当前位置: 首页 > news >正文

Keras三种主流模型构建方式:序列模型、函数模型、子类模型开发实践,以真实烟雾识别场景数据为例

Keras和PyTorch是两个常用的深度学习框架,它们都提供了用于构建和训练神经网络的高级API。

Keras:

Keras是一个高级神经网络API,可以在多个底层深度学习框架上运行,如TensorFlow和CNTK。以下是Keras的特点和优点:

优点:

  • 简单易用:Keras具有简洁的API设计,易于上手和使用,适合快速原型设计和实验。
  • 灵活性:Keras提供了高级API和模块化的架构,可以灵活地构建各种类型的神经网络模型。
  • 复用性:Keras模型可以轻松保存和加载,可以方便地共享、部署和迁移模型。
  • 社区支持:Keras拥有庞大的社区支持和活跃的开发者社区,提供了大量的文档、教程和示例代码。

缺点:

  • 功能限制:相比于底层框架如TensorFlow和PyTorch,Keras在某些高级功能和自定义性方面可能有所限制。
  • 可扩展性:虽然Keras提供了易于使用的API,但在需要大量定制化和扩展性的复杂模型上可能会有限制。
  • 灵活程度:Keras主要设计用于简单的流程,当需要处理复杂的非标准任务时,使用Keras的灵活性较差。

适用场景:

  • 初学者:对于新手来说,Keras是一个理想的选择,因为它简单易用,有丰富的文档和示例来帮助快速入门。
  • 快速原型设计:Keras可以快速搭建和迭代模型,适用于快速原型设计和快速实验验证。
  • 常规计算机视觉和自然语言处理任务:Keras提供了大量用于计算机视觉和自然语言处理的预训练模型和工具,适用于常规任务的开发与应用。

PyTorch:

PyTorch是一个动态图深度学习框架,强调易于使用和低延迟的调试功能。以下是PyTorch的特点和优点:

优点:

  • 动态图:PyTorch使用动态图,使得模型构建和调试更加灵活和直观,可以实时查看和调试模型。
  • 自由控制:相比于静态图框架,PyTorch能够更自由地控制模型的复杂逻辑和探索新的网络架构。
  • 算法开发:PyTorch提供了丰富的数学运算库和自动求导功能,适用于算法研究和定制化模型开发。
  • 社区支持:PyTorch拥有活跃的社区和大量的开源项目,提供了丰富的资源和支持。

缺点:

  • 部署复杂性:相比于Keras等高级API框架,PyTorch需要开发者更多地处理模型的部署和生产环境的问题。
  • 静态优化:相对于静态图框架,如TensorFlow,PyTorch无法进行静态图优化,可能在性能方面略逊一筹。
  • 入门门槛:相比于Keras,PyTorch对初学者来说可能有一些陡峭的学习曲线。

适用场景:

  • 研究和定制化模型:PyTorch适合进行研究和实验,以及需要灵活性和自由度较高的定制化模型开发。
  • 高级计算机视觉和自然语言处理任务:PyTorch在计算机视觉和自然语言处理领域有广泛的应用,并且各类预训练模型和资源丰富。

在前面的两篇文章中整体系统总结记录了Keras和PyTroch这两大主流框架各自开发构建模型的三大主流方式,并对应给出来的基础的实例实现,感兴趣的话可以自行移步阅读即可:

《总结记录Keras开发构建神经网络模型的三种主流方式:序列模型、函数模型、子类模型》

《总结记录PyTorch构建神经网络模型的三种主流方式:nn.Sequential按层顺序构建模型、继承nn.Module基类构建自定义模型、继承nn.Module基类构建模型并辅助应用模型容器来封装》

本文的主要目的就是想要基于真实业务数据场景来实地开发实践这三种不同类型的模型构建方式,并对结果进行对比分析。

首先来看下数据集:

 这里模型结构的话可以自行构建设计层数都是没有关系的,我这里主要是参考了VGG的网络结构来搭建的网络模型,首先来看序列模型构建实现:

def initModel(h=100, w=100, way=3):"""列模型"""input_shape = (h, w, way)model = Sequential()model.add(Conv2D(64,(3, 3),strides=(1, 1),input_shape=input_shape,padding="same",activation="relu",kernel_initializer="uniform",))model.add(MaxPooling2D(pool_size=(2, 2)))model.add(Conv2D(128,(3, 2),strides=(1, 1),padding="same",activation="relu",kernel_initializer="uniform",))model.add(MaxPooling2D(pool_size=(2, 2)))model.add(Conv2D(256,(3, 3),strides=(1, 1),padding="same",activation="relu",kernel_initializer="uniform",))model.add(MaxPooling2D(pool_size=(2, 2)))model.add(Conv2D(512,(3, 3),strides=(1, 1),padding="same",activation="relu",kernel_initializer="uniform",))model.add(MaxPooling2D(pool_size=(2, 2)))model.add(Conv2D(512,(3, 3),strides=(1, 1),padding="same",activation="relu",kernel_initializer="uniform",))model.add(MaxPooling2D(pool_size=(2, 2)))model.add(Flatten())model.add(Dense(820, activation="relu"))model.add(Dropout(0.1))model.add(Dense(820, activation="relu"))model.add(Dropout(0.1))model.add(Dense(numbers, activation="softmax"))return model

网络结构输出如下所示:

_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d_1 (Conv2D)            (None, 100, 100, 64)      1792      
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 50, 50, 64)        0         
_________________________________________________________________
conv2d_2 (Conv2D)            (None, 50, 50, 128)       49280     
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 25, 25, 128)       0         
_________________________________________________________________
conv2d_3 (Conv2D)            (None, 25, 25, 256)       295168    
_________________________________________________________________
max_pooling2d_3 (MaxPooling2 (None, 12, 12, 256)       0         
_________________________________________________________________
conv2d_4 (Conv2D)            (None, 12, 12, 512)       1180160   
_________________________________________________________________
max_pooling2d_4 (MaxPooling2 (None, 6, 6, 512)         0         
_________________________________________________________________
conv2d_5 (Conv2D)            (None, 6, 6, 512)         2359808   
_________________________________________________________________
max_pooling2d_5 (MaxPooling2 (None, 3, 3, 512)         0         
_________________________________________________________________
flatten_1 (Flatten)          (None, 4608)              0         
_________________________________________________________________
dense_1 (Dense)              (None, 820)               3779380   
_________________________________________________________________
dropout_1 (Dropout)          (None, 820)               0         
_________________________________________________________________
dense_2 (Dense)              (None, 820)               673220    
_________________________________________________________________
dropout_2 (Dropout)          (None, 820)               0         
_________________________________________________________________
dense_3 (Dense)              (None, 2)                 1642      
=================================================================
Total params: 8,340,450
Trainable params: 8,340,450
Non-trainable params: 0
_________________________________________________________________

接下来是函数模型代码实现,如下所示:

def initModel(h=100, w=100, way=3):"""函数模型"""input_shape = (h, w, way)inputs = Input(shape=input_shape)X = Conv2D(64,(3, 3),strides=(1, 1),padding="same",activation="relu",kernel_initializer="uniform",)(inputs)X = Conv2D(64,(3, 3),strides=(1, 1),padding="same",activation="relu",kernel_initializer="uniform",)(X)X = MaxPooling2D(pool_size=(2, 2))(X)X = Conv2D(128,(3, 2),strides=(1, 1),padding="same",activation="relu",kernel_initializer="uniform",)(X)X = MaxPooling2D(pool_size=(2, 2))(X)X = Conv2D(256,(3, 3),strides=(1, 1),padding="same",activation="relu",kernel_initializer="uniform",)(X)X = MaxPooling2D(pool_size=(2, 2))(X)X = Conv2D(512,(3, 3),strides=(1, 1),padding="same",activation="relu",kernel_initializer="uniform",)(X)X = MaxPooling2D(pool_size=(2, 2))(X)X = Conv2D(512,(3, 3),strides=(1, 1),padding="same",activation="relu",kernel_initializer="uniform",)(X)X = MaxPooling2D(pool_size=(2, 2))(X)X = Flatten()(X)X = Dense(820, activation="relu")(X)X = Dropout(0.1)(X)X = Dense(820, activation="relu")(X)X = Dropout(0.1)(X)outputs = Dense(2, activation="sigmoid")(X)model = Model(input=inputs, output=outputs)return model

模型结构信息输出如下所示:

_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
input_1 (InputLayer)         (None, 100, 100, 3)       0         
_________________________________________________________________
conv2d_6 (Conv2D)            (None, 100, 100, 64)      1792      
_________________________________________________________________
conv2d_7 (Conv2D)            (None, 100, 100, 64)      36928     
_________________________________________________________________
max_pooling2d_6 (MaxPooling2 (None, 50, 50, 64)        0         
_________________________________________________________________
conv2d_8 (Conv2D)            (None, 50, 50, 128)       49280     
_________________________________________________________________
max_pooling2d_7 (MaxPooling2 (None, 25, 25, 128)       0         
_________________________________________________________________
conv2d_9 (Conv2D)            (None, 25, 25, 256)       295168    
_________________________________________________________________
max_pooling2d_8 (MaxPooling2 (None, 12, 12, 256)       0         
_________________________________________________________________
conv2d_10 (Conv2D)           (None, 12, 12, 512)       1180160   
_________________________________________________________________
max_pooling2d_9 (MaxPooling2 (None, 6, 6, 512)         0         
_________________________________________________________________
conv2d_11 (Conv2D)           (None, 6, 6, 512)         2359808   
_________________________________________________________________
max_pooling2d_10 (MaxPooling (None, 3, 3, 512)         0         
_________________________________________________________________
flatten_2 (Flatten)          (None, 4608)              0         
_________________________________________________________________
dense_4 (Dense)              (None, 820)               3779380   
_________________________________________________________________
dropout_3 (Dropout)          (None, 820)               0         
_________________________________________________________________
dense_5 (Dense)              (None, 820)               673220    
_________________________________________________________________
dropout_4 (Dropout)          (None, 820)               0         
_________________________________________________________________
dense_6 (Dense)              (None, 2)                 1642      
=================================================================
Total params: 8,377,378
Trainable params: 8,377,378
Non-trainable params: 0
_________________________________________________________________

最后是子类模型代码实现,如下所示:

class initModel(Model):"""子类模型"""def __init__(self):super(initModel, self).__init__()self.conv2d1 = Conv2D(64,(3, 3),strides=(1, 1),padding="same",activation="relu",kernel_initializer="uniform",)self.conv2d2 = Conv2D(64,(3, 3),strides=(1, 1),padding="same",activation="relu",kernel_initializer="uniform",)self.pool1 = MaxPooling2D(pool_size=(2, 2))self.conv2d3 = Conv2D(128,(3, 2),strides=(1, 1),padding="same",activation="relu",kernel_initializer="uniform",)self.pool2 = MaxPooling2D(pool_size=(2, 2))self.conv2d4 = Conv2D(256,(3, 3),strides=(1, 1),padding="same",activation="relu",kernel_initializer="uniform",)self.pool3 = MaxPooling2D(pool_size=(2, 2))self.conv2d5 = Conv2D(512,(3, 3),strides=(1, 1),padding="same",activation="relu",kernel_initializer="uniform",)self.pool4 = MaxPooling2D(pool_size=(2, 2))self.conv2d6 = Conv2D(512,(3, 3),strides=(1, 1),padding="same",activation="relu",kernel_initializer="uniform",)self.pool5 = MaxPooling2D(pool_size=(2, 2))self.flatten = Flatten()self.dense1 = Dense(820, activation="relu")self.dropout1 = Dropout(0.1)self.dense2 = Dense(820, activation="relu")self.dropout2 = Dropout(0.1)self.dense3 = Dense(2, activation="sigmoid")def call(self, inputs):"""回调"""x = self.conv2d1(inputs)x = self.conv2d2(x)x = self.pool1(x)x = self.conv2d3(x)x = self.pool2(x)x = self.conv2d4(x)x = self.pool3(x)x = self.conv2d5(x)x = self.pool4(x)x = self.conv2d6(x)x = self.pool5(x)x = self.flatten(x)x = self.dense1(x)x = self.dropout1(x)x = self.dense2(x)x = self.dropout2(x)y = self.dense3(x)return y

完成模型的搭建之后就可以加载对应的数据集开始训练模型了,数据集加载仿照mnist数据集的形式即可,这里就不再赘述了,在我之前的文章中也都有对应的实现,如下所示:

# 数据加载
X_train, X_test, y_train, y_test = loadData()
X_train = X_train.astype("float32")
X_test = X_test.astype("float32")
# 数据归一化
X_train /= 255
X_test /= 255
# 数据打乱
np.random.seed(200)
np.random.shuffle(X_train)
np.random.seed(200)
np.random.shuffle(y_train)
np.random.seed(200)
np.random.shuffle(X_test)
np.random.seed(200)
np.random.shuffle(y_test)
# 模型
model=initModel()
model.compile(loss="binary_crossentropy", optimizer="sgd", metrics=["accuracy"])

模型评估测试可视化实现如下所示:

# 可视化
plt.clf()
plt.plot(history.history["acc"])
plt.plot(history.history["val_acc"])
plt.title("model accuracy")
plt.ylabel("accuracy")
plt.xlabel("epochs")
plt.legend(["train", "test"], loc="upper left")
plt.savefig(saveDir + "train_validation_acc.png")
plt.clf()
plt.plot(history.history["loss"])
plt.plot(history.history["val_loss"])
plt.title("model loss")
plt.ylabel("loss")
plt.xlabel("epochs")
plt.legend(["train", "test"], loc="upper left")
plt.savefig(saveDir + "train_validation_loss.png")
scores = model.evaluate(X_test, y_test, verbose=0)
print("Accuracy: %.2f%%" % (scores[1] * 100))

接下来看下结果:
【序列模型】

 【函数模型】

 【子类模型】

 结果上有略微的差异,这个应该跟训练有关系。

可视化结果如下所示:

 其实三种方法也是本质一样的,只要熟练熟悉了某一种,其他的构建方式都是可以基于当前的构建方式转化完成的。没有绝对唯一的选择,只有最适合自己的选择。

相关文章:

Keras三种主流模型构建方式:序列模型、函数模型、子类模型开发实践,以真实烟雾识别场景数据为例

Keras和PyTorch是两个常用的深度学习框架,它们都提供了用于构建和训练神经网络的高级API。 Keras: Keras是一个高级神经网络API,可以在多个底层深度学习框架上运行,如TensorFlow和CNTK。以下是Keras的特点和优点: 优点&#xf…...

objective-v 获取iPhone系统当前时间字符串适配12小时制和24小时制

我们最开始获取系统当前时间,如下,这种方式存在一个问题,当iPhone关闭了24小时制时,获取的时间格式是:iPhone11上:20230822下午210568760;iPhone7 plus上:2023082240043851 PM&#…...

并查集及其简单应用

文章目录 一.并查集二.并查集的实现三.并查集的基本应用 一.并查集 并查集的逻辑结构:由多颗不相连通的多叉树构成的森林(一个这样的多叉树就是森林的一个连通分量) 并查集的元素(树节点)用0~9的整数表示,并查集可以表示如下: 并查集的物理存储结构:并查集一般采用顺序结构实…...

基于web的服装商城系统java网上购物商店jsp源代码mysql

本项目为前几天收费帮学妹做的一个项目,Java EE JSP项目,在工作环境中基本使用不到,但是很多学校把这个当作编程入门的项目来做,故分享出本项目供初学者参考。 一、项目描述 基于web的服装商城系统 系统有1权限:前台…...

.NET Core发布到IIS

项目介绍 1、开发工具Visual Studio 2017,语言C#,SQL SERVER,WIN10 2、本地IIS,手机上或其他用户在和本地在同一个局域网内访问,同时要把防火墙关掉 3、IIS全名Internet Information Services,用来发布网站 先决条件 安…...

Spring的基本概念

前言 Spring 究竟是什么?其实Spring简单来说就是一个包含众多工具方法的IOC容器。 那么什么是IOC呢? IoC Inversion of Control 翻译成中⽂是“控制反转”的意思. 既然Spring 是⼀个IoC(控制反转)容器,重点还在“容…...

设计模式之原型模式

文章目录 一、介绍二、实现步骤三、案例四、应用五、细胞分裂六、改造细胞分裂逻辑七、总结 一、介绍 原型模式属于创建型设计模式,用于创建重复的对象,且同时又保证了性能。 该设计模式的好处是将对象的创建与调用方分离。 其目的就是**根据一个对象…...

正则表达式在网页处理中的应用四则

正则表达式在网页处理中的应用四则 正则表达式(Regular Expression)为字符串模式匹配提供了一种高效、方便的方法。几乎所有高级语言都提供了对正则表达式的支持,或者提供了现成的代码库供调用。本文以ASP环境中常见的处理任务为例,介绍正则表达式的应用技巧。 一、检验密…...

ping使用方法

文章目录 1、Ping的基础知识2、Ping命令详解3、怎样使用Ping这命令来测试网络连通?4、如何用Ping命令来判断一条链路好坏?5、对Ping后返回信息的分析1.Request timed out2.Destination host Unreachable 1、Ping的基础知识 ping命令相信大家已经再熟悉不…...

“心理健康人工智能产学研创新联盟”揭牌成立|深兰科技

8月14日上午,“2023树洞救援年会”在上海举行,会上举行了“心理健康人工智能产学研创新联盟”的签约和揭牌仪式。“树洞行动救援团”创始人深兰科技科学院智能科学首席科学家、荷兰阿姆斯特丹自由大学人工智能系终身教授黄智生,深兰科技集团创…...

FastDFS+Nginx - 本地搭建文件服务器同时实现在外远程访问「端口映射」

文章目录 前言1. 本地搭建FastDFS文件系统1.1 环境安装1.2 安装libfastcommon1.3 安装FastDFS1.4 配置Tracker1.5 配置Storage1.6 测试上传下载1.7 与Nginx整合1.8 安装Nginx1.9 配置Nginx 2. 局域网测试访问FastDFS3. 安装cpolar内网穿透4. 配置公网访问地址5. 固定公网地址5.…...

Mybatis-动态sql和分页

目录 一.什么是Mybatis动态分页 二.mybatis中的动态SQL 在BookMaaper.xml中写sql BookMapper BookBiz接口类 BookBizImpl实现接口类 demo测试类 ​编辑 测试结果 三.mybatis中的模糊查询 mybatis中的#与$有是什么区别 在BookMapper.xml里面建立三个模糊查询 ​编辑 …...

基于YOLOV8模型的西红柿目标检测系统(PyTorch+Pyside6+YOLOv8模型)

摘要:基于YOLOV8模型的西红柿目标检测系统可用于日常生活中检测与定位西红柿目标,利用深度学习算法可实现图片、视频、摄像头等方式的目标检测,另外本系统还支持图片、视频等格式的结果可视化与结果导出。本系统采用YOLOv8目标检测算法训练数…...

数学建模及数据分析 || 4. 深度学习应用案例分享

PyTorch 深度学习全连接网络分类 文章目录 PyTorch 深度学习全连接网络分类1. 非线性二分类2. 泰坦尼克号数据分类2.1 数据的准备工作2.2 全连接网络的搭建2.3 结果的可视化 1. 非线性二分类 import sklearn.datasets #数据集 import numpy as np import matplotlib.pyplot as…...

数据分析15——office中的Excel基础技术汇总

0、前言: 这部分总结就是总结每个基础技术的定义,在了解基础技术名称和定义后,方便对相关技术进行检索学习。笔记不会详细到所有操作都说明,但会把基础操作的名称及作用说明,可自行检索。本文对于大部分读者有以下作用…...

C语言好题解析(四)

目录 选择题一选择题二选择题三选择题四选择题五编程题一 选择题一 已知函数的原型是: int fun(char b[10], int *a); 设定义: char c[10];int d; ,正确的调用语句是( ) A: fun(c,&d); B: fun(c,d); C: fun(&…...

英语——主谓一致

主谓一致是指句子的谓语动词与其主语在数上必须保持一致,一般遵循以下三个原则: 一、语法形式上一致,即单复数形式与谓语要一致。 二、意义上一致,即主语意义上的单复数要与谓语的单复数形式一致。 三、就近以及就远原则,即谓语动词的单复形式取决于最靠近它的词语或者离它…...

属性字符串解析

连续的KV的字符串,每个KV之间用","分隔,V中可嵌套KV的连续字符串结构,例如“ key1value1,key2value2,key3[key4value4,key5value5,key6[key7value7]],key8value8 请编写如下函数,给定字符串,输出嵌套结构的H…...

【C++初阶】vector容器

👦个人主页:Weraphael ✍🏻作者简介:目前学习C和算法 ✈️专栏:C航路 🐋 希望大家多多支持,咱一起进步!😁 如果文章对你有帮助的话 欢迎 评论💬 点赞&#x1…...

ThreadLocal深度解析

简介 在并发编程中,导致并发bug的问题都会归结于对共享变量的操作不当。多个线程同时读写同一共享变量存在并发问题,我们可以利用写时复制、不变性来突破对原数据的写操作,没有写就没有并发问题,而本篇文章所介绍的技术是突破共享…...

React第五十七节 Router中RouterProvider使用详解及注意事项

前言 在 React Router v6.4 中&#xff0c;RouterProvider 是一个核心组件&#xff0c;用于提供基于数据路由&#xff08;data routers&#xff09;的新型路由方案。 它替代了传统的 <BrowserRouter>&#xff0c;支持更强大的数据加载和操作功能&#xff08;如 loader 和…...

PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建

制造业采购供应链管理是企业运营的核心环节&#xff0c;供应链协同管理在供应链上下游企业之间建立紧密的合作关系&#xff0c;通过信息共享、资源整合、业务协同等方式&#xff0c;实现供应链的全面管理和优化&#xff0c;提高供应链的效率和透明度&#xff0c;降低供应链的成…...

江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命

在华东塑料包装行业面临限塑令深度调整的背景下&#xff0c;江苏艾立泰以一场跨国资源接力的创新实践&#xff0c;重新定义了绿色供应链的边界。 跨国回收网络&#xff1a;废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点&#xff0c;将海外废弃包装箱通过标准…...

ardupilot 开发环境eclipse 中import 缺少C++

目录 文章目录 目录摘要1.修复过程摘要 本节主要解决ardupilot 开发环境eclipse 中import 缺少C++,无法导入ardupilot代码,会引起查看不方便的问题。如下图所示 1.修复过程 0.安装ubuntu 软件中自带的eclipse 1.打开eclipse—Help—install new software 2.在 Work with中…...

Angular微前端架构:Module Federation + ngx-build-plus (Webpack)

以下是一个完整的 Angular 微前端示例&#xff0c;其中使用的是 Module Federation 和 npx-build-plus 实现了主应用&#xff08;Shell&#xff09;与子应用&#xff08;Remote&#xff09;的集成。 &#x1f6e0;️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...

云原生玩法三问:构建自定义开发环境

云原生玩法三问&#xff1a;构建自定义开发环境 引言 临时运维一个古董项目&#xff0c;无文档&#xff0c;无环境&#xff0c;无交接人&#xff0c;俗称三无。 运行设备的环境老&#xff0c;本地环境版本高&#xff0c;ssh不过去。正好最近对 腾讯出品的云原生 cnb 感兴趣&…...

Fabric V2.5 通用溯源系统——增加图片上传与下载功能

fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...

代码规范和架构【立芯理论一】(2025.06.08)

1、代码规范的目标 代码简洁精炼、美观&#xff0c;可持续性好高效率高复用&#xff0c;可移植性好高内聚&#xff0c;低耦合没有冗余规范性&#xff0c;代码有规可循&#xff0c;可以看出自己当时的思考过程特殊排版&#xff0c;特殊语法&#xff0c;特殊指令&#xff0c;必须…...

在 Spring Boot 中使用 JSP

jsp&#xff1f; 好多年没用了。重新整一下 还费了点时间&#xff0c;记录一下。 项目结构&#xff1a; pom: <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://ww…...

Sklearn 机器学习 缺失值处理 获取填充失值的统计值

💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 使用 Scikit-learn 处理缺失值并提取填充统计信息的完整指南 在机器学习项目中,数据清…...