss:0.077497
Epoch [1/2], Iter [649/3125], train_loss:0.071994
Epoch [1/2], Iter [650/3125], train_loss:0.077160
Epoch [1/2], Iter [651/3125], train_loss:0.088668
Epoch [1/2], Iter [652/3125], train_loss:0.091575
Epoch [1/2], Iter [653/3125], train_loss:0.063036
Epoch [1/2], Iter [654/3125], train_loss:0.077080
Epoch [1/2], Iter [655/3125], train_loss:0.120097
Epoch [1/2], Iter [656/3125], train_loss:0.057079
Epoch [1/2], Iter [657/3125], train_loss:0.078749
Epoch [1/2], Iter [658/3125], train_loss:0.080975
Epoch [1/2], Iter [659/3125], train_loss:0.084412
Epoch [1/2], Iter [660/3125], train_loss:0.081507
Epoch [1/2], Iter [661/3125], train_loss:0.106032
Epoch [1/2], Iter [662/3125], train_loss:0.044990
Epoch [1/2], Iter [663/3125], train_loss:0.071733
Epoch [1/2], Iter [664/3125], train_loss:0.068678
Epoch [1/2], Iter [665/3125], train_loss:0.060852
Epoch [1/2], Iter [666/3125], train_loss:0.061496
Epoch [1/2], Iter [667/3125], train_loss:0.099616
Epoch [1/2], Iter [668/3125], train_loss:0.043187
Epoch [1/2], Iter [669/3125], train_loss:0.042735
Epoch [1/2], Iter [670/3125], train_loss:0.063698
Epoch [1/2], Iter [671/3125], train_loss:0.054137
Epoch [1/2], Iter [672/3125], train_loss:0.122349
Epoch [1/2], Iter [673/3125], train_loss:0.045259
Epoch [1/2], Iter [674/3125], train_loss:0.096469
Epoch [1/2], Iter [675/3125], train_loss:0.058725
Epoch [1/2], Iter [676/3125], train_loss:0.092602
Epoch [1/2], Iter [677/3125], train_loss:0.066935
Epoch [1/2], Iter [678/3125], train_loss:0.077298
Epoch [1/2], Iter [679/3125], train_loss:0.110552
Epoch [1/2], Iter [680/3125], train_loss:0.048738
Epoch [1/2], Iter [681/3125], train_loss:0.096448
Epoch [1/2], Iter [682/3125], train_loss:0.110349
Epoch [1/2], Iter [683/3125], train_loss:0.119194
Epoch [1/2], Iter [684/3125], train_loss:0.078200
Epoch [1/2], Iter [685/3125], train_loss:0.090346
Epoch [1/2], Iter [686/3125], train_loss:0.067279
Epoch [1/2], Iter [687/3125], train_loss:0.056750
Epoch [1/2], Iter [688/3125], train_loss:0.103682
Epoch [1/2], Iter [689/3125], train_loss:0.070194
Epoch [1/2], Iter [690/3125], train_loss:0.077888
Epoch [1/2], Iter [691/3125], train_loss:0.089339
Epoch [1/2], Iter [692/3125], train_loss:0.069433
Epoch [1/2], Iter [693/3125], train_loss:0.062627
Epoch [1/2], Iter [694/3125], train_loss:0.088834
Epoch [1/2], Iter [695/3125], train_loss:0.057176
Epoch [1/2], Iter [696/3125], train_loss:0.062857
Epoch [1/2], Iter [697/3125], train_loss:0.107247
Epoch [1/2], Iter [698/3125], train_loss:0.075563
Epoch [1/2], Iter [699/3125], train_loss:0.075217
Epoch [1/2], Iter [700/3125], train_loss:0.073498
Epoch [1/2], Iter [701/3125], train_loss:0.084294
Epoch [1/2], Iter [702/3125], train_loss:0.055456
Epoch [1/2], Iter [703/3125], train_loss:0.101781
Epoch [1/2], Iter [704/3125], train_loss:0.102988
Epoch [1/2], Iter [705/3125], train_loss:0.090018
Epoch [1/2], Iter [706/3125], train_loss:0.071555
Epoch [1/2], Iter [707/3125], train_loss:0.066634
Epoch [1/2], Iter [708/3125], train_loss:0.075814
Epoch [1/2], Iter [709/3125], train_loss:0.077288
Epoch [1/2], Iter [710/3125], train_loss:0.104503
Epoch [1/2], Iter [711/3125], train_loss:0.067886
Epoch [1/2], Iter [712/3125], train_loss:0.079606
Epoch [1/2], Iter [713/3125], train_loss:0.071527
Epoch [1/2], Iter [714/3125], train_loss:0.085514
Epoch [1/2], Iter [715/3125], train_loss:0.057681
Epoch [1/2], Iter [716/3125], train_loss:0.078999
Epoch [1/2], Iter [717/3125], train_loss:0.071168
Epoch [1/2], Iter [718/3125], train_loss:0.089825
Epoch [1/2], Iter [719/3125], train_loss:0.045149
Epoch [1/2], Iter [720/3125], train_loss:0.084063
Epoch [1/2], Iter [721/3125], train_loss:0.066844
Epoch [1/2], Iter [722/3125], train_loss:0.111551
Epoch [1/2], Iter [723/3125], train_loss:0.090148
Epoch [1/2], Iter [724/3125], train_loss:0.088762
Epoch [1/2], Iter [725/3125], train_loss:0.053935
Epoch [1/2], Iter [726/3125], train_loss:0.097556
Epoch [1/2], Iter [727/3125], train_loss:0.057640
Epoch [1/2], Iter [728/3125], train_loss:0.099852
Epoch [1/2], Iter [729/3125], train_loss:0.072951
Epoch [1/2], Iter [730/3125], train_loss:0.086131
Epoch [1/2], Iter [731/3125], train_loss:0.076418
Epoch [1/2], Iter [732/3125], train_loss:0.093934
Epoch [1/2], Iter [733/3125], train_loss:0.086792
Epoch [1/2], Iter [734/3125], train_loss:0.076435
Epoch [1/2], Iter [735/3125], train_loss:0.098343
Epoch [1/2], Iter [736/3125], train_loss:0.064591
Epoch [1/2], Iter [737/3125], train_loss:0.136798
Epoch [1/2], Iter [738/3125], train_loss:0.086149
Epoch [1/2], Iter [739/3125], train_loss:0.071737
Epoch [1/2], Iter [740/3125], train_loss:0.064806
Epoch [1/2], Iter [741/3125], train_loss:0.080049
Epoch [1/2], Iter [742/3125], train_loss:0.096013
Epoch [1/2], Iter [743/3125], train_loss:0.060116
Epoch [1/2], Iter [744/3125], train_loss:0.067535
Epoch [1/2], Iter [745/3125], train_loss:0.093100
Epoch [1/2], Iter [746/3125], train_loss:0.072566
Epoch [1/2], Iter [747/3125], train_loss:0.103533
Epoch [1/2], Iter [748/3125], train_loss:0.083829
Epoch [1/2], Iter [749/3125], train_loss:0.058632
Epoch [1/2], Iter [750/3125], train_loss:0.063049
Epoch [1/2], Iter [751/3125], train_loss:0.072190
Epoch [1/2], Iter [752/3125], train_loss:0.081107
Epoch [1/2], Iter [753/3125], train_loss:0.073657
Epoch [1/2], Iter [754/3125], train_loss:0.063324
Epoch [1/2], Iter [755/3125], train_loss:0.061974
Epoch [1/2], Iter [756/3125], train_loss:0.064494
Epoch [1/2], Iter [757/3125], train_loss:0.077813
Epoch [1/2], Iter [758/3125], train_loss:0.070678
Epoch [1/2], Iter [759/3125], train_loss:0.062416
Epoch [1/2], Iter [760/3125], train_loss:0.062071
Epoch [1/2], Iter [761/3125], train_loss:0.030896
Epoch [1/2], Iter [762/3125], train_loss:0.054023
Epoch [1/2], Iter [763/3125], train_loss:0.123419
Epoch [1/2], Iter [764/3125], train_loss:0.080511
Epoch [1/2], Iter [765/3125], train_loss:0.088166
Epoch [1/2], Iter [766/3125], train_loss:0.044754
Epoch [1/2], Iter [767/3125], train_loss:0.065380
Epoch [1/2], Iter [768/3125], train_loss:0.062831
Epoch [1/2], Iter [769/3125], train_loss:0.082807
Epoch [1/2], Iter [770/3125], train_loss:0.106045
Epoch [1/2], Iter [771/3125], train_loss:0.039265
Epoch [1/2], Iter [772/3125], train_loss:0.040538
Epoch [1/2], Iter [773/3125], train_loss:0.064032
Epoch [1/2], Iter [774/3125], train_loss:0.098438
Epoch [1/2], Iter [775/3125], train_loss:0.044762
Epoch [1/2], Iter [776/3125], train_loss:0.059482
Epoch [1/2], Iter [777/3125], train_loss:0.071769
Epoch [1/2], Iter [778/3125], train_loss:0.081381
Epoch [1/2], Iter [779/3125], train_loss:0.077327
Epoch [1/2], Iter [780/3125], train_loss:0.062736
Epoch [1/2], Iter [781/3125], train_loss:0.093462
Epoch [1/2], Iter [782/3125], train_loss:0.072988
Epoch [1/2], Iter [783/3125], train_loss:0.060638
Epoch [1/2], Iter [784/3125], train_loss:0.093783
Epoch [1/2], Iter [785/3125], train_loss:0.071993
Epoch [1/2], Iter [786/3125], train_loss:0.100763
Epoch [1/2], Iter [787/3125], train_loss:0.072992
Epoch [1/2], Iter [788/3125], train_loss:0.092503
Epoch [1/2], Iter [789/3125], train_loss:0.087834
Epoch [1/2], Iter [790/3125], train_loss:0.112599
Epoch [1/2], Iter [791/3125], train_loss:0.078161
Epoch [1/2], Iter [792/3125], train_loss:0.080000
Epoch [1/2], Iter [793/3125], train_loss:0.043560
Epoch [1/2], Iter [794/3125], train_loss:0.080028
Epoch [1/2], Iter [795/3125], train_loss:0.104163
Epoch [1/2], Iter [796/3125], train_loss:0.064733
Epoch [1/2], Iter [797/3125], train_loss:0.051298
Epoch [1/2], Iter [798/3125], train_loss:0.069372
Epoch [1/2], Iter [799/3125], train_loss:0.044411
Epoch [1/2], Iter [800/3125], train_loss:0.071995
Epoch [1/2], Iter [801/3125], train_loss:0.058943
Epoch [1/2], Iter [802/3125], train_loss:0.075079
Epoch [1/2], Iter [803/3125], train_loss:0.065944
Epoch [1/2], Iter [804/3125], train_loss:0.054138
Epoch [1/2], Iter [805/3125], train_loss:0.061844
Epoch [1/2], Iter [806/3125], train_loss:0.075249
Epoch [1/2], Iter [807/3125], train_loss:0.090213
Epoch [1/2], Iter [808/3125], train_loss:0.106900
Epoch [1/2], Iter [809/3125], train_loss:0.087969
Epoch [1/2], Iter [810/3125], train_loss:0.082871
Epoch [1/2], Iter [811/3125], train_loss:0.083834
Epoch [1/2], Iter [812/3125], train_loss:0.067130
Epoch [1/2], Iter [813/3125], train_loss:0.081398
Epoch [1/2], Iter [814/3125], train_loss:0.075722
Epoch [1/2], Iter [815/3125], train_loss:0.102066
Epoch [1/2], Iter [816/3125], train_loss:0.095934
Epoch [1/2], Iter [817/3125], train_loss:0.073375
Epoch [1/2], Iter [818/3125], train_loss:0.114593
Epoch [1/2], Iter [819/3125], train_loss:0.080349
Epoch [1/2], Iter [820/3125], train_loss:0.093809
Epoch [1/2], Iter [821/3125], train_loss:0.057519
Epoch [1/2], Iter [822/3125], train_loss:0.060332
Epoch [1/2], Iter [823/3125], train_loss:0.069837
Epoch [1/2], Iter [824/3125], train_loss:0.081108
Epoch [1/2], Iter [825/3125], train_loss:0.064217
Epoch [1/2], Iter [826/3125], train_loss:0.077845
Epoch [1/2], Iter [827/3125], train_loss:0.062394
Epoch [1/2], Iter [828/3125], train_loss:0.078574
Epoch [1/2], Iter [829/3125], train_loss:0.077207
Epoch [1/2], Iter [830/3125], train_loss:0.052881
Epoch [1/2], Iter [831/3125], train_loss:0.105506
Epoch [1/2], Iter [832/3125], train_loss:0.085921
Epoch [1/2], Iter [833/3125], train_loss:0.062045
Epoch [1/2], Iter [834/3125], train_loss:0.078639
Epoch [1/2], Iter [835/3125], train_loss:0.091643
Epoch [1/2], Iter [836/3125], train_loss:0.070230
Epoch [1/2], Iter [837/3125], train_loss:0.061350
Epoch [1/2], Iter [838/3125], train_loss:0.100740
Epoch [1/2], Iter [839/3125], train_loss:0.085829
Epoch [1/2], Iter [840/3125], train_loss:0.060633
Epoch [1/2], Iter [841/3125], train_loss:0.071548
Epoch [1/2], Iter [842/3125], train_loss:0.083561
Epoch [1/2], Iter [843/3125], train_loss:0.066375
Epoch [1/2], Iter [844/3125], train_loss:0.100119
Epoch [1/2], Iter [845/3125], train_loss:0.088684
Epoch [1/2], Iter [846/3125], train_loss:0.055062
Epoch [1/2], Iter [847/3125], train_loss:0.074315
Epoch [1/2], Iter [848/3125], train_loss:0.069999
Epoch [1/2], Iter [849/3125], train_loss:0.035895
Epoch [1/2], Iter [850/3125], train_loss:0.037956
Epoch [1/2], Iter [851/3125], train_loss:0.100308
Epoch [1/2], Iter [852/3125], train_loss:0.067342
Epoch [1/2], Iter [853/3125], train_loss:0.100173
Epoch [1/2], Iter [854/3125], train_loss:0.095898
Epoch [1/2], Iter [855/3125], train_loss:0.037566
Epoch [1/2], Iter [856/3125], train_loss:0.109127
Epoch [1/2], Iter [857/3125], train_loss:0.086012
Epoch [1/2], Iter [858/3125], train_loss:0.042612
Epoch [1/2], Iter [859/3125], train_loss:0.095185
Epoch [1/2], Iter [860/3125], train_loss:0.041484
Epoch [1/2], Iter [861/3125], train_loss:0.077971
Epoch [1/2], Iter [862/3125], train_loss:0.077879
Epoch [1/2], Iter [863/3125], train_loss:0.074702
Epoch [1/2], Iter [864/3125], train_loss:0.065591
Epoch [1/2], Iter [865/3125], train_loss:0.044043
Epoch [1/2], Iter [866/3125], train_loss:0.086357
Epoch [1/2], Iter [867/3125], train_loss:0.076382
Epoch [1/2], Iter [868/3125], train_loss:0.126473
Epoch [1/2], Iter [869/3125], train_loss:0.111014
Epoch [1/2], Iter [870/3125], train_loss:0.053985
Epoch [1/2], Iter [871/3125], train_loss:0.066713
Epoch [1/2], Iter [872/3125], train_loss:0.092710
Epoch [1/2], Iter [873/3125], train_loss:0.072230
Epoch [1/2], Iter [874/3125], train_loss:0.072040
Epoch [1/2], Iter [875/3125], train_loss:0.128901
Epoch [1/2], Iter [876/3125], train_loss:0.094567
Epoch [1/2], Iter [877/3125], train_loss:0.068851
Epoch [1/2], Iter [878/3125], train_loss:0.124406
Epoch [1/2], Iter [879/3125], train_loss:0.060597
Epoch [1/2], Iter [880/3125], train_loss:0.053799
Epoch [1/2], Iter [881/3125], train_loss:0.089491
Epoch [1/2], Iter [882/3125], train_loss:0.056719
Epoch [1/2], Iter [883/3125], train_loss:0.076862
Epoch [1/2], Iter [884/3125], train_loss:0.068522
Epoch [1/2], Iter [885/3125], train_loss:0.104225
Epoch [1/2], Iter [886/3125], train_loss:0.082506
Epoch [1/2], Iter [887/3125], train_loss:0.052971
Epoch [1/2], Iter [888/3125], train_loss:0.059774
Epoch [1/2], Iter [889/3125], train_loss:0.086975
Epoch [1/2], Iter [890/3125], train_loss:0.056777
Epoch [1/2], Iter [891/3125], train_loss:0.087735
Epoch [1/2], Iter [892/3125], train_loss:0.070902
Epoch [1/2], Iter [893/3125], train_loss:0.111826
Epoch [1/2], Iter [894/3125], train_loss:0.059331
Epoch [1/2], Iter [895/3125], train_loss:0.094341
Epoch [1/2], Iter [896/3125], train_loss:0.051812
Epoch [1/2], Iter [897/3125], train_loss:0.112401
Epoch [1/2], Iter [898/3125], train_loss:0.061509
Epoch [1/2], Iter [899/3125], train_loss:0.064180
Epoch [1/2], Iter [900/3125], train_loss:0.038741
Epoch [1/2], Iter [901/3125], train_loss:0.053055
Epoch [1/2], Iter [902/3125], train_loss:0.054728
Epoch [1/2], Iter [903/3125], train_loss:0.078024
Epoch [1/2], Iter [904/3125], train_loss:0.044780
Epoch [1/2], Iter [905/3125], train_loss:0.089853
Epoch [1/2], Iter [906/3125], train_loss:0.101245
Epoch [1/2], Iter [907/3125], train_loss:0.052246
Epoch [1/2], Iter [908/3125], train_loss:0.071536
Epoch [1/2], Iter [909/3125], train_loss:0.075075
Epoch [1/2], Iter [910/3125], train_loss:0.074174
Epoch [1/2], Iter [911/3125], train_loss:0.072227
Epoch [1/2], Iter [912/3125], train_loss:0.101729
Epoch [1/2], Iter [913/3125], train_loss:0.071239
Epoch [1/2], Iter [914/3125], train_loss:0.101731
Epoch [1/2], Iter [915/3125], train_loss:0.066899
Epoch [1/2], Iter [916/3125], train_loss:0.042201
Epoch [1/2], Iter [917/3125], train_loss:0.057565
Epoch [1/2], Iter [918/3125], train_loss:0.043300
Epoch [1/2], Iter [919/3125], train_loss:0.101549
Epoch [1/2], Iter [920/3125], train_loss:0.080133
Epoch [1/2], Iter [921/3125], train_loss:0.088354
Epoch [1/2], Iter [922/3125], train_loss:0.079794
Epoch [1/2], Iter [923/3125], train_loss:0.082035
Epoch [1/2], Iter [924/3125], train_loss:0.043397
Epoch [1/2], Iter [925/3125], train_loss:0.101342
Epoch [1/2], Iter [926/3125], train_loss:0.070656
Epoch [1/2], Iter [927/3125], train_loss:0.068928
Epoch [1/2], Iter [928/3125], train_loss:0.086801
Epoch [1/2], Iter [929/3125], train_loss:0.059911
Epoch [1/2], Iter [930/3125], train_loss:0.079392
Epoch [1/2], Iter [931/3125], train_loss:0.083579
Epoch [1/2], Iter [932/3125], train_loss:0.051975
Epoch [1/2], Iter [933/3125], train_loss:0.083430
Epoch [1/2], Iter [934/3125], train_loss:0.066587
Epoch [1/2], Iter [935/3125], train_loss:0.087434
Epoch [1/2], Iter [936/3125], train_loss:0.087518
Epoch [1/2], Iter [937/3125], train_loss:0.075971
Epoch [1/2], Iter [938/3125], train_loss:0.060921
Epoch [1/2], Iter [939/3125], train_loss:0.059609
Epoch [1/2], Iter [940/3125], train_loss:0.053374
Epoch [1/2], Iter [941/3125], train_loss:0.059154
Epoch [1/2], Iter [942/3125], train_loss:0.037160
Epoch [1/2], Iter [943/3125], train_loss:0.094307
Epoch [1/2], Iter [944/3125], train_loss:0.069412
Epoch [1/2], Iter [945/3125], train_loss:0.093543
Epoch [1/2], Iter [946/3125], train_loss:0.057713
Epoch [1/2], Iter [947/3125], train_loss:0.050613
Epoch [1/2], Iter [948/3125], train_loss:0.101521
Epoch [1/2], Iter [949/3125], train_loss:0.099398
Epoch [1/2], Iter [950/3125], train_loss:0.098440
Epoch [1/2], Iter [951/3125], train_loss:0.036929
Epoch [1/2], Iter [952/3125], train_loss:0.062752
Epoch [1/2], Iter [953/3125], train_loss:0.048165
Epoch [1/2], Iter [954/3125], train_loss:0.075584
Epoch [1/2], Iter [955/3125], train_loss:0.080492
Epoch [1/2], Iter [956/3125], train_loss:0.087700
Epoch [1/2], Iter [957/3125], train_loss:0.043403
Epoch [1/2], Iter [958/3125], train_loss:0.069215
Epoch [1/2], Iter [959/3125], train_loss:0.044430
Epoch [1/2], Iter [960/3125], train_loss:0.066561
Epoch [1/2], Iter [961/3125], train_loss:0.106058
Epoch [1/2], Iter [962/3125], train_loss:0.066117
Epoch [1/2], Iter [963/3125], train_loss:0.075821
Epoch [1/2], Iter [964/3125], train_loss:0.076452
Epoch [1/2], Iter [965/3125], train_loss:0.068917
Epoch [1/2], Iter [966/3125], train_loss:0.073009
Epoch [1/2], Iter [967/3125], train_loss:0.066570
Epoch [1/2], Iter [968/3125], train_loss:0.078626
Epoch [1/2], Iter [969/3125], train_loss:0.071714
Epoch [1/2], Iter [970/3125], train_loss:0.073739
Epoch [1/2], Iter [971/3125], train_loss:0.036135
Epoch [1/2], Iter [972/3125], train_loss:0.077290
Epoch [1/2], Iter [973/3125], train_loss:0.108345
Epoch [1/2], Iter [974/3125], train_loss:0.085700
Epoch [1/2], Iter [975/3125], train_loss:0.081209
Epoch [1/2], Iter [976/3125], train_loss:0.034647
Epoch [1/2], Iter [977/3125], train_loss:0.056354
Epoch [1/2], Ite
相关文章:
Pytorch-day08-模型进阶训练技巧-checkpoint
PyTorch 模型进阶训练技巧 自定义损失函数动态调整学习率 典型案例:loss上下震荡 [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-BndMyRX0-1692613806232)(attachment:image-2.png)] 1、自定义损失函数 1、PyTorch已经提供了很多常用…...
【ArcGIS Pro二次开发】(61):样式(Style)和符号(Symbol)
在 ArcGIS Pro SDK 中,地图要素符号(Symbol)和符号样式(Style)是2个很重要的概念。 【Symbol】是用于表示地图上不同类型的要素(如点、线、面)的图形化表示。 在地图中,各种要素都…...
深入理解 HTTP/2:提升 Web 性能的秘密
HTTP/2 是一项重大的网络协议升级,旨在提升 Web 页面加载速度和性能。在这篇博客中,我们将深入探讨 HTTP/2 的核心概念以及如何使用它来加速网站。 什么是 HTTP/2? HTTP/2 是 HTTP 协议的下一个版本,旨在解决 HTTP/1.1 中的性能…...
800V高压电驱动系统架构分析
需要电驱竞品样件请联:shbinzer (拆车邦) 过去一年是新能源汽车市场爆发的一年,据中汽协数据,2021年新能源汽车销售352万辆,同比大幅增长157.5%。新能源汽车技术发展迅速,畅销车辆在动力性能…...
Camunda_3:主动撤回
貌似国际主流认知工作流通常不支持撤回/驳回,流程只能向前进行。而撤回/驳回算是一种中国特色吧。 因此Camunda对于流程修改也仅仅提供了runtimeService.createProcessInstanceModification(instanceId)来修改流程。对于撤回/驳回这种操作得自己想办法。通常的撤回/…...
ClickHouse(二十三):Java Spark读写ClickHouse API
进入正文前,感谢宝子们订阅专题、点赞、评论、收藏!关注IT贫道,获取高质量博客内容! 🏡个人主页:含各种IT体系技术,IT贫道_Apache Doris,大数据OLAP体系技术栈,Kerberos安全认证-CSDN博客 &…...
Linux下的GPIO基本概念指南
一、什么是GPIO 在Linux中,GPIO(General Purpose Input/Output,通用输入输出)是一种用于控制外部设备和传感器的通用接口。它允许你通过软件控制数字信号,从而实现各种硬件设备的交互,如LED、按钮、传感器、马达等。 每个GPIO引脚…...
快速解决Spring Boot跨域困扰:使用CORS实现无缝跨域支持
跨域问题 什么是跨域? 跨域(Cross-Origin Issue)的存在是因为浏览器的安全限制,它防止恶意网站利用跨域请求来获取用户的敏感信息或执行恶意操作。浏览器通过实施同源策略来限制网页在不同源之间进行资源访问或交互的情况。当一…...
【【萌新的STM32学习-13之GPIO寄存器的用法】】
萌新的STM32学习-13之GPIO寄存器的用法 从外部来看我们有很多个GPIO 分为ABCDEF等等 每个GPIO都有16个引脚 每个引脚的名字是PA0到PA15 这是外部的看法 对于内部 引脚自然会有引脚的功能传入的模式 状态 频率 等…...
Android开发基础知识总结(一)初识安卓Android Studio
一.基础理论知识 1.Linux相当于是地基。 MIUI,EMUI等操作系统,是基于安卓的改版——且裁掉了一部分Google的服务。 (鸿蒙虽然是改版,但和安卓的架构基本上一致) 2.Kotlin和Java都是JVM语言,必须先复习好…...
常见的网络设备有哪些?分别有什么作用?
个人主页:insist--个人主页 本文专栏:网络基础——带你走进网络世界 本专栏会持续更新网络基础知识,希望大家多多支持,让我们一起探索这个神奇而广阔的网络世界。 目录 一、网络设备的概述 二、常见的网络设备 1、…...
斗鱼财报盈利的背后:左手艳舞、右手擦边
本月14日,直播平台斗鱼发布了其第二季度财报,面对“看起来还不错的数据”,其对外着重强调了“连续两个季度实现盈利”,并称“斗鱼收入结构持续优化”“斗鱼盈利能力提升”“斗鱼稳健增长可期”“督导提升了内容审核能力”。 财报…...
布隆过滤器
思考一个问题:如果我想判断一个元素是否存在某个集合里面怎么做? 一般的解决方案是先把所有元素保存起来,然后通过循环比较来确定。 但是如果我们有几千万甚至上亿的数据的时候},虽然可以通过不同的数据结构来优化数据…...
element-ui中二次封装一个带select的form组件
带select的form组件 样式 代码 <template><el-form-item label"是否有" class"append" prop"tag"><el-form-itemprop"isShare"><el-select v-model"query.tag"><el-option v-for"(item, …...
07.利用Redis实现点赞排行榜功能
学习目标: 提示:学习如何利用Redisson实现点赞排行榜功能,按照时间顺序 当用户给某一篇文章点赞后,会再数据库中存储一条数据,并且在Redis中存储一条数据为当前博客的点赞用户标识,来区分哪个用户对文章进…...
【前端vue升级】vue2+js+elementUI升级为vue3+ts+elementUI plus
一、工具的选择 近期想将vuejselementUI的项目升级为vue3tselementUI plus,以获得更好的开发体验,并且vue3也显著提高了性能,所以在此记录一下升级的过程对于一个正在使用的项目手工替换肯定不是个可实现的解决方案,更优方案是基于…...
多维时序 | MATLAB实现SCNGO-BiLSTM-Attention多变量时间序列预测
多维时序 | MATLAB实现SCNGO-BiLSTM-Attention多变量时间序列预测 目录 多维时序 | MATLAB实现SCNGO-BiLSTM-Attention多变量时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 多维时序 | MATLAB实现SCNGO-BiLSTM-Attention多变量时间序列预测。 模型描…...
go-test
单元测试 基本用法 Go语言测试 常用reflect.DeepEqual()对slice进行比较 跳过某些测试用例 func TestTimeConsuming(t *testing.T) {if testing.Short() {t.Skip("short模式下会跳过该测试用例")}... }当执行go test -short时就不会执行上面的TestTimeConsuming测…...
假设你新换了电脑,如何不用U盘的情况下实现软件文件转移?
要将笔记本和台式机连接到同一个局域网,并实现文件共享或使用文件传输协议进行文件传输,您可以按照以下步骤操作: 设置局域网连接共享文件夹使用文件传输协议 Step 1: 设置局域网连接 确保笔记本和台式机连接到同一个局域网。有几种常见的…...
聊聊 Docker
聊聊 Docker Docker 是什么? 定义 Docker 是一款 开源的应用容器引擎。 简单来说,就是 以容器虚拟化技术为基础的软件。可以把应用程序和所依赖的包一起打包到一个可移植的镜像中,发布到 Linux 或者 Windows 上运行。(代码 运…...
运行软件mfc140u.dll丢失怎么办?mfc140u.dll的三个修复方法
最近我在使用一款软件时遇到了一个问题,提示缺少mfc140u.dll文件。。这个文件是我在使用某个应用程序时所需要的,但是由于某种原因,它变得无法正常使用了。经过一番搜索和了解,我了解到mfc140u.dll是Microsoft Visual Studio 2015…...
神经网络基础-神经网络补充概念-54-softmax回归
概念 Softmax回归(Softmax Regression)是一种用于多分类任务的机器学习算法,特别是在神经网络中常用于输出层来进行分类。它是Logistic回归在多分类问题上的推广。 原理 Softmax回归的主要思想是将原始的线性分数(得分…...
米尔瑞萨RZ/G2L开发板-02 ffmpeg的使用和RTMP直播
最近不知道是不是熬夜太多,然后记忆力减退了? 因为板子回来以后我就迫不及待的试了一下板子,然后发现板子有SSH,但是并没有ffmpeg,最近总是在玩,然后今天说是把板子还原一下哇,然后把官方的固件…...
基于swing的在线考试系统java jsp线上试卷问答mysql源代码
本项目为前几天收费帮学妹做的一个项目,Java EE JSP项目,在工作环境中基本使用不到,但是很多学校把这个当作编程入门的项目来做,故分享出本项目供初学者参考。 一、项目描述 基于swing的在线考试系统 系统有2权限:管…...
C# 读取pcd点云文件数据
pcd文件有ascii 和二进制格式,ascii可以直接记事本打开,C#可以一行行读。但二进制格式的打开是乱码,如果尝试程序中读取,对比下看了数据也对不上。 这里可以使用pcl里的函数来读取pcd,无论二进制或ascii都可以正确读取…...
.NET CORE Api 上传excel解析并生成错误excel下载
写在前面的话: 【对外承接app API开发、网站建设、系统开发,有偿提供帮助,联系方式于文章最下方 】 因业务调整,不再需要生成错误无excel下载,所以先保存代码,回头再重新编辑 #region Excel校验部分if (f…...
数据结构,二叉树,前中后序遍历
二叉树的种类 最优二叉树 最优二叉树画法 排序取最小两个值和,得到新值加入排序重复1,2 前序、中序和后序遍历是树形数据结构(如二叉树)中常用的遍历方式,用于按照特定顺序遍历树的节点。这些遍历方式在不同应用中有不…...
项目实战笔记2:硬技能(上)
序: 本节串讲了项目管理硬技能,有些术语可以结合书或者网上资料来理解。没有想书上讲的那样一一列举。 做计划 首先强调为什么做计划? 计划就是各个角色协同工作的基准(后面做风险监控、进度的监控),贯穿于…...
神经网络基础-神经网络补充概念-59-padding
概念 在深度学习中,“padding”(填充)通常是指在卷积神经网络(Convolutional Neural Networks,CNNs)等神经网络层中,在输入数据的周围添加额外的元素(通常是零)…...
【开源免费】ChatGPT-Java版SDK重磅更新收获2.3k,支持插件模式、实现ChatGpt联网操作。
everybody 七夕来了还单着么? 一、简介 ChatGPT Java版SDK开源地址:https://github.com/Grt1228/chatgpt-java,目前收获将近2200个star🌟。 最新版:1.1.1-beta0 <dependency><groupId>com.unfbx</g…...
wordpress栏目加密/百度推广关键词越多越好吗
转: class反射(一),以及Method 的 getReadMethod 与 getWriteMethod 使用 2018年11月28日 17:27:42 zich77521 阅读数 788 class Java在识别类信息与加载它时,通常有两种方式来对类信息进行操作: RTTI&…...
网站seo优化教程/西安网站关键词优化费用
本文实例讲述了PHP基于PDO调用sqlserver存储过程的方法。分享给大家供大家参考,具体如下:由于业务这边存储过程一直在sqlserver上面,所以要用php去调用它,然而我们本地的是windows,而线上又是linux,一开始使…...
网站的建设需要虚拟机吗/龙斗seo博客
学习资料: 力扣 史上最棒的正则表达测试网站。 regex101: build, test, and debug regex 特殊字符: 限定字符: 定位符,用的少。...
网站建设定制公司/今日小说排行榜百度搜索榜
http://www.blogjava.net/javagrass/archive/2011/07/05/353680.htmlMina:Mina(Multipurpose Infrastructure for Network Applications) 是 Apache 组织一个较新的项目,它为开发高性能和高可用性的网络应用程序提供了非常便利的框架。当前发行的 Mina 版…...
请人做网站花多少钱/企业网站的推广阶段
转https://www.cnblogs.com/xinyangsdut/p/7628770.html 目标任务:爬取腾讯社招信息,需要爬取的内容为:职位名称,职位的详情链接,职位类别,招聘人数,工作地点,发布时间。 一、创建Sc…...
网站流量来源/企业管理软件管理系统
jQuery UI是一套非常好用的jQuery Tools库,目前已经发布的最新版本是1.8.4。在我自己的使用过程中,总有一些不爽。因为我下载的那个包里默认的主题样式是下图这样的,使用起来很难和具体的网页风格去配合。 一开始,我准备去动手&am…...