当前位置: 首页 > news >正文

Lnton羚通云算力平台OpenCV-PythonCanny边缘检测教程

Canny 边缘检测是一种经典的边缘检测算法,由 John F. Canny 在 1986 年提出。它被广泛应用于计算机视觉和图像处理领域,用于检测图像中的边缘。

​【原理】

1. 去噪

由于边缘检测非常容易收到图像的噪声影响,第一步使用 5x5 高斯滤波去除图像中的噪声。

2. 寻找图像的亮度梯度

在平滑后(去噪后)的图像利用 Sobel 算子计算图像的 X-, Y- 的一阶导数G ( x ) G(x)G(x)和G ( y ) G(y)G(y),从这两幅图像中我们可以获得边缘的梯度值和方向。

3. 非最大值抑制

获得梯度大小和方向后,对图像进行全扫描,去除可能不构成边缘的任何不需要的像素。在每个像素处,检查像素在梯度方向是否是其领域中的局部最大值。

点A位于垂直边缘上,梯度方向为 A->B, B 和 C 都是梯度方向上的点,如果 A 是邻域内最大的,则保留,否则设置为0。简而言之,会得到一个细的边缘。

4. 滞后阈值

这个阶段决定哪些是真正的边缘,哪些不是。为此,我们需要两个阈值,minVal和maxVal,梯度强度大于maxVal确定是边缘,低于minVal值的边缘点被抛弃,位于这两个值中间的值,根据其邻域点的属性来决定,如果连接到强边缘,则被判定为强边缘,否则丢弃。

上图中,可以看出,尽管C点在maxVal以下,但是与A连接,则C和A都是强边缘点。而B没有强边缘连接,则被丢弃。

 

 

import numpy as np
import cv2
from matplotlib import pyplot as pltimg = cv2.imread('messi5.jpg',0)
edges = cv2.Canny(img,100,200)cv2.imshow("src", img)
cv2.imshow("edge", edges)cv2.waitKey(0)
cv2.destroyAllWindows()
  • trackerbar 控制 Canny 边缘检测阈值

 

import numpy as np
import cv2# 空函数
def nothing(x):passimg = cv2.imread('messi5.jpg', 0)
cv2.namedWindow('image')cv2.createTrackbar('min', 'image', 10, 200, nothing)
cv2.createTrackbar('max', 'image', 0, 255, nothing)cv2.setTrackbarPos('min', 'image', 50)
cv2.setTrackbarPos('max', 'image', 150)while(1):cv2.imshow('image', img)if cv2.waitKey(2) & 0xFF == 27:breakminVal = cv2.getTrackbarPos('min', 'image')maxVal = cv2.getTrackbarPos('max', 'image')if maxVal < minVal:maxVal = minVal + 10cv2.setTrackbarPos('max', 'image', maxVal)edges = cv2.Canny(img, minVal, maxVal)cv2.imshow('canny', edges)cv2.destroyAllWindows()

用Canny方法计算图像的边缘

image: 8位输入图像

edges: 输出的边缘图像, 单通道8位图像,尺寸与原图一致

threshold1: 滞后过程的第一阈值

threshold2: 滞后过程的第二阈值

L2gradient: 一个决定是否需要更好精度的标志,L2gradient=true

dx: 输入图像的16位x导数

dy: 输入图像的16位y导数

Lnton羚通是专注于音视频算法、算力、云平台的高科技人工智能企业。 公司基于视频分析技术、视频智能传输技术、远程监测技术以及智能语音融合技术等, 拥有多款可支持ONVIF、RTSP、GB/T28181等多协议、多路数的音视频智能分析服务器/云平台。

 

相关文章:

Lnton羚通云算力平台OpenCV-PythonCanny边缘检测教程

Canny 边缘检测是一种经典的边缘检测算法&#xff0c;由 John F. Canny 在 1986 年提出。它被广泛应用于计算机视觉和图像处理领域&#xff0c;用于检测图像中的边缘。 ​【原理】 1. 去噪 由于边缘检测非常容易收到图像的噪声影响&#xff0c;第一步使用 5x5 高斯滤波去除图…...

2023-8-23 滑动窗口

题目链接&#xff1a;滑动窗口 #include <iostream>using namespace std;const int N 1000010;int n, k; int a[N], q[N];int main() {scanf("%d%d", &n, &k);for(int i 0; i < n; i) scanf("%d", &a[i]);int hh 0, tt -1;for(…...

SOA通信中间件常用的通信协议

摘要&#xff1a; SOA&#xff08;面向服务的架构&#xff09;的软件设计原则之一是模块化。 前言 SOA&#xff08;面向服务的架构&#xff09;的软件设计原则之一是模块化。模块化可以提高软件系统的可维护性和代码重用性&#xff0c;并且能够隔离故障。举例来说&#xff0c;…...

解决npm安装依赖失败,node和node-sass版本不匹配的问题

npm安装依赖报错&#xff1a; npm ERR! cb() never called! npm ERR! This is an error with npm itself. 一. 问题描述 用npm安装依赖报错&#xff1a; npm ERR! cb() never called! npm ERR! This is an error with npm itself. Please report this error at: npm ERR! …...

2023 网络建设与运维 X86架构计算机操作系统安装与管理题解

任务描述: 随着信息技术的快速发展,集团计划2023年把部分业务由原有的X86架构服务器上迁移到ARM架构服务器上,同时根据目前的部分业务需求进行了部分调整和优化。 一、X86架构计算机操作系统安装与管理 1.PC1系统为ubuntu-desktop-amd64系统(已安装,语言为英文),登录用户…...

LAMP 架构及Discuz论坛与Wordpress博客搭建

目录 1 LAMP 配置与应用 1.1动态资源与语言 1.2 LAMP 架构的组成 1.2.1 主要功能 2 编译安装Apache http 服务 2.1 环境准备 2.1.1 关闭防火墙及selinux服务 2.1.2 安装依赖环境 2.2 安装软件包 2.2.1 解压软件包 2.2.2 移动apr包 apr-util包到安装目录中&#xff0c;并…...

考研C语言进阶题库——更新51-60题

目录 51.银行系中有很多恒星&#xff0c;H 君晚上无聊&#xff0c;便爬上房顶数星星&#xff0c;H 君将整个银河系看做一个平面&#xff0c;左上角为原点&#xff08;坐标为&#xff08;1, 1&#xff09;&#xff09;。现在有 n 颗星星&#xff0c;他给每颗星星都标上坐标&…...

智能算法挑战赛决赛题目——初中组

题目 1. 判断是否存在重复的子序列 从 m 个字符中选取字符&#xff0c;生成 n 个符号的序列&#xff0c;使得其中没有 2 个相邻的子序列相同。如从 1&#xff0c;2&#xff0c;3&#xff0c;生成长度为 5 的序列&#xff0c;序列“12321”是合格的&#xff0c;而“12323”和“…...

一分钟学算法-递归-斐波那契数列递归解法及优化

一分钟学一个算法题目。 今天我们要学习的是用递归算法求解斐波那契数列。 首先我们要知道什么是斐波那契数列。 斐波那契数列&#xff0c;又称黄金分割数列&#xff0c;是一个经典的数学数列&#xff0c;其特点是第一项&#xff0c;第二项为1&#xff0c;后面每个数字都是前…...

选择Rust,并在Ubuntu上使用Rust

在过去的 8 年里&#xff0c;Rust 一直是开发人员最喜欢的语言&#xff0c;并且越来越被各种规模的软件公司采用。然而&#xff0c;它的许多高级规则和抽象创造了一个陡峭的初始学习曲线&#xff0c;这可能会给人留下 Rust 是少数人的保留的印象&#xff0c;但这与事实相去甚远…...

SVM详解

公式太多了&#xff0c;就用图片用笔记呈现&#xff0c;SVM虽然算法本质一目了然&#xff0c;但其中用到的数学推导还是挺多的&#xff0c;其中拉格朗日约束关于α>0这块证明我看了很长时间&#xff0c;到底是因为悟性不够。对偶问题也是&#xff0c;用了一个简单的例子才明…...

mysql全文检索使用

数据库数据量10万左右&#xff0c;使用like %test%要耗费30秒左右&#xff0c;放弃该办法 使用mysql的全文检索 第一步:建立索引 首先修改一下设置: my.ini中ngram_token_size 1 可以通过 show variables like %token%;来查看 接下来建立索引:alter table 表名 add f…...

opencv 进阶17-使用K最近邻和比率检验过滤匹配(图像匹配)

K最近邻&#xff08;K-Nearest Neighbors&#xff0c;简称KNN&#xff09;和比率检验&#xff08;Ratio Test&#xff09;是在计算机视觉中用于特征匹配的常见技术。它们通常与特征描述子&#xff08;例如SIFT、SURF、ORB等&#xff09;一起使用&#xff0c;以在图像中找到相似…...

Mac Flutter web环境搭建

获取 Flutter SDK 下载以下安装包来获取最新的 stable Flutter SDK将文件解压到目标路径, 比如: cd ~/development $ unzip ~/Downloads/flutter_macos_3.13.0-stable.zip 配置 flutter 的 PATH 环境变量&#xff1a; export PATH"$PATH:pwd/flutter/bin" // 这个命…...

在外SSH远程连接macOS服务器

文章目录 前言1. macOS打开远程登录2. 局域网内测试ssh远程3. 公网ssh远程连接macOS3.1 macOS安装配置cpolar3.2 获取ssh隧道公网地址3.3 测试公网ssh远程连接macOS 4. 配置公网固定TCP地址4.1 保留一个固定TCP端口地址4.2 配置固定TCP端口地址 5. 使用固定TCP端口地址ssh远程 …...

Dockerfile文件详细

Dockerfile 是一个文本文件&#xff0c;里面包含组装新镜像时用到的基础镜像和各种指令&#xff0c;使用dockerfile 文件来定义镜像&#xff0c;然后运行镜像&#xff0c;启动容器。 dockerfile文件的组成部分 一个dockerfile文件包含以下部分&#xff1a; 基础镜像信息&…...

C语言学习系列-->看淡指针(3)

文章目录 一、字符指针变量二、数组指针变量2.1 概述2.2 数组指针初始化 三、二维数组传参本质四、函数指针五、typedef关键字六、函数指针数组 一、字符指针变量 在指针的类型中我们知道有⼀种指针类型为字符指针 char* 一般使用&#xff1a; #include<stdio.h>int main…...

Java抽象类详解

抽象类 抽象类的概念 在面向对象的概念中&#xff0c;所有的对象都是通过类来描绘的&#xff0c;但是反过来&#xff0c;并不是所有的类都是来描绘对象的&#xff0c;如果一个类中没有包含足够的信息来描绘一个具体的对象&#xff0c;这样的类就是抽象类。比如&#xff1a; 说…...

06-微信小程序-注册程序-场景值

06-微信小程序-注册程序 文章目录 注册小程序参数 Object object案例代码 场景值场景值作用场景值列表案例代码 注册小程序 每个小程序都需要在 app.js 中调用 App 方法注册小程序实例&#xff0c;绑定生命周期回调函数、错误监听和页面不存在监听函数等。 详细的参数含义和使…...

多种方法实现 Nginx 隐藏式跳转(隐式URL,即浏览器 URL 跳转后保持不变)

多种方法实现 Nginx 隐藏式跳转(隐式URL,即浏览器 URL 跳转后保持不变)。 一个新项目,后端使用 PHP 实现,前端不做路由,提供一个模板,由后端路由控制。 Route::get(pages/{name}, [\App\Http\Controllers\ResourceController::class, getResourceVersion])...

[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?

&#x1f9e0; 智能合约中的数据是如何在区块链中保持一致的&#xff1f; 为什么所有区块链节点都能得出相同结果&#xff1f;合约调用这么复杂&#xff0c;状态真能保持一致吗&#xff1f;本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里&#xf…...

docker详细操作--未完待续

docker介绍 docker官网: Docker&#xff1a;加速容器应用程序开发 harbor官网&#xff1a;Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台&#xff0c;用于将应用程序及其依赖项&#xff08;如库、运行时环…...

Java 语言特性(面试系列1)

一、面向对象编程 1. 封装&#xff08;Encapsulation&#xff09; 定义&#xff1a;将数据&#xff08;属性&#xff09;和操作数据的方法绑定在一起&#xff0c;通过访问控制符&#xff08;private、protected、public&#xff09;隐藏内部实现细节。示例&#xff1a; public …...

(十)学生端搭建

本次旨在将之前的已完成的部分功能进行拼装到学生端&#xff0c;同时完善学生端的构建。本次工作主要包括&#xff1a; 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...

无法与IP建立连接,未能下载VSCode服务器

如题&#xff0c;在远程连接服务器的时候突然遇到了这个提示。 查阅了一圈&#xff0c;发现是VSCode版本自动更新惹的祸&#xff01;&#xff01;&#xff01; 在VSCode的帮助->关于这里发现前几天VSCode自动更新了&#xff0c;我的版本号变成了1.100.3 才导致了远程连接出…...

基于Flask实现的医疗保险欺诈识别监测模型

基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施&#xff0c;由雇主和个人按一定比例缴纳保险费&#xff0c;建立社会医疗保险基金&#xff0c;支付雇员医疗费用的一种医疗保险制度&#xff0c; 它是促进社会文明和进步的…...

Python爬虫实战:研究feedparser库相关技术

1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...

GitHub 趋势日报 (2025年06月08日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...

rnn判断string中第一次出现a的下标

# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...